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Abstract 

A quantitative structure–property modeling of the log P (octanol/water partition coefficient) of 76 industrial 
chemicals is presented. Estimations are performed by means of correlation weighting of local invariants of 
labeled hydrogen–filled graphs. Results are quite satisfactory, with lower average deviations than other 
calculations performed with similar theoretical methods. Some possible applications and further extensions of 
the computation procedure to estimate other physico–chemical or biological properties are mentioned. 
Keywords. QSPR; quantitative structure–property relationships; topological indices; lipophilicity; correlation 
weights; local graph invariants; octanol/water partition coefficient. 

1 INTRODUCTION 

Lipophilicity is a measure of the degree to which a given molecule prefers hydrophobic nonpolar 
environments to water. The most common experimental measure of lipophilicity is the logarithm of 
the partition coefficient for a solute distributing itself between water and some organic solvent, such 
as 1–octanol or chloroform. This quantity is abbreviated as log P and has been measured 
experimentally for a wide range of organic compounds [1]: 

aqorg SSP /loglog (1)

The partition coefficient for octanol–water (log Pow) has become the preferred measure for 
lipophilicity in the development of biologically active molecules, in which transport across 
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biological membranes is often critical [2–5]. Since the concept of lipophilicity is so important in 
chemistry, many schemes have been developed to estimate this property as expressed by the 
partition coefficient log P. Some of the best known methods, such as Leo’s CLOGP program [6], 
rely upon summing group contributions of structural fragments to calculate log P directly from the 
two–dimensional structure of a molecule. Methods for calculating log P were surveyed in a 1997 
review [2]. The fragment–based methods are reasonably accurate and very fast, but they suffer from 
a few limitations, such as the need for many parameters and the inability to calculate log P for 
structures containing completely novel structural fragments. 

The possibility to calculate log P directly using explicit solvent or continuum–based simulations 
opens up many new opportunities for modeling chemical properties related to lipophilicity. Both the 
explicit solvent and continuum calculations provide significantly more structural detail than the 
fragment–based methods that are more commonly used today. Furthermore, even when speed is 
critical, such as with large corporate databases, the more general approaches to log P can be used to 
derive missing parameters for fragment–based methods. Thus, direct calculation of log P could 
become very important in ensuring complete coverage of corporate structural databases, virtual 
compound libraries, or collections of acquisition compounds. 

Since the work of Meyer and Overton a century ago [7,8], lipophilicity has been recognized as a 
meaningful parameter in structure–activity relationship studies, and which the epoch–making 
contributions of Hansch [9] has become the single most informative and successful 
physicochemical property in medicinal chemistry [3,10,11]. Not only has lipophilicity found 
innumerable applications in quantitative structure–activity and structure–disposition relationships, 
but its study has revealed a wealth of information on molecular structure. 

The importance of calculated log P is also enhanced by the rapid development of combinatorial 
chemistry. Computational methods are indeed the only techniques allowing a realistic of the 
lipophilicity of molecular fragments linked to inert supports. Moreover, the number of lead 
compounds generated by combinatorial chemistry calls for more accurate methods able to optimize 
and select these drug candidates. In this context, Quantitative Structure Activity (Property) 
Relationships (QSAR/ QSPR) techniques based on calculated log P offer tools to assess both 
solvation and entropy effects, simplifying the estimate of the binding free energy of ligands [12–
15]. The main advantage of this sort of methodology is its independence with respect to Molecular 
Orbital (MO) theory, thus avoiding a rather troublesome, time–consuming process. 

The aim of this paper is to describe a QSPR modeling of log P (octanol/water) of a diverse set of 
76 industrial chemicals by means of correlation weighting of local invariants of Labeled Hydrogen–
Filled Graphs (LHFGs). This method was proposed recently [16–19] and it has proved to be quite 
useful to predict several physical chemistry properties [20–26]. 

This paper is organized as follows: Section 2 deals with the basic definitions related to the 
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topological descriptor, giving their foundatons and pointing out its usefulness as well as analyzing 
the antecedents of this particular topological index. Section 3 describes the methodology applied to 
obtain the regression equations. Section 4 presents some illustrative numerical results, comparing 
them with other data arising from alternative theoretical procedures. Finally, in Section 5 we discuss 
the possibility of extending the use of this sort of molecular descriptor to a different set of 
molecules and for studying other physical chemistry properties and biological activities. 

2 MATERIALS AND METHODS

2.1 Correlation Weighting of Local Graph Invariants 
The last three decades witnessed an upsurge of interest in applications of graph theory in 

chemistry [27–31]. Graph theory is a basic tool for fostering alternative ways to solve chemical 
problems, both by the high degree of abstraction evidenced by the generality of such concepts as 
points, lines and neighborhoods as well as by the combinatorial derivation of many graph–
theoretical concepts which correspond to the essence of chemistry considered as “the study of 
combination between atoms” [32]. This method offers a wide variety of concepts and procedures of 
significant importance to chemistry. 

A graph G is defined as a finite non–empty set V(G) of N–vertices (points) together with a set 
E(G) of edges (lines), the latter being unordered pairs of distinct vertices. Then, by definition, every 
ghraph is finite and has no loops (in edge initiating from and ending in one and the same vertex) 
and multiple edges. When two vertices x and y are joined by an edge e = {x, y}, vertices x and y are 
said to be adjacent and each of them is incident with the edge e. As a matter of fact, the structural 
(constitutional) formula of a chemical compound may be regarded as a molecular graph (MG), 
where the vertices represent atoms while the edges stand for valence bonds. The graph–theoretical 
characterization of molecular structure is most often made by its translation into molecular 
descriptors, such as topological indices. 

A topological index is a real number, associated in an arbitrary way, characterizing the graph. It 
is based on a certain topological feature of the corresponding MG and represents a graph invariant, 
that is to say, it does not depend on the vertex numbering [33]. The main field of application of 
topological indices is the structure–property and structure–activity quantitative correlations. 
Different graph characteristics or invariants have been used in the definition of molecular 
topological indices. For example, the kind of chemical element, the vertex degree (i) and the 
Morgan vertex degrees o first–order 1 (i) are well–known typical local invariants [34,35]. 

Values (i) and 1 (i) can be computed from the adjacency matrix. For example, the adjacency 
matrix for propane is presented below: 
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together with the corresponding (i) and 1 (i) values: 
Atom C(1) H(2) C(3) H(4) C(5) H(6) H(7) H(8) H(9) H(10) H(11)

(i) 4 1 4 1 4 1 1 1 1 1 1 
1 (i) 7 4 10 4 7 4 4 4 4 4 11 

which are derived from the definitions: 
n

j
ijai

1

0 (2)

jiedges
ii

,

01
(3)

The new topological index represents molecular structures via values of the correlation weights 
of local invariants of LHFGs. As local invariants we use numbers of paths of length 2, which have 
been suggested three years ago by Randi  [36]. The local invariants will be denoted as P2k. Values 
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of the local invariants on vertices of LHFG for propane are: 

C(3) C(6) C(3)

H(3)

H(3)

H(3) H(3)

H(3) H(3)

H(3)H(3)

2.2 Computational Methodology 
We have chosen a diverse set of 76 industrial chemicals provided in CLOGP [37]. This set 

includes molecules containing C, H, O, Cl, S, F, Br and N atoms and it is rather representative 
because there are alcohols, nitriles, ketones, amines, esters, furans, amides, ethers, aldehydes, nitro 
and halogen derivatives and hydrocarbons. Table 1 lists the compounds used in this study and the 
value of log Pow for each compound together with previous theoretical results. This particular 
choice is identical to that used by Basak and Grunwald [38] and was selected in order to perform a 
direct comparison of the present method with another procedure based on molecular structural 
similarity. 

Table 1. List of 76 molecules analysed with their measured log P values and some estimated data using 
K–nearest neighbor calculation by similarity methods [38] 

Molecule log P (exp) log P (theor) 1 [AP method] 2 log P (theor) 1 [ED method] 2
Methanol * –0.77 – – –0.31 –0.22 
Acetonitrile * –0.34 0.16 0.16 0.16 –0.08 
Ethanol ° –0.31 0.25 0.06 –0.13 0.06 
Acetone * –0.24 0.29 0.23 0.05 0.53 
Ethylamine ° –0.13 0.48 0.08 –0.31 –0.03 
2–Propanol ° 0.05 0.35 0.55 –0.24 0.26 
Propionitrile ° 0.16 –0.31 –0.22 0.25 0.36 
Methyl acetate * 0.18 0.29 0.51 0.73 1.02 
1–Propanol ° 0.25 0.88 0.75 0.48 0.68 
2–Butanone ° 0.29 0.18 0.55 0.91 0.76 
2–Methyl–2–propanol * 0.35 0.05 –0.13 0.05 –0.10 
Tetrahydrofuran * 0.46 3.44 3.33 0.58 0.73 
Propylamine * 0.48 0.97 0.61 0.25 0.61 
Diethylamine * 0.58 0.89 0.89 0.89 0.68 
2–Butanol ° 0.61 0.25 0.51 0.29 0.60 
Benzamide * 0.64 0.90 1.19 1.85 2.15 
Pyridine * 0.65 2.13 1.51 0.90 1.19 
Ethyl acetate ° 0.73 0.91 1.11 0.18 0.75 
2–Methyl–1–propanol * 0.76 0.61 0.33 0.29 0.60 
Cyclohexanone * 0.81 3.44 2.71 2.99 2.86 
1–Butanol ° 0.88 1.56 0.91 0.90 1.23 
Diethyl ether ° 0.89 0.58 0.66 0.58 0.52 
Aniline * 0.90 2.99 2.86 1.48 1.71 
2–Pentanone ° 0.91 0.73 1.05 0.29 0.83 
Butylamine ° 0.97 1.49 0.98 0.88 0.68 
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Table 1. (Continued) 
Molecule log P (exp) log P (theor) 1 [AP method] 2 log P (theor) 1 [ED method] 2
N,N–Dimethylformamide * 1.01 1.38 2.05 0.18 0.45 
4–Fluoroaniline * 1.15 1.39 1.14 1.85 1.25 
Ethyl acrylate * 1.32 0.73 1.05 0.73 0.45 
Methyl methacrylate * 1.38 0.18 0.75 1.32 0.75 
2–Hexanone ° 1.38 1.98 1.44 0.91 1.20 
4–Toluidine ° 1.39 3.15 2.54 1.94 1.42 
Benzaldehyde * 1.48 0.64 1.25 0.90 1.42 
1,2–Dichloroethane * 1.48 0.25 0.36 –0.34 –0.29 
Amylamine ° 1.49 2.06 1.52 1.56 1.22 
Isopropyl ether * 1.52 0.05 0.47 3.15 2.02 
1–Pentanol ° 1.56 2.03 1.45 1.49 1.18 
Nitrobenzene ° 1.85 2.45 1.96 0.64 0.90 
Hexanoic acid * 1.92 1.98 2.00 1.98 2.02 
4–Methylphenol * 1.94 3.15 2.27 1.39 1.14 
2–Heptanone * 1.98 1.92 1.65 2.06 2.04 
1–Hexanol ° 2.03 2.72 2.14 2.06 2.02 
Hexylamine ° 2.06 2.57 2.03 2.03 2.00 
Benzene * 2.13 0.65 1.06 3.44 1.95 
1,1,2,2–Tetrachloroethane* 2.39 3.40 2.91 3.40 3.52 
Trichloroethylene ° 2.42 3.40 3.39 0.16 1.88 
m–Nitrotoluene ° 2.45 1.85 2.53 0.64 0.90 
1,1,1–Trichloroethane * 2.49 2.83 2.61 0.35 1.59 
n–Heptylamine ° 2.57 2.06 2.39 2.72 2.37 
Ethyl benzoate ° 2.64 0.64 2.45 0.64 1.55 
1–Heptanol ° 2.72 2.97 2.50 2.57 2.77 
Toluene ° 2.73 3.15 2.02 3.15 1.98 
Tripropylamine * 2.79 2.97 3.09 3.21 3.26 
Carbon tetrachloride * 2.83 2.49 2.44 2.49 1.42 
1–Naphthol ° 2.84 3.30 3.69 4.26 4.09 
1–Octanol ° 2.97 2.72 2.72 2.72 2.64 
Bromobenzene ° 2.99 0.90 1.81 0.81 1.14 
o–Xylene ° 3.12 3.78 3.25 3.66 3.44 
p–Xylene ° 3.15 3.78 2.86 3.20 1.83 
Ethylbenzene * 3.15 2.73 3.20 2.73 2.05 
m–Xylene ° 3.20 3.78 3.25 3.15 3.41 
Butyl ether * 3.21 2.97 2.77 2.97 2.77 
Naphthalene ° 3.30 4.09 3.46 4.09 3.70 
N,n–Diethylaniline * 3.31 4.26 3.70 3.15 3.15 
1,2–Dichlorobenzene ° 3.38 4.02 3.81 3.64 2.14 
Tetrachloroethylene * 3.40 2.42 2.41 2.39 3.02 
Cyclohexane * 3.44 2.57 2.64 2.13 1.47 
1,3–Dichlorobenzene ° 3.60 4.02 3.70 2.99 3.18 
1,2–Dibromobenzene * 3.64 2.99 3.06 3.38 3.70 
Isopropylbenzene ° 3.66 3.15 2.94 3.12 3.45 
1,2,4–Trimethylbenzene ° 3.78 3.15 3.13 3.66 3.43 
Acenaphthene * 3.92 2.84 3.07 2.84 3.46 
1,2,4–Trichlorobenzene ° 4.02 4.82 4.10 3.64 3.64 
Biphenyl ° 4.09 3.30 3.07 3.30 3.07 
Butylbenzene * 4.26 3.31 3.23 1.98 2.02 
1,2,4,5–Tetracholobenzene* 4.82 4.02 4.59 3.64 3.51 
Pentachlorobenzene * 5.17 4.82 4.42 3.83 3.64 
Average absolute deviation – 0.72 0.63 0.64 0.60 
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The QSPR modeling for log P has been made by means of the following calculation scheme 
[17,18,39,40]:

1. A computer program read adjacency matrices corresponding to the different MGs. 
2. These matrices are translated into adjacency matrices associated with the AOMGs. 
3. Local invariants are then computed. 
4. A suitable optimization procedure allows one to find the correlations weights (CWs) of the 

local invariants which yield maximum values for the correlation coefficient in the regression 
equations for log P via descriptors DCW, defined as: 

n

ji
ii PCWaCWDCW 2 (4)

where n is the number of vertices in the LHFG, CW{ai} is the correlation weight associated with 
the pressence of vertex ai, such as H, C, N, O, F, Cl, and Br, and CW (P2i) is the correlation weight 
of the number of order two–paths starting from the ith vertex in the molecular graph. Table 2 shows 
results of three probes using this procedure. 

Table 2. Three probes for local invariants 
Atom CW(ai) – Probe 1 CW(ai) – Probe 2 CW(ai) – Probe 3 
H 0.283 0.252 0.394 
C 1.099 1.105 0.978 
N 0.028 0.017 0.024 
O 0.028 0.017 0.024 
F 0.028 0.017 0.024 
Cl 5.481 5.178 5.313 
Br 7.807 7.342 7.525 
P2i CW(P2i) – Probe 1 CW(P2i) – Probe 2 CW(P2i) – Probe 3 
0000 1.485 1.446 1.440 
0001 1.087 1.005 1.034 
0002 0.404 0.375 0.352 
0003 0.223 0.202 0.132 
0004 0.760 0.687 0.721 
0005 0.028 0.017 0.024 
0006 1.460 1.337 1.349 
0007 3.238 2.979 3.141 
0008 4.440 4.122 4.157 
0009 0.375 0.340 0.227 
0010 0.028 0.017 0.024 

An illustrative example of descriptor calculation for acetone is given in Table3. 

C(4) C(5) C(7)

H(3)

H(1)

H(8)

H(10)

H(9)H(2)

O(6)
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Table 3. Calculation of acetone descriptor 
Atom type Numbering CW(ai) P2i CW(P20)

H 1 0.283 3 0.223 
H 2 0.283 3 0.223 
H 3 0.283 3 0.223 
C 4 1.099 2 0.404 
C 5 1.099 6 1.460 
O 6 0.028 2 0.404 
C 7 1.099 2 0.404 
H 8 0.283 3 0.223 
H 9 0.283 3 0.223 
H 10 0.283 3 0.223 
CW – 5.023 – 4.010 

DCW  9.033   

These values allow us to determine CWs, which are then applied in a least–square fitting method 
to obtain log P via a general relationship: 

tsr DCWdDCWcDCWbaPlog (5)

where r, s, t are rational numbers and coefficients a, b, c, and d are determined by regression 
analysis. 

3 RESULTS AND DISCUSSION 

The original set of 76 molecules was split up into two subsets: a working set comprising 38 
molecules and a test set with the remaining 38 molecules. During the optimization procedure we 
experimented with three probes. Different choices for each set were made, but final results are 
nearly independent of them. The most significant statistical results are given in Table 4. 

Table 4. Statistical results for log P

DCWbaPlog (6)

Probe Training set Test set 
a b r s F r s F

1 0.166 –1.381 0.9411 0.500 279 0.9591 0.392 414 
2 0.175 –1.366 0.9412 0.500 280 0.9618 0.382 444 
3 0.174 –1.380 0.9416 0.498 282 0.9596 0.388 418 

2log DCWcDCWbaP (7)

Probe Training set Test set 
a b c r s F r s F

1 –1.5168 0.1804 –3.44E–4 0.9413 0.514 280 0.9586 0.378 408 
2 –1.5202 0.1924 –4.35E–4 0.9415 0.513 281 0.9612 0.367 437 
3 –1.5198 0.1902 –3.91E–4 0.9418 0.511 282 0.9590 0.375 412 
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Table 4. (Continued) 
32log DCWdDCWcDCWbaP (8)

Probe Training set Test set 
a b c d r s F r s F

1 –1.408 0.1614 6.0690E–4 –1.3940E–5 0.9413 0.521 280 0.9590 0.375 412 
2 –1.392 0.1685 8.2086E–4 –1.9447E–5 0.9416 0.520 281 0.9619 0.356 446 
3 –1.404 0.1689 7.2568E–4 –1.7206E–5 0.9419 0.519 283 0.9594 0.373 416 

2/1log DCWbaP (9)

Probe Training set Test set 
a b r s F r s F

1 –4.3480 1.4366 0.9355 0.523 252 0.9509 0.402 340 
2 –4.3221 1.4725 0.9358 0.522 254 0.9536 0.394 361 
3 –4.3499 1.4740 0.9361 0.521 255 0.9514 0.400 343 

3/1log DCWbaP (10)

Probe Training set Test set 
a b r s F r s F

1 –7.2487 3.4526 0.9295 0.546 229 0.9459 0.421 306 
2 –7.2902 3.5046 0.9299 0.545 230 0.9486 0.411 323 
3 –7.2537 3.5135 0.9302 0.543 231 0.9464 0.418 309 

Table 5. Estimated log P values using correlation weigths of local graph invariants and experimental data 
Molecule log P (exp) log P (°) Residual log P Eq. (5) Residual log P Eq. (8) Residual
Methanol –0.77 –0.62 –0.15 –0.50 0.35 –1.05 1.4 
Acetonitrile –0.34 –0.36 0.02 –0.35 0.37 –0.78 1.15 
Ethanol –0.31 –0.21 –0.1 –0.17 0.07 –0.47 0.54 
Acetone –0.24 –0.21 –0.03 0.12 –0.15 –0.02 –0.13 
Ethylamine –0.13 0.03 –0.16 –0.29 0.13 –0.66 0.79 
2–Propanol 0.05 0.23 –0.18 0.61 –0.79 0.64 –1.43 
Propionitrile 0.16 0.30 –0.14 –0.02 –0.12 –0.24 0.12 
Methyl acetate 0.18 0.44 –0.26 0.12 –0.38 –0.02 –0.36 
1–Propanol 0.25 0.43 –0.18 0.41 –0.59 0.38 –0.97 
2–Butanone 0.29 0.42 –0.13 0.44 –0.57 0.42 –0.99 
2–Methyl–2–propanol 0.35 0.34 0.01 0.48 –0.47 0.47 –0.94 
Tetrahydrofuran 0.46 0.51 –0.05 0.98 –1.03 1.08 –2.11 
Propylamine 0.48 0.69 –0.21 0.30 –0.51 0.22 –0.73 
Diethylamine 0.58 0.61 –0.03 0.62 –0.65 0.65 –1.3 
2–Butanol 0.61 0.85 –0.24 1.20 –1.44 1.32 –2.76 
Benzamide 0.64 0.71 –0.07 1.84 –1.91 1.99 –3.9 
Pyridine 0.65 0.68 –0.03 0.70 –0.73 0.74 –1.47 
Ethyl acetate 0.73 0.78 –0.05 0.45 –0.5 0.43 –0.93 
2–Methyl–1–propanol 0.76 0.84 –0.08 0.63 –0.71 0.65 –1.36 
Cyclohexanone 0.81 1.02 –0.21 1.59 –1.8 1.74 –3.54 
1–Butanol 0.88 1.07 –0.19 1.00 –1.19 1.10 –2.29 
Diethyl ether 0.89 1.04 –0.15 0.74 –0.89 0.80 –1.69 
Aniline 0.90 1.21 –0.31 1.46 –1.77 1.60 –3.37 
2–Pentanone 0.91 1.01 –0.1 0.62 –0.72 0.64 –1.36 
Butylamine 0.97 1.20 –0.23 0.88 –1.11 0.96 –2.07 
n.n–Dimethylformamide 1.01 1.01 0 0.78 –0.78 0.85 –1.63 
4–Fluoroaniline 1.15 1.21 –0.06 1.42 –1.48 1.56 –3.04 
Ethyl acrilate 1.32 1.31 0.01 0.77 –0.76 0.83 –1.59 
Methyl methacrylate 1.38 1.75 –0.37 0.90 –1.27 0.99 –2.26 
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Table 5. (Continued) 
Molecule log P (exp) log P (°) Residual log P Eq. (5) Residual log P Eq. (8) Residual
2–Hexanone 1.38 1.39 –0.01 1.61 –1.62 1.76 –3.38 
4–Toluidine 1.39 1.70 –0.31 2.24 –2.55 2.38 –4.93 
Benzaldehyde 1.48 1.76 –0.28 1.61 –1.89 1.76 –3.65 
1.2–Dichloroethane 1.48 2.12 –0.64 1.28 –1.92 1.42 –3.34 
Amylamine 1.49 1.65 –0.16 1.98 –2.14 2.13 –4.27 
Isopropyl ether 1.52 1.58 –0.06 2.32 –2.38 2.44 –4.82 
1–Pentanol 1.56 1.58 –0.02 1.58 –1.6 1.73 –3.33 
Nitrobenzene 1.85 1.21 0.64 1.38 –0.74 1.51 –2.25 
Hexanoic acid 1.92 1.74 0.18 1.88 –1.7 2.03 –3.73 
4–Methylphenol 1.94 2.09 –0.15 2.01 –2.16 2.16 –4.32 
2–Heptanone 1.98 1.80 0.18 2.20 –2.02 2.33 –4.35 
1–Hexanol 2.03 1.91 0.12 2.17 –2.05 2.30 –4.35 
Hexylamine 2.06 2.01 0.05 2.05 –2 2.19 –4.19 
Benzene 2.13 2.24 –0.11 1.17 –1.28 1.29 –2.57 
1.1.2.2–Tetrachloroethane 2.39 2.90 –0.51 3.00 –3.51 3.05 –6.56 
Trichlroethylene 2.42 2.73 –0.31 2.17 –2.48 2.30 –4.78 
m–Nitrotoluene 2.45 1.70 0.75 2.16 –1.41 2.30 –3.71 
1,1,1–Trichloroethane 2.49 2.41 0.08 2.14 –2.06 2.28 –4.34 
n–Heptylamine 2.57 2.40 0.17 2.63 –2.46 2.73 –5.19 
Ethyl benzoate 2.64 2.20 0.44 2.41 –1.97 2.53 –4.5 
1–Heptanol 2.72 2.30 0.42 2.75 –2.33 2.83 –5.16 
Toluene 2.73 2.64 0.09 1.95 –1.86 2.10 –3.96 
Tripropylamine 2.79 3.22 –0.43 2.91 –3.34 2.97 –6.31 
Carbon tetrachloride 2.83 2.60 0.23 2.83 –2.6 2.90 –5.5 
1–Naphthol 2.84 2.72 0.12 2.92 –2.8 2.98 –5.78 
1–Octanol 2.97 2.88 0.09 3.34 –3.25 3.32 –6.57 
Bromobenzene 2.99 2.87 0.12 2.40 –2.28 2.52 –4.8 
o–Xylene 3.12 3.08 0.04 2.74 –2.7 2.82 –5.52 
p–Xylene 3.15 3.08 0.07 2.74 –2.67 2.82 –5.49 
Ethylbenzene 3.15 3.08 0.07 2.28 –2.21 2.41 –4.62 
m–Xylene 3.20 3.08 0.12 2.74 –2.62 2.82 –5.44 
Butyl ether 3.21 2.84 0.37 3.08 –2.71 3.11 –5.82 
Naphthalene 3.30 3.32 –0.02 2.86 –2.88 2.93 –5.81 
n,n–Diethylaniline 3.31 3.09 0.22 3.53 –3.31 3.48 –6.79 
1.2–Dichlorobenzene 3.38 3.02 0.36 2.89 –2.53 2.95 –5.48 
Tetrachloroethylene 3.40 3.30 0.1 3.03 –2.93 3.07 –6 
Cyclohexane 3.44 2.85 0.59 2.14 –1.55 2.28 –3.83 
1,3–Dichlorobenzene 3.60 3.02 0.58 2.89 –2.31 2.95 –5.26 
1,2–Dibromobenzene 3.64 3.68 –0.04 3.64 –3.68 3.57 –7.25 
Isopropylbenzene 3.66 3.65 0.01 3.38 –3.37 3.36 –6.73 
1,2,4–Trimethylbenzene 3.78 3.60 0.18 3.53 –3.35 3.47 –6.82 
Acenaphthene 3.92 4.02 –0.1 4.15 –4.25 3.96 –8.21 
1,2,4–Trichlorobenzene 4.02 3.61 0.41 3.75 –3.34 3.65 –6.99 
Biphenyl 4.09 2.00 2.09 3.71 –1.62 3.62 –5.24 
Butylbenzene 4.26 4.24 0.02 3.45 –3.43 3.41 –6.84 
1,2,4,5–Tetrachlorobenzene 4.82 2.02 2.8 4.60 –1.8 4.29 –6.09 
Pentachlorobenzene 5.17 1.41 3.76 5.46 –1.7 4.89 –6.59 
Average absolute deviation (*) – 0.34 – 0.36 – 0.40 – 
Average absolute deviation (**) – 0.25 – 0.31 – 0.34 – 
Average absolute deviation (***) – 0.29 – 0.34 – 0.37 – 

(°) Doklady Academii Nauk 2000, 374, 786. 
(*) Training set 
(**) Test set 
(***) Complete set 
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Finally, in Table 5 we display some theoretical results derived from the present calculation 
procedure together with experimental data and Pasyukov et al.’s theoretical results [41]. We have 
inserted these theoretical results here since they were derived on the basis of an optimal selection of 
the measure of molecular similarity. 

Since our molecular set is identical to that employed by Basak and Grunwald [38] and Pasyukov 
et al. [41], it allows us to make a direct comparison with previous theoretical results. The analysis 
of the reported numerical data shows clearly that present predictions of log P (octanol/water) are 
better than previous ones derived from two molecular similarity measures based on atom pairs and 
topological indices. In fact, when comparing average absolute deviations, our results are better by 
approximately a factor of two. 

Another way to make direct comparisons is illustrated in Table 6, where we report regression 
coefficients for different methods. In order to judge present results, one must take into account the 
numerical data reported for molecules belonging to the tests set are real predictions, since 
coefficients for regression equations were determined from data corresponding to the test set, while 
such discrimination among molecules were not made in the paper reported by Basak and Grunwald 
[38].

Regarding Pasyukov et al.’s results, statistical parameters are nearly similar. However, these 
authors have not split up the molecular set into a training set and a test set so that they have not 
made real predictions. Notwithstanding this drawback, it must be taken into account their results are 
quite good and probably this minor detail does not diminish the fact their method for predicting the 
properties of compounds is the most accurate one compared to other molecular similarity measure 
procedures, as stated explicitly by the authors [41]. 

Table 6. Regression coefficients for different log P estimations 
AP method [38] ED method [38] Present calculation - probe 3 
K r K r Eq. r
1 0.774 1 0.788 5 0.9416 
2 0.854 2 0.821 6 0.9418 
3 0.869 3 0.814 7 0.9419 
4 0.874 4 0.846 8 0.9361 
5 0.854 5 0.845 9 0.9362 

Predictions do not change significantly when resorting to different algebraic forms of the 
quantitative relationships (i.e. Eqs. (5)–(9)). Besides, polynomial relationships do not improve very 
much when increasing the algebraic orders (compare, for example, results derived from Eqs. (5) and 
(6)). Regarding the different probes chosen in this work, they yield nearly the same reuslts, although 
probe 3 is slightly better than the other two. 
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4 CONCLUSIONS

Numerical data presented in the previous section make clear the rather good quality results based 
on the correlation weighting of local invariants of AOMGs, which yield very accurate log P
(octanol/water) and numerical correlations with significantly low standard errors. The comparison 
with other theoretical predictions derived from molecular similarity measures based on atom pairs 
and topological indices for log P is favorable for our present approach. This kind of flexible 
descriptor does not present any difficulty to implement the corresponding numerical algorithm and 
besides these results are in line with some previous ones [16–26]. 

These results point out the possibility to extend this sort of method for other molecules and/or 
physical chemistry properties and biological activities resorting to this new topological descriptor. It 
also could be interesting to employ multiple regression analysis supported by topological 
descriptors and molecular indices combined with the orthogonalization procedure in order to obtain 
optimum QSR and QSPR models that most probably will lead to a meaningful interpretation of the 
regression formulae. Currently, work along these lines is being carried out in our laboratories and 
results will be presented elsewhere in the forthcoming future. 

We deem suitable to make a final comment on the definition of the Oxc descriptor. In fact, we 
have employed an additive relationship between CW{ai} and CW(P2i), i.e. Eq. (4), but it should be 
equally valid to employ other sort of algebraic relationships between local invariants and elements 
of the adjacency matrix. This possibility has been explored before and results were quite 
satisfactory [16–18,39], so that they represent an interesting chance to extend this sort of study in 
QSAR and QSPR models. 
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