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Abstract

Motivation. The Z index, proposed by Haruo Hosoya in 1971, has initially been applied only to simple graphs
representing saturated hydrocarbons. Our aim in this report was to extend the Z index to general graphs that may
be used to represent unsaturated systems and heterosystems and to investigate the behavior of the Z index in
regard to their structural characteristics such as size, branching, cyclicity, multiple edges and loops.
Method. Chemical graph–theoretical concepts were used. The Z index was calculated by means of the Z
counting polynomial and the matching polynomial. These polynomials were constructed using the appropriate
recurrence relations. The structural behavior of the Z index was tested against the total walk count (twc) index.
Results. The Z index was obtained for a number of simple graphs and general graphs. It is shown that the Z
index of these graphs follows their structural changes, that is, the Z index increases with the size, loops, multiple
edges, cycles and is sensitive to branching. The twc index supports in most cases the structural behavior of the Z
index. The relationship between the Z counting polynomial and the matching polynomial is discussed. The edge
decomposition of the Z index is also commented.
Conclusions. The range of applicability of the Hosoya Z index is extended to general graphs. It is shown that
this index accounts well for their structural characteristics.
Keywords. General graph; loop graph; loop multigraph; matching polynomial; multigraph; total walk count
index; Z counting polynomial; Hosoya Z index.

1 INTRODUCTION

Haruo Hosoya introduced in 1971 a topological index that he called the Z index [1]. This
topological index, also called the Hosoya Z index [2,3], has found an extensive use in quantitative
structure–property relationships (QSPRs) and quantitative structure–activity relationships (QSARs) 
[2–5]. In some cases such as in simple linear regressions based on topological indices the Z index
gives better QSPR and QSAR models than most indices [6]. It is also applicable to many different
problems, not only in chemistry, but also in mathematics (e.g. combinatorial theory),
chemoinformatics (e.g. coding and identification of molecules) and physics (e.g. dimer statistics) 
[7–10]. Originally the Z index was introduced for simple graphs representing saturated 
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hydrocarbons. In the past there were some attempts to extend the Z index to edge–weighted graphs 
representing heterosystems [2,4,11,12]. Unfortunately, the systematic use of this index in the study 
of the structural characteristics of unsaturated systems and heterosystems has not yet been
undertaken. In this paper we report on our work on the extension of the Z index to general graphs. 
The response of the Z index to various structural changes is tested against the total walk count (twc)
[13].

Molecular graphs will be presented in the usual way [14] – atoms will be represented by vertices,
bonds by edges. Saturated hydrocarbons will be represented by simple graphs [15] (also called 
normal graphs [16] or schlicht graphs [17]). These graphs do not contain multiple edges or loops.
Two or more edges that join a pair of vertices in a graph are called multiple edges. A loop is an 
edge joining a vertex to itself [18]. Unsaturated hydrocarbons will be represented by graphs in
which no loops are allowed but more than one edge can join two vertices. Such graphs are called 
multigraphs [18]. Saturated molecules containing heteroatoms are conventionally represented by 
loopgraphs [19], that is, graphs in which loops (representing heteroatoms [20]) are permitted but
not multiple edges. Unsaturated heterosystems will be represented by loopmultigraphs [19] (also 
called pseudographs [18]). Multiple edges and loops are allowed in these graphs. A collective name
for multigraphs, loopgraphs and loopmultigraphs is general graphs [21,22]. These graphs are of 
interest not only in chemistry but also in various fields of science and engineering, such as in the 
communication net theory [23]. 
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Figure 1. A set of monocyclic molecules.

As illustrative examples of the aforementioned classes of compounds, we give in Figure 1 a set 
of monocyclic molecules, starting with a saturated molecule (cyclobutane) and ending with an 
unsaturated heterosystem (azacyclobutadiene), and in Figure 2 the corresponding graphs: simple
graph 1 for cyclobutane, loopgraph 2 for azacyclobutane, multigraphs 3 and 5 for cyclobutene and 
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cyclobutadiene respectively, and loopmultigraphs graphs 4 and 6 for azacyclobutene and 
azacyclobutadiene respectively. 

1 2

4

3

5 6

Figure 2. Molecular graphs corresponding to molecules of Figure 1.

2 THE Z INDEX FOR SIMPLE GRAPHS

One way to calculate the Z index for simple graphs is by means of the Z counting polynomial.
The Z counting polynomial, Q(G; x), of a simple connected graph G is defined [1] as: 

2/

0
);();(

V

k

kxkGpxGQ (1)

where the coefficient p(G; k) is the number of independent sets of k edges of G. A set S of k edges is 
independent (k–matching) if no two edges of the set S are adjacent in G. The Gaussian brackets [ ] 
above the summation in Eq. (1) denote the integer part of V/2, where V is the number of vertices in 
G. The empty set and all singleton sets are independent, hence p(G; 0)=1 and p(G; 1) equals the 
number of edges in G. The Z index of G, Z = Z(G), is defined by the expression: 
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0
);(

V

k
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Obviously, the Z index is equal to the value of the Z counting polynomial for x = 1: 

)1;()( xGQGZ (3)
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G

p (G; 0) = 1

p (G; 1) = 7

p (G; 2) = 13

p (G; 3) = 5

Q (G; x) = 1 + 7x + 13x2 + 5x3

Z (G) = 26

Figure 3. The graphical construction of the Z counting polynomial for a simple graph representing methylcyclohexane.

As an example of the construction of the Z counting polynomial we give in Figure 3 the 
“pedestrian” (graphical) construction of the Z counting polynomial for a simple graph representing 
methylcyclohexane. The graphical construction of the Z counting polynomial is of a conceptual 
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value, but computationally is impractical for larger graphs. 

G

G - e

G - (e)

e

Q (G - e; x) = 1 + 6x + 9x2 + 2x3

xQ (G - (e); x) =       x + 4x2 + 3x3

Q (G; x) = 1 + 7x + 13x2 + 5x3

+

Q(G; x) = Q(G - e; x) + xQ(G -(e); x)

Figure 4. The construction of the Z counting polynomial for the graph G of Figure 3 using the recurrence relation (4).

A much easier and faster way to compute Q(G; x) is by the recurrence relation [1]: 

));(();();( xeGxQxeGQxGQ (4)

where G–e and G–(e) denote spanning subgraphs of G obtained by erasing an edge e, and the edge e
and all edges adjacent to e respectively. Since G is connected, its spanning graph G–e is connected 
if and only if G contains at least one cycle and the edge e is one of the edges making up the 
cycle(s). The spanning subgraph G–(e) is always disconnected. The Z counting polynomial of a
disconnected graph D with components Di (i=1, . . . , n), that is: 

n

i
iDD

1
(5)

is defined by the expression: 

164
BioChem Press http://www.biochempress.com



On the Hosoya Z Index of General Graphs
Internet Electronic Journal of Molecular Design 2003, 2, 160–178
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and consequently the Z index for the graph D is given by: 
n

i
iDZDZ

1

)()( (7)

The idea behind the recurrence relation, Eq. (4), is to reduce G to smaller fragments for which
the Z counting polynomials can easily be computed. In Figure 4, we give the construction of the Z
counting polynomial for the graph of Figure 3 using Eq. (4). 

3 THE RELATIONSHIP BETWEEN THE MATCHING POLYNOMIAL AND
THE Z COUNTING POLYNOMIAL FOR SIMPLE GRAPHS

When Hosoya introduced the Z counting polynomial in 1971, the matching [24] (acyclic [25,26], 
reference [27]) polynomial was unknown in chemistry. The matching polynomial became an object
of research interest of mathematical chemists after the topological resonance energy (TRE) had
been introduced in 1975–1977 by the Zagreb Group [25,26] and by Aihara [27]. This polynomial is 
a key concept in the TRE theory of aromaticity [25–28]. 

The matching polynomial, (G; x), of a simple connected graph G is given by [24]: 
2/

0

2);()1();(
V

k

kVk xkGpxG (8)

The expression for the matching polynomial of a disconnected graph is analogous to the one 
given for the Z counting polynomial, Eq. (6). It should be noted that for an acyclic structure, 
represented by a tree T, (T; x) is equal to its characteristic polynomial P(T; x).

If one compares Eq. (1) with Eq. (8), one sees a great similarity between these two equations.
The relationship between the matching polynomial and the Z counting polynomial is [29]:

);();( 2xxGQxxG V (9)

or

)/;()();( xixGxixGQ V (10)

where 1i .

Thus, for example, the matching polynomial of the cyclobutane graph 1 of Figure 2: 

24);( 24 xxx1 (11)

converts immediately via Eq. (9) into the Z counting polynomial of 1:
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2241);( xxxQ 1 (12)

Because of the relationship (9), the Z index can also be obtained from the matching polynomial
by means of the following expression [29]: 

);()()( ixGiGZ V (13)

This expression eliminated the use of the Z counting polynomial for calculating the Z index. 
Hereafter we will use the matching polynomial for calculating the Z index. There are also available 
computer programs for getting matching polynomials of simple graphs and fullerenes [e.g., 30,31], 
but not for general graphs. 

4 THE Z INDEX FOR GENERAL GRAPHS

We constructed the matching polynomial of a general connected graph using the following 
recurrence formula [14,25,26]:

);][();();( xeGxeGxG (14)

where G–e denotes a subgraph of G obtained by removing an edge e from G and G–[e] is a 
subgraph obtained by removal of the edge e and incident vertices from G. Therefore, Eq. (14) 
differs from Eq. (4). 

p(6; 1) = 7

6

p(6; 0) = 1

Figure 5. The construction of the matching polynomial for the graph 6 of Figure 2 using the graphical approach.
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p(6; 2) = 8

(6; x) = x4 - 7x2 + 8

Z(6) = 16
Figure 5. (Continued).

6

6 - e

6 - [e]
(6 - e; x) = x4 - 6x2 + 6

(6 - [e]; x) =      - x2 + 2

(6; x) = x4- 7x2 + 8

e

Z(6) = 16

+

Figure 6. The construction of the matching polynomial for the graph 6 of Figure 2 using the recurrence relation (14).
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After we obtain the matching polynomial of the general graph G, the Z index is simply equal to
the sum of absolute values of the matching polynomial coefficients:

2/
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);();()1()(
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k

k kGpkGpGZ (15)

In Figure 5 we present the construction of the matching polynomial for the graph 6 of Figure 2, 
using graphical approach and in Figure 6 by applying the recurrence relation (14). 

5 THE EDGE CONTRIBUTIONS TO THE Z INDEX 

The Z index at first sight appears as a topological index that cannot be decomposed into the edge 
contributions. However, the decomposition of the Z index of a simple connected acyclic graph (tree) 
into edge contributions has been done by means of superimposing all the diagrams representing 
independent sets of edges of the tree [32]. 

The decomposition of Z index into edge contributions is possible not only for trees but for all 
kinds of connected and disconnected graphs. The correctness of this claim is easy to see bearing in 
mind that for a general graph G holds the identity [33]:

);();( kGpkkGp
e

e (16)

where pe(G; k) represents the number of independent sets of k edges of G that contain the edge e.
The summation goes over all edges of G. Dividing Eq. (16) by k and then summing over k one
immediately obtains the sought after analytical expression for the decomposition of Z index into 
edge contributions: 
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The quantities pe(G; k) associated with a given edge e can be found just from the spanning 
subgraph G–(e). To wit, the relationship between Z(G–(e)) and quantities pe(G; k) is given by the 
expression:

);())((
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1
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If one assigns the quantities to the corresponding edges in G then one creates the 

edge–weighted graph G. An example of such weighting of a graph is given on the loopmultigraph 6,
shown bellow: 

)/);((
k

kkGpe
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a b

cd

1.5

222.52.5

2

2.5

6 HOW THE STRUCTURE OF (MOLECULAR) MULTIGRAPHS,
LOOPGRAPHS AND LOOPMULTIGRAPHS AFFECTS THE VALUE OF

THE Z INDEX 

In this section we discuss how the structural characteristics of (molecular) multigraphs,
loopgraphs and loopmultigraphs, such as size (in terms of the number of vertices and edges),
branching, cyclicity, multiple edges and loops, influence the value of Z index. It is clear that the Z
index increases with the size in terms of either the number of multiple edges and loops or the
number of vertices (the increase in the number of vertices reflects in the increase in the number of
edges in connected graphs of any kind) because already the value of p(G; 1) increases with these 
numbers. This is also seen when graphs in Figure 2 are compared. In Table 1 we give the 
expressions for the matching polynomial and the corresponding values of the Z index for a set of 
graphs shown in Figure 2. 

Table 1. Matching polynomials and values of Z index and total walk count (twc) index for six graphs of Figure 2.
Molecular graph Matching polynomial Z twc

1 x4 – 4x2 + 2 7 120
2 x4 – 5x2 + 4 10 350
3 x4 – 5x2 + 3 9 282
4 x4 – 6x2 + 6 13 552
5 x4 – 6x2 + 5 12 480
6 x4 – 7x2 + 8 16 992

Multiple edges and loops individually increase the value of the Z index (compare graphs 1, 3 and 
5, and graphs 1 and 2). Multiple edges affect less the Z index than loops (compare graphs 2 and 3,
and 4 and 5). When both the multiple edge(s) and loop(s) are simultaneously present in the graph,
their joint influence is greater on the Z index than their individual influences. The Z index orders 
graphs of Figure 2 in the following way: its value increases on going from the simple graph 1, to the
multigraph 3, to the loopgraph 2, to the graph 5 with two multiple edges, to the graph 4 with one
multiple edge and one loop, and finally to the loopmultigraph 6 with two multiple edges and one 
loop. In order to check this observation, we computed the total walk count (twc) index for the 
graphs 1–6 taking into account all walks with length of 4 using our computer program [22]. A walk 
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in a (general) graph is any sequence of consecutive edges (and loops). The twc index produced the 
same order: 1 < 3 < 2 < 5 < 4 <6. We used the twc index as a standard because it has been found
that twc is a suitable quantity to order molecules according to the structural characteristics of their 
graphs [34,35]. 

7A 8A
21

6380
29

33708

9A 10A
26

61878 94306

11A 12A 13A 14A

15A 16A 17A 18A

34 47 44 61

55 68 71 88

48942 76930 208552 242548

91808 690408 254698 867658

36

Figure 7. A set of unbranched simple graphs, multigraphs, loopgraphs, and loopmultigraphs. Below each graph the
values of Z index and twc index (computed for walks up to the length of 10) are given.

We investigated in more detail the influence of branching on the Z index using the set of acyclic 
unbranched and branched multigraphs, loopgraphs and loopmultigraphs with seven vertices, starting
with the parent simple graphs. In Figure 7 we give unbranched graphs and in Figure 8 their 
branched isomers. From these figures we see that the Z index indeed increases with the increase in
the size in terms of the number of edges and loops. We also noted as before that loops always bring 
a greater increase in the value of Z index than multiple edges. Regarding branching, Hosoya stated
that the Z index of the acyclic unbranched simple graphs is the largest among the isomeric graphs. 
We observed that this statement holds for simple graphs and loopgraphs, but not for all multigraphs
and loopmultigraphs; compare, for example, the values of the Z index for 9A and 9B, 10A and 10B,
13A and 13B, 14A and 14B, 17A and 17B, and 18A and 18B. In Figures 9 and 10 we give graphical
enumeration of the Z indices for multigraphs 9A and 9B.
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7B 8B
19

10806
26

42486

9B 10B
27

49986 86258

11B 12B 13B 14B

15B 16B 17B 18B

32 44 45 62

52 64 73 90

86998 127920 156818 202672

137870 777526 210418 862158

37

Figure 8. A set of branched simple graphs, multigraphs, loopgraphs and loopmultigraphs related to graphs of Figure 7.
Below each graph the values of Z index and twc index (computed for walks up to the length of 10) are given.

The difference in the value of Z index for 9A and 9B is caused by different values of the p(G; 3), 
while values of p(G; 0), p(G; 1) and p(G; 2) are identical. Therefore, the values of Z index for pairs 
of smaller unbranched and branched multigraphs obtained from 9A and 9B, such as pair 19A and
19B, given below, are expected to be identical. 

1

2

3

4

5

1

2
3

4

5

19A 19B

10 10
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p(G; 0) = 1

p(G; 1) = 7

p(G; 2) = 13

p(G; 3) = 5 Z = 26

Figure 9. Computing the Z index for 9A using graphical approach.

Apparently, in the case of multigraphs and loopmultigraphs the values of the Z index depend 
strongly on the mutual position of multiple edges and loops. In some positions multiple edges and 
loops offer greater combinatorial possibilities to unbranched multigraphs and loopmultigraphs and 
in some other positions to branched multigraphs and loopmultigraphs.
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p(G; 0) = 1

p(G; 1) = 7

p(G; 2) = 13

p(G; 3) = 6

Z = 27

Figure 10. Computing the Z index for 9B using graphical approach.

The twc index supports only in part the response of the Z index to branching. In the case of
simple graphs twc is always greater for the branched isomer [35]. The same appears to be true for
loopgraphs, but not for all multigraphs and loopmultigraphs. In some cases branched multigraphs
and loopmultigraphs have smaller values of twc than unbrached counterparts (compare 9A and 9B,
10A and 10B, 13A and 13B, 14A and 14B, 17A and 17B, 18A and 18B).
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20 21
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39360

2 22A 23
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25086
11

99216
14

191856

1

22B
12

62462

3
9

13524

24
10

52496

25
12

141828

4
13

56934

26A
14

221912

27
17

428748

26B
15

143680

Figure 11. A set of cyclic graphs with four vertices and the values of their Z
indices and twc indices (computed for walks with up to length of 8).
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22A

p(G; 2) = 4

p(G; 1) = 6

p(G; 0) = 1

(22A; x) = x4 - 6x2 + 4

22B

p(G; 2) = 5

p(G; 1) = 6

p(G; 0) = 1

(22B; x) = x4 - 6x2 + 5

Figure 12. Construction of the matching polynomial for 22A and 22B.
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In these examples the twc index opposes the Z index. Loops increase the value of the twc index 
(and the Z index) much more than multiple edges (compare, for example, 7B and 8B and 7B and 
11B). Especially explosive increase in the values of the twc index occurs when the loop and 
multiple edges are adjacent (compare 16A and 17A, and 16B and 17B). This is not observed in the 
case of the Z index, graphs with the adjacent loop and multiple edges possess smaller values of the
Z index than graphs with the non–adjacent loop and multiple edges. 

Cyclicity is a structural characteristic that cannot be isolated from other structural characteristics.
The change in the number of cycles usually results in the size change. We selected a set of cyclic 
simple graphs, multigraphs, loopgraphs and loopmultigraphs with four vertices. They are presented
in Figure 11 together with their Z indices and twc indices values, whilst their matching polynomails
are given in Table 2. Note that matching polynomials for the graphs 1, 2, 3, and 4 are already given
in Table 1. 

Table 2. Matching polynomials for the graphs of Figure 11.
Graph Matching polynomial

20 x4 – 5x2 + 2
21 x4 – 6x2 + 3

22A x4 – 6x2 + 4
22B x4 – 6x2 + 5
23 x4 – 7x2 + 6
24 x4 – 6x2 + 3
25 x4 – 7x2 + 4

26A x4 – 7x2 + 6
26B x4 – 7x2 + 7
27 x4 – 8x2 + 8

The value of the Z index increases with the increase in the number of cycles. The same is true for
the twc index. It can again be seen that a loop increases more the values of the Z and twc indices 
than a multiple edge. The Z index and twc disagree in the cases such as 22A and 22B, and 26A and 
26B, where the loop is placed either on the vertex adjacent to three or two vertices. Apparently the
combinatorial possibilities for the Z index are greater when the vertex carrying the loop has only 
two adjacent vertices (see Figure 12), whilst the reverse is true for twc.

7 CONCLUSIONS 

The Hosoya Z index was generated for selected sets of acyclic and cyclic simple graphs,
multigraphs, loopgraphs, and loopmultigraphs. The influence of structural characteristics, such as 
the size, branching, cyclicity, of studied graphs on the Z index was analyzed. In most cases the 
results for simple graphs parallel the results obtained for the multigraphs, loopgraphs and 
loopmultigraphs. However, it has been found for some multigraphs and loopmultigraphs that the 
branched structure has a greater value of the Z index than the unbranched isomer, thus, opposing the 
observation for the simple graphs where the branched structure has always smaller value of the Z
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index than the unbranched isomer. In most cases the twc index supports results obtained by the Z
index, that is, the values of the indices increase with the size in terms of multiple edges and loops,
they are sensitive to branching, but twc is not always in agreement with the Z index, and loops cause 
a considerable increase in their values. It also appears that the position of the loop is important for 
both Z index and twc.
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