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Abstract 

Motivation. The protein product of the human ether–a–go–go gene (hERG) is a potassium channel that when 
inhibited may lead to cardiac arrhythmia. At present, various in vivo and in vitro models for QT prolongation 
and subsequent arrhythmia exist but they may not be entirely predictive for humans. Consequently, a fast and 
reliable in silico model to assess hERG affinity values would increase the screening rate and would also lower 
the cost compared to experimental assay methods. 
Method. In this communication different approaches were employed to predict hERG K+ channel affinities. First 
of all, different QSAR models were developed employing various molecular descriptors. Then, independent 
software were used to predict hERG activity values: Qikprop and PASS. The software QikProp (Schrödinger, 
L.L.C) allows to predict pharmaceutically relevant properties for organic molecules, starting from their 3D 
structures and employing calculated physically significant descriptors. In addition to cell permeability, logP, 
solubility, blood/brain barrier permeability, the program can also predict hERG K+ channel affinity values. As 
an independent approach, the program PASS PRO – Prediction of Activity Spectra for Substances – (V. 
Poroikov, D. Filimonov & Associates) that can predict several hundreds biological activity probability values, 
such as pharmacological effects, mechanisms of action, toxicity and metabolism reactions, was trained to predict 
the probability of hERG activity. 
Conclusions. The availability of different and independent methods and models able to predict hERG activity 
allows the application of a consensus criterion to be used as a filter in the discovery process. Five QSAR models 
were obtained with Q2 values ranging from 0.65 to 0.98 and SDEP values ranging from 1.2 to 0.9. Employing 
together QikProp, PASS and QSAR predictions, we obtained a consensus criterion that applied to 67 molecules 
yields a Matthews correlation of MCC = 0.71, 5 FP and 3 FN. In the light of such result, our consensus score can 
be used as a powerful in silico screening for drug discovery processes. 
Keywords. ADMET; HERG; human ether–a–go–go gene; QSAR; quantitative structure–activity relationships; 
molecular descriptors. 

Abbreviations and notations 
EVA, Eigen VAlues PLS, Partial Least Square to Latent Structure 
FN, false negative QSAR, Quantitative Structure–Activity Relationships 
FP, false positive TN, true negative 
MCC, Mathews correlation coefficient TP, true positive 
OSC, Orthogonal Signal Correction VIP, Variable Importance Plot 
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1 INTRODUCTION 

Drug–induced QT interval prolongation, as measured on the human electrocardiogram, was once 

considered a trivial physiological finding. Now it is believed that drug–induced QT interval 

prolongation, that has been identified as a critical side effect for numerous drugs, might result in 

sudden cardiac death. As a consequence, a number of prescription medications associated with QT 

prolongation have been removed from the market. The normal quasiperiodic electrical activity of 

the heart is the result of the flow of ions through channels in the membranes of myocardial cells. 

Drugs affect ventricular repolarization by interfering with the opening and closing of these 

channels. The focus of many in vitro studies to date is the membrane–bound inward (rapid 

activating delayed) rectifier potassium channel (IKr) also known as the product of the human ether–

a–go–go gene (hERG). Drugs or their metabolites may block this channel, thereby prolonging the 

QT interval and in same cases leading to the potentially life–threatening ventricular arrhythmia that 

may degenerate into ventricular fibrillation and sudden death. At present blockade of hERG K+

channel is an unwanted side effect that must be detected as early as possible during drug 

development [1]. 

Since various in vivo and in vitro models for QT prolongation and subsequent arrhythmia exist 

but they may not be entirely predictive for humans, the availability of in silico methods in the early 

phase of drug development would dramatically increase the screening rate and would also lower the 

costs compared to experimental assay methods. The possibility of a computational hERG model to 

be used as a filter in the discovery process would add an extra dimension to lead optimization. Both 

a quantitative and a qualitative model would theoretically enable virtual selection of candidates with 

the lowest potential to cause hERG inhibition. 

Recent studies on hERG K+ channels involve pharmacophore mapping and CoMFA study. Both 

approaches, however, are based on the assumption that different compounds bind to the same 

binding site of the channel using similar binding modes. On the contrary, it is reasonable to assume 

that the binding affinity of a given compound may vary as a function of the channel states 

(activated/inactivated), and that structurally diverse molecules may adopt different binding modes. 

Such considerations are not compatible with a single pharmacophore model nor with a common 

alignment criterion. 

In this study different and independent computational approaches are used to predict hERG K+

channel affinities in order to allow a consensus criterion in classify compounds as active or inactive 

towards hERG K+ channel. 
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2 MATERIALS AND METHODS 

2.1 Chemical Data 
The data set is formed by 70 compounds with experimental hERG IC50 values retrieved from the 

literature [2] (Table 1, Figure 1). 
Table 1. Experimental data. 

No. Name IC50 (nM) a IC50 (nM) b pIC50
 a pIC50

 b pIC50
 c

1 astemizole 0.9  9 – 8 
2 cisapride 6.5 6.7 8.2 8.2 7.4 
3 E–4031 7.7 18.1 8.1 7.7 7.7 
4 ibutilide   – – 8 
5 dofetilide 9.5 – 15  7.9 – 8 
6 sertindole 14 14.7 7.9 7.8 8 
7 pimozide 18 54.6 7.7 7.3 7.3 
8 haloperidol 28.1 26.8 7.6 7.6 7.5 
9 norastemizole 28  7.6 – 7.6 

10 droperidol 32.2  7.5 – 7.5 
11 thioridazine 35.7 33.2 7.5 – 6.4 
12 terfenadine 56 – 204 213 6.9 6.7 6.7 
13 verapamil 143 143 6.8 6.8 6.9 
14 ziprasidone 152 125 6.8 6.9 6.9 
15 domperidone 162  6.8 – – 
16 risperidone 163 148 6.8 6.8 6.8 
17 loratadine 173 173 6.8 – 6.8 
18 clozapine 191 320 6.7 6.5 6.5 
19 halofantrine 196.9 196 6.7 6.7 6.7 
20 olanzapine  231.3 – 6.6 6.7 
21 terikalant   – – 6.6 
22 mesoridazine  320 – 6.5 6.5 
23 quinidine  320 – 6.5 6.5 
24 mizolastine 350  6.5 – 6.4 
25 bepridil 550  6.3 – 6.3 
26 azimilide 560  6.3 – 5.9 
27 ondansetron  810 – 6.1 6.1 
28 vesnarinone  1100 – 6 6 
29 9–hydroxy risperidone  1300 – 5.9 – 
30 desipramine  1390 – 5.9 5.9 
31 mibefradil 1430  5.8 – 5.8 
32 chlorpromazine 1470 1470 5.8 5.8 5.8 
33 fluoxetine   – – 5.8 
34 ketoconazole  1900 – 5.7 5.7 
35 alosetron  3200 – 5.5 5.5 
36 imipramine 3400 3400 5.5 5.5 5.5 
37 granisetron 3730 3730 5.4 5.4 – 
38 flecainide   – – 5.4 
39 citalopram   – – 5.4 
40 norclozapine   – – 5.4 
41 mefloquine   – – 5.3 
42 cocaina 4400 – 72000 7200 5.2 5.1 5.1 
43 dolasetron 5950 12100 5.2 4.9 4.9 
44 perhexiline 7800 7800 5.1 5.1 5.1 
45 amitriptyline 10000 10000 – 5 5 
46 nitrendipine   – – 5 
47 amiodarone   – – 5 
48 2–hydroxymethyl olanzapine  11600 – 4.9 – 
49 carvedilol   – – 4.9 
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Table 1. (Continued) 
No. Name IC50 (nM) a IC50 (nM) b pIC50

 a pIC50
 b pIC50

 c

50 desmethyl olanzapine  14200 – 4.9  
51 diltiazem 17300 17300 4.8 4.8 4.8 
52 chlorpheniramine   – – 4.7 
53 fexofenadine 21570  4.7 – – 
54 sparfloxacin 18000 – 34400  4.6 – 4.7 
55 diphenhydramine   – – 4.6 
56 cetirizine   – – 4.5 
57 N–desmethylclozapine  4490 – 4.5 – 
58 A 56268   – – 4.5 
59 nifedipine   – – 4.3 
60 glibenclamide 74000  4.1 – – 
61 grepafloxacin 50000 – 104000  4.1 – 4.3 
62 disopyramide   – – 4 
63 sildenafil 100000 3300 4 5.5 5.5 
64 epinastine   – – 4 
65 moxifloxacin 103000 – 129000  3.9 – 3.9 
66 gatifloxacin 130000  3.9 – 3.9 
67 trimethoprin   – – 3.6 
68 nicotine  244800 – 3.6 3.6 
69 levofloxacin   – – 3 
70 ciprofloxacin   – – 3 

a Experimental data from [2a]; b Experimental data from [2c]; c Experimental data from [2b] 
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Figure 1. Structures of the data set. 
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Figure 1. (Continued). 
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Figure 1. (Continued). 
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2.2 Descriptors 

2.2.1 EVA descriptor

The derivation of the EVA descriptor has previously been described elsewhere [3] and only a 
brief description of the technique will be given here. The descriptor is derived from IR– and 
Raman–range molecular vibrational frequencies usually calculated through the application of a 
normal coordinate analysis (NCA) to an energy minimized structure. For a compound with N atoms 
there are 3N – 6 (or 3N – 5 for a linear structure such as acetylene) normal modes of vibration. 
Thus, except in the special case where each structure has the same number of atoms, the number of 
frequencies will be different for each structure; that is, the property is in non–standard form. A 
technique has thus been developed in order to standardize the property such that each compound is 
characterized by an equivalent–length descriptor. The frequency set for a given structure is 
projected onto a linear bounded frequency scale (BFS) covering a range from 1 to 4000 cm–1. A 
Gaussian kernel of fixed standard deviation s is then placed over each and every eigenvalue. The 
BFS is then sampled at fixed increments of L cm–1 and the value of the resulting EVA descriptor at 
each sample point is the sum of the amplitudes of the overlaid kernels at that point. This procedure 
is repeated for each dataset compound and then combined to provide a matrix with M rows 
(compounds) and 4,000/L columns (descriptor variables). Typically, a descriptor set has been 
derived using an s of 10 cm–1 and an L of 5 cm–1 giving 800 descriptor variables. For a standard 
QSAR dataset the number of variables is thus much larger than M and Partial least square to Latent 
Structure (PLS) is hence used to provide a robust regression analysis. 

2.2.2 DRAGON descriptors

DRAGON descriptors are more than 1600 molecular descriptors listed in Table 2 divided into 20 
logical blocks [4]. 
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Table 2. Molecular Descriptors Calculated by DRAGON 
Molecular Descriptors No. Molecular Descriptors No. 
Constitutional descriptors 48 Randi  molecular profiles 41 
Topological descriptors 119 Geometrical descriptors 74 
Walk and path counts 47 RDF descriptors 150 
Connectivity indices 33 3D–MoRSE descriptors 160 
Information indices 47 WHIM descriptors 99 
2D autocorrelations 96 GETAWAY descriptors 197 
Edge adjacency indices 107 Functional group counts 121 
Burden eigenvalues 64 Atom–centered fragments 120 
Topological charge indices 21 Charge descriptors 14 
Eigenvalue–based indices 44 Molecular properties 28 

2.3 Statistical analysis
PLS modeling has been used to investigate likely correlations between EVA and experimental 

pIC50 values and, respectively, descriptors generated by DRAGON and experimental pIC50 values. 
The optimal number of components in each PLS model was determined by SIMCA–P+ default 
cross–validation procedure. Different approaches were explored in order to obtain the best models 
in terms of stability and predictivity: (a) variables selection carried out with 2 different protocol: (b)
on the basis of VIP parameter and coefficient values and (c) employing a genetic algorithm 
implemented in GAVS (Computer Chemistry Lab., Bracco Imaging SpA); (b) SIMCA–P+ 
Orthogonal Signal Correction (OSC) algorithm, used to remove from X data matrices information 
that is orthogonal to Y. 

All PLS models here reported were generated considering just the experimental values found in 
Ref. [2(b)]. Initial models were generated using all 62 compounds – strong outliers were detected 
and then excluded employing PCA on each X data matrix. The best models were further validated 
considering half of the compounds as training set and the rest as external test set. Training and test 
sets were generated by means of Onion/D–Optimal Design. 

2.3.1 Software 

EVA. Energy minimization and normal coordinate analysis needed to derive EVA descriptor 
were carried out by means of Spartan’02 (Wavefunction, Inc.) employing Merck Force Field. 
Calculation of EVA descriptor from vibrational frequencies was carried out using the proprietary 
program EVA–02 (S–IN). 

DRAGON is a software package for the calculation of molecular descriptors developed by 
Milano Chemometrics and QSAR Research Group. It allows calculation of more than 1600 
molecular descriptors for thousands of molecules (Talete, srl). 

LigPrep (Schrödinger, L.L.C.) was employed to build 3D structures from 2D sketches. 

PASS (Prediction of Activity Spectra for Substances) (V. Poroikov, D. Filimonov & Associates) 
[5] predicts the probability for any given compound to be active (Pa) or inactive (Pi) for each one of 
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over 1000 biological activities, including pharmacological effects, mechanisms of action, 
mutagenicity, carcinogenicity, teratogenicity, and embryotoxicity. Pa and Pi values vary from 0 to 1, 
and their sum may be different than 1. PASS predictions are based on the analysis of structure–
activity relationships for a training set including a great number of non–congeneric compounds with 
different biological activities, using the descriptor Multilevel Neighborhoods of Atoms (MNA). 
PASS training set consists of over 46,000 biologically active compounds: 16,000 are already 
launched drugs and 30,000 drug–candidates under clinical or advanced preclinical testing. 

QikProp (Schrödinger, L.L.C.) [6] has been developed by Jorgensen at Yale University to 
rapidly predict ADMET properties of drug candidates. QikProp results have been fitted to datasets 
of drug–like molecules, based on 2–D and 3–D descriptors reflecting Monte Carlo simulation 
studies as well as experiment. QikProp predictions are calculation–based, as opposed to fragment 
based. Fragment–based methods can be problematic when they do not recognize parts of a structure 
or encounter unfamiliar fragment interactions, whereas QikProp will calculate properties based on 
the whole molecule. The advantage of this approach is that QikProp can be applied to new and 
unknown scaffolds. 

Statistical analysis. PLS modeling and PCA were carried out with the software SIMCA–P+. 
MODDE was employed for the Onion/D–Optimal Design. 

3 RESULTS AND DISCUSSION 

Problems with a compound’s absorption, distribution, metabolism, excretion, or toxicity 
(ADME–Tox) have been identified as a principal cause of failure in late–stage pharmaceutical 
R&D. Approximately 40% of drugs in clinical trials are discarded because they do not show the 
correct ADME–Tox properties. Therefore, strategies to improve drug–like behavior are now being 
implemented from the earliest phase of drug discovery. A successful strategy has been proven to be 
the removal in the preclinical stages of candidates compounds that are likely to have poor 
pharmacokinetic and toxicity profile. In recent years the capacity for biological screening and 
chemical synthesis has dramatically increased, so has the need for large quantities of early 
information on ADME–Tox data. Various medium and high–throughput in vitro ADME–Tox 
screens are therefore now in use, but there is an increasing need for in silico methods for predicting 
these properties. In recent years a number of drugs have been removed from the market for reasons 
including their prolongation of the QT interval. Although several pathophysiological mechanism 
can lead to prolongation of the QT interval, the key mechanism for drug–induced QT prolongation 
is the increased repolarization duration through blockade of outward K+ current. As most of the 
QT–prolonging drugs have been shown to inhibit the K+ channels encoded by the hERG related 
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gene it is believed that this potentially serious adverse effect is mediated via a potent blockade of 
the hERG potassium channel. 

At present no crystal structure for hERG exists due to its membrane–bound nature. Homology 
models exist based on the template bacterial KcsA channel and site–directed mutagenesis work 
[1a]. As the experimental data available suggest that the binding affinity of a drug may vary as a 
function of the channel state (activated/inactivated) [7] and that different drugs may bind to 
different known binding sites with different binding modes, pharmacophore–based approaches may 
be of limited use in screening databases. We developed here different and more general approaches 
to predict hERG affinity values. 

A single in silico ADME–Tox prediction model may provide acceptable results. As by definition 
all models are simulation of reality, and therefore they will never be completely accurate, 
sometimes a single model will not work. When multiple models and multiple approaches are 
combined in a single consensus score, however, more accurate predictions can be achieved. This 
idea prompted us to develop different QSAR models and to employ different prediction approaches 
in order to be able to get a consensus score more accurate then the single method to be used as a 
filter in the discovery process. 

Figure 2. Score plot derived from a PCA on DRAGON X matrix (left, 2 PCs extract 47% of the total variance of the 
original matrix) and EVA X matrix (right, 2 PCs extract 47% of the total variance of the original matrix). Detected 
outliers are in red squares. 
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3.1 QSAR models
In order to have homogeneous biological data, QSAR analysis was conducted just on the 62 

compounds for which is available the experimental data found in Ref. [2(b)] (pIC50
c values in Table 

1). An initial PCA carried out on either EVA and DRAGON X matrix detected 3 outliers: 
compounds 44, 58 and 68 whose structure is quite different from all other compounds (Figure 2). 
These 3 compounds are the only ones not to have a phenyl ring in the whole data set. In addition: 
compound 58, A 562668, is the only macrolide in the data set and compound 68, nicotine, is the 
smallest molecule. These 3 structures were considered structurally outliers not considered in further 
analysis. The remaining 59 compounds were divided into a training set and a test set 1 respectively 
formed by 29 and 30 compounds selected by means of a Onion/D–Optimal Design. Models were 
generated considering just the training set and their real predictive power was tested with the 
external test set. Results are reported in Table 3, 4 and 6. SDEP values are calculated on the 30 
compounds of the test set 1 according to equation 1. We obtained a SDEP value of about 1 log unit 
in predicting hERG affinity value. This is an interesting result if you consider the discrepancy 
observed between IC50 values for hERG inhibition determined for the same molecules in different 
laboratories. For example thioridazine, cisapride and astemizole (Table 1) show significant 
interlaboratory variability, sometimes due to the generation of experimental data in hERG 
expressed in different types of cells, which may be grater than 1 log unit. Considering that, our 
QSAR models might be a powerful in silico screen for drug discovery process. 

)(
SDEC

2
obs

N
yy calc )(

SDEP
2

obs

N
yy pre (1)

These models were also employed to classify molecules as active or inactive, considering 5.0 as 
threshold value of pIC50, predicted or experimental. Experimental classification was made 
according to mean pIC50 values calculated when more than one affinity data were available. 
Dolasetron (20), in fact, is classified as active according to the mean value of 5.0 even if the 
experimental pIC50 employed to generate QSAR models is 4.9. A new test set was considered, test 
set 2 that contains 38 compounds, formed by 30 structures of test set 1 and 8 structures whose 
biological data are from [2a] or [2c]. According to experimental data, training set is formed by 21 
molecules classified as active, and 8 molecules classified as inactive; test set 2 is formed by 26 
molecules classified as active, and 12 molecules classified as inactive. Fraction of compounds well 
classified according to predicted value of pIC50 are reported in Table 7 and 8, in terms of TP (true 
positive), FP (false positive), TN (true negative), FN (false negative), accuracy or specificity, Eq. 
(2), coverage or selectivity, Eq. (3), and Mathews correlation coefficient MCC, Eq. (4). A perfect 
prediction gives a correlation coefficient MCC of 1. Consensus criterion 1 assigns the activity class 
according to at least 3 of the 5 predictions available. 
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Table 3. Results from QSAR models, DRAGON description. Experimental Y values refer to pIC50
c in Table 1, classes 

are expressed as a, active, and i, inactive, residuals are reported. 
predicted exp VIP, COEF OSC GAVS No. Name set 

Y class Y res class Y res class Y res class
2 cisapride training 7.4 a 6.3 1.1 a 7.4 0.0 a 7.0 0.4 a 
4 ibutilide training 8 a 8.1 0.1 a 7.9 0.1 a 8.0 0.0 a 
5 dofetilide training 8 a 8.4 0.4 a 8.0 0.0 a 7.9 0.1 a 
6 sertindole training 8 a 7.2 0.8 a 8.0 0.0 a 8.1 0.1 a 
8 haloperidol training 7.5 a 7.5 0.0 a 7.5 0.0 a 7.2 0.3 a 

12 terfenadine training 6.7 a 6.9 0.2 a 6.6 0.1 a 6.3 0.4 a 
13 verapamil training 6.9 a 6.3 0.6 a 6.7 0.2 a 6.8 0.1 a 
14 ziprasidone training 6.9 a 6.8 0.1 a 7.0 0.1 a 6.6 0.3 a 
17 loratadine training 6.8 a 6.2 0.6 a 6.8 0.0 a 6.6 0.2 a 
22 mesoridazine training 6.5 a 6.7 0.2 a 6.4 0.1 a 6.8 0.3 a 
24 mizolastine training 6.4 a 6.0 0.4 a 6.5 0.1 a 6.8 0.4 a 
25 bepridil training 6.3 a 5.9 0.4 a 6.1 0.2 a 5.6 0.7 a 
26 azimilide training 5.9 a 6.9 1.0 a 6.0 0.1 a 6.1 0.2 a 
28 vesnarinone training 6 a 5.6 0.4 a 6.0 0.0 a 6.2 0.2 a 
34 ketoconazole training 5.7 a 5.9 0.2 a 5.8 0.1 a 5.8 0.1 a 
35 alosetron training 5.5 a 4.8 0.7 i 5.5 0.0 a 5.3 0.2 a 
38 flecainide training 5.4 a 5.9 0.5 a 5.5 0.1 a 6.0 0.6 a 
39 citalopram training 5.4 a 5.5 0.1 a 5.3 0.1 a 5.6 0.2 a 
41 mefloquine training 5.3 a 4.9 0.4 i 5.3 0.0 a 4.9 0.4 i 
43 dolasetron training 4.9 a 5.6 0.7 a 5.0 0.1 i 5.1 0.2 a 
47 amiodarone training 5 a 5.0 0.0 i 4.8 0.2 i 5.2 0.2 a 
49 carvedilol training 4.9 i 5.3 0.4 a 5.0 0.1 a 5.0 0.1 i 
54 sparfloxacin training 4.7 i 4.4 0.3 i 4.8 0.1 i 4.7 0.0 i 
56 cetirizine training 4.5 i 5.2 0.7 a 4.5 0.0 i 4.7 0.2 i 
59 nifedipine training 4.3 i 3.7 0.6 i 4.3 0.0 i 3.9 0.4 i 
62 disopyramide training 4 i 4.7 0.7 i 3.8 0.2 i 4.4 0.4 i 
64 epinastine training 4 i 4.3 0.3 i 4.0 0.0 i 3.9 0.1 i 
66 gatifloxacin training 3.9 i 4.4 0.5 i 4.0 0.1 i 4.4 0.5 i 
67 trimethoprin training 3.6 i 3.9 0.3 i 3.6 0.0 i 3.3 0.3 i 
1 astemizole test 1 8 a 6.8 1.2 a 7.3 0.7 a 7.0 1.0 a 
3 E–4031 test 1 7.7 a 7.4 0.3 a 7.5 0.2 a 7.8 0.1 a 
7 pimozide test 1 7.3 a 6.9 0.4 a 7.3 0.0 a 6.6 0.7 a 
9 norastemizole test 1 7.6 a 5.4 2.2 a 5.5 2.1 a 5.4 2.2 a 

10 droperidol test 1 7.5 a 6.7 0.8 a 6.6 0.9 a 6.4 1.1 a 
11 thioridazine test 1 6.4 a 6.8 0.4 a 6.6 0.2 a 6.9 0.5 a 
16 risperidone test 1 6.8 a 7.0 0.2 a 7.2 0.4 a 7.1 0.3 a 
18 clozapine test 1 6.5 a 5.4 1.1 a 5.5 1.0 a 5.2 1.3 a 
19 halofantrine test 1 6.7 a 7.0 0.3 a 7.9 1.2 a 8.0 1.3 a 
20 olanzapine test 1 6.7 a 5.2 1.5 a 5.3 1.4 a 4.7 2.0 i 
21 terikalant test 1 6.6 a 6.7 0.1 a 7.0 0.4 a 6.9 0.3 a 
23 quinidine test 1 6.5 a 4.8 1.7 i 4.9 1.6 i 4.9 1.6 i 
27 ondansetron test 1 6.1 a 5.3 0.8 a 5.7 0.4 a 5.2 0.9 a 
30 desipramine test 1 5.9 a 4.7 1.2 i 4.3 1.6 i 4.0 1.9 i 
31 mibefradil test 1 5.8 a 6.9 1.1 a 7.7 1.9 a 7.7 1.9 a 
32 chlorpromazine test 1 5.8 a 5.6 0.2 a 5.3 0.5 a 5.1 0.7 a 
33 fluoxetine test 1 5.8 a 5.2 0.6 a 5.1 0.7 a 4.5 1.3 i 
36 imipramine test 1 5.5 a 5.0 0.5 a 4.6 0.9 i 4.4 1.1 i 
40 norclozapine test 1 5.4 a 5.4 0.0 a 5.5 0.1 a 5.2 0.2 a 
42 cocaina test 1 5.1 a 5.4 0.3 a 5.2 0.1 a 5.2 0.1 a 
45 amitriptyline test 1 5 a 5.1 0.1 a 4.6 0.4 i 4.1 0.9 i 
46 nitrendipine test 1 5 a 4.1 0.9 i 4.8 0.2 i 5.0 0.0 a 
51 diltiazem test 1 4.8 i 5.7 0.9 a 6.0 1.2 a 5.6 0.8 a 
52 chlorpheniramine test 1 4.7 i 5.1 0.4 a 4.9 0.2 i 4.2 0.5 i 
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Table 3. (Continued) 
predicted exp VIP, COEF OSC GAVS No. Name set 

Y class Y res class Y res class Y res class
55 diphenhydramine test 1 4.6 i 4.4 0.2 i 3.4 1.2 i 2.2 2.4 i 
61 grepafloxacin test 1 4.3 i 4.9 0.6 i 4.8 0.5 i 5.3 1.0 a 
63 sildenafil test 1 5.5 a 5.6 0.1 a 6.4 0.9 a 6.6 1.1 a 
65 moxifloxacin test 1 3.9 i 5.0 1.1 i 4.9 1.0 i 4.6 0.7 i 
69 levofloxacin test 1 3 i 4.8 1.8 i 4.5 1.5 i 4.4 1.4 i 
70 ciprofloxacin test 1 3 i 4.5 1.5 i 4.0 1.0 i 4.7 1.7 i 
15 domperidone test 2 – a 6.5 – a 6.5 – a 6.3 – a 
29 9–hydroxy risperidone test 2 – a 6.7 – a 7.0 – a 6.9 – a 
37 granisetron test 2 – a 5.5 – a 5.0 – i 5.0 – i 
48 2–hydroxymethyl olanzapine test 2 – i 5.1 – a 5.5 – a 5.5 – a 
50 desmethyl olanzapine test 2  i 4.8 – i 4.9 – i 4.6 – i 
53 fexofenadine test 2 – i 6.8 – a 6.6 – a 6.8 – a 
57 N–desmethylclozapine test 2 – i 5.0 – a 5.1 – a 5.0 – i 
60 glibenclamide test 2 – i 7.5 – a 7.8 – a 6.3 – a 

Table 4. Results from QSAR models, EVA description. Experimental Y values refer to pIC50
c in Table 1, classes are 

expressed as a, active, and i, inactive, residuals are reported. 
predicted exp VIP, COEF OSC No. Name set 

Y class Y res class Y res class 
2 cisapride training 7.4 a 6.9 0.5 a 7.4 0.0 a 
4 ibutilide training 8 a 7.7 0.3 a 7.9 0.1 a 
5 dofetilide training 8 a 8.3 0.3 a 8.0 0.0 a 
6 sertindole training 8 a 8.0 0.0 a 8.1 0.1 a 
8 haloperidol training 7.5 a 6.7 0.8 a 7.4 0.1 a 

12 terfenadine training 6.7 a 6.4 0.3 a 6.7 0.0 a 
13 verapamil training 6.9 a 6.8 0.1 a 6.9 0.0 a 
14 ziprasidone training 6.9 a 6.5 0.4 a 7.0 0.1 a 
17 loratadine training 6.8 a 6.8 0.0 a 6.7 0.1 a 
22 mesoridazine training 6.5 a 6.3 0.2 a 6.5 0.0 a 
24 mizolastine training 6.4 a 6.7 0.3 a 6.5 0.1 a 
25 bepridil training 6.3 a 6.3 0.0 a 6.2 0.1 a 
26 azimilide training 5.9 a 6.2 0.3 a 5.9 0.0 a 
28 vesnarinone training 6 a 6.1 0.1 a 6.0 0.0 a 
34 ketoconazole training 5.7 a 6.5 0.8 a 5.7 0.0 a 
35 alosetron training 5.5 a 4.9 0.6 i 5.4 0.1 a 
38 flecainide training 5.4 a 5.4 0.0 a 5.3 0.1 a 
39 citalopram training 5.4 a 5.9 0.5 a 5.5 0.1 a 
41 mefloquine training 5.3 a 4.6 0.7 i 5.1 0.2 a 
43 dolasetron training 4.9 a 4.9 0.0 i 5.0 0.1 i 
47 amiodarone training 5 a 5.4 0.4 a 5.0 0.0 i 
49 carvedilol training 4.9 i 4.7 0.2 i 4.9 0.0 i 
54 sparfloxacin training 4.7 i 4.6 0.1 i 4.7 0.0 i 
56 cetirizine training 4.5 i 5.0 0.5 a 4.6 0.1 i 
59 nifedipine training 4.3 i 4.8 0.5 i 4.3 0.0 i 
62 disopyramide training 4 i 3.7 0.3 i 4.0 0.0 i 
64 epinastine training 4 i 4.3 0.3 i 4.1 0.1 i 
66 gatifloxacin training 3.9 i 3.9 0.0 i 3.9 0.0 i 
67 trimethoprin training 3.6 i 3.8 0.2 i 3.6 0.0 i 
1 astemizole test 1 8 a 7.0 1.0 a 6.8 1.2 a 
3 E–4031 test 1 7.7 a 7.5 0.2 a 7.6 0.1 a 
7 pimozide test 1 7.3 a 7.6 0.3 a 7.7 0.4 a 
9 norastemizole test 1 7.6 a 5.4 2.2 a 5.7 1.9 a 
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Table 4. (Continued) 
predicted exp VIP, COEF OSC No. Name set 

Y class Y res class Y res class 
10 droperidol test 1 7.5 a 6.2 1.3 a 6.5 1.0 a 
11 thioridazine test 1 6.4 a 6.0 0.4 a 6.2 0.2 a 
16 risperidone test 1 6.8 a 6.7 0.1 a 7.1 0.3 a 
18 clozapine test 1 6.5 a 4.5 2.0 i 4.8 1.7 i 
19 halofantrine test 1 6.7 a 6.0 0.7 a 6.2 0.5 a 
20 olanzapine test 1 6.7 a 4.9 1.8 i 5.2 1.5 a 
21 terikalant test 1 6.6 a 6.1 0.5 a 6.8 0.2 a 
23 quinidine test 1 6.5 a 5.5 1.0 a 5.8 0.7 a 
27 ondansetron test 1 6.1 a 4.8 1.3 i 4.8 1.3 i 
30 desipramine test 1 5.9 a 5.4 0.5 a 5.7 0.2 a 
31 mibefradil test 1 5.8 a 7.5 1.7 a 7.6 1.8 a 
32 chlorpromazine test 1 5.8 a 5.0 0.8 i 4.9 0.9 i 
33 fluoxetine test 1 5.8 a 5.0 0.8 a 5.1 0.7 a 
36 imipramine test 1 5.5 a 5.5 0.0 a 5.6 0.1 a 
40 norclozapine test 1 5.4 a 4.3 1.1 i 4.4 1.0 i 
42 cocaina test 1 5.1 a 4.7 0.4 i 4.8 0.3 i 
45 amitriptyline test 1 5 a 5.5 0.5 a 5.5 0.5 a 
46 nitrendipine test 1 5 a 4.8 0.2 i 3.9 1.1 i 
51 diltiazem test 1 4.8 i 5.2 0.4 a 4.9 0.1 i 
52 chlorpheniramine test 1 4.7 i 4.4 0.3 i 4.4 0.3 i 
55 diphenhydramine test 1 4.6 i 4.9 0.3 i 4.5 0.1 i 
61 grepafloxacin test 1 4.3 i 4.2 0.1 i 4.0 0.3 i 
63 sildenafil test 1 5.5 a 6.4 0.9 a 6.3 0.8 a 
65 moxifloxacin test 1 3.9 i 5.1 1.2 a 5.1 1.2 a 
69 levofloxacin test 1 3 i 4.4 1.4 i 4.9 1.9 i 
70 ciprofloxacin test 1 3 i 4.5 1.5 i 4.7 1.7 i 
15 domperidone test 2 – a 6.8 – a 7.1 – a 
29 9–hydroxy risperidone test 2 – a 6.8 – a 7.5 – a 
37 granisetron test 2 – a 6.2 – a 6.9 – a 
48 2–hydroxymethyl olanzapine test 2 – i 4.8 – i 5.1 – a 
50 desmethyl olanzapine test 2 – i 5.0 – i 5.0 – i 
53 fexofenadine test 2 – i 6.3 – a 6.5 – a 
57 N–desmethylclozapine test 2 – i 4.7 – i 4.6 – i 
60 glibenclamide test 2 – i 5.7 – a 5.8 – a 

Table 5. Results from QikProp and PASS prediction. Consensus score 1 assign activity class according to at least 3 of 
the 5 QSAR models available, consensus score 2 assign activity class according to 4 of the 7 classification models 
available.

consensus exp QikProp PASS 1 2 No. Name set 
Y class Y err class class class class 

2 cisapride training 7.4 a 7.2 0.2 a i a a 
4 ibutilide training 8 a 7.0 1.0 a a a a 
5 dofetilide training 8 a 7.6 0.4 a a a a 
6 sertindole training 8 a 7.3 0.7 a a a a 
8 haloperidol training 7.5 a 7.3 0.2 a a a a 

12 terfenadine training 6.7 a 6.7 0.0 a a a a 
13 verapamil training 6.9 a 6.0 0.9 a a a a 
14 ziprasidone training 6.9 a 7.1 0.2 a a a a 
17 loratadine training 6.8 a 6.6 0.2 a i a a 
22 mesoridazine training 6.5 a 6.6 0.1 a a a a 
24 mizolastine training 6.4 a 7.6 1.2 a i a a 
25 bepridil training 6.3 a 6.4 0.1 a i a a 
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Table 5. (Continued) 
consensus exp QikProp PASS 1 2 No. Name set 

Y class Y err class class class class 
26 azimilide training 5.9 a 7.6 1.7 a i a a 
28 vesnarinone training 6 a 6.5 0.5 a a a a 
34 ketoconazole training 5.7 a 4.4 1.3 i i a a 
35 alosetron training 5.5 a 6.2 0.7 a a a a 
38 flecainide training 5.4 a 6.8 1.4 a i a a 
39 citalopram training 5.4 a 6.6 1.2 a a a a 
41 mefloquine training 5.3 a 6.6 1.3 a a i a 
43 dolasetron training 4.9 a 6.4 1.5 a i i i 
47 amiodarone training 5 a 6.9 1.9 a i i i 
49 carvedilol training 4.9 i 6.7 1.8 a i i i 
54 sparfloxacin training 4.7 i 3.9 0.8 i i i i 
56 cetirizine training 4.5 i 4.8 0.3 i i i i 
59 nifedipine training 4.3 i 5.7 1.4 a a i i 
62 disopyramide training 4 i 3.4 0.6 i i i i 
64 epinastine training 4 i 6.0 2.0 a i i i 
66 gatifloxacin training 3.9 i 3.7 0.2 i i i i 
67 trimethoprin training 3.6 i 6.1 2.5 a i i i 
1 astemizole test 1 8 a 7.5 0.5 a a a a 
3 E–4031 test 1 7.7 a 7.1 0.6 a a a a 
7 pimozide test 1 7.3 a 7.7 0.4 a a a a 
9 norastemizole test 1 7.6 a 6.7 0.9 a a a a 

10 droperidol test 1 7.5 a 7.2 0.3 a a a a 
11 thioridazine test 1 6.4 a 6.6 0.2 a i a a 
16 risperidone test 1 6.8 a 6.6 0.2 a a a a 
18 clozapine test 1 6.5 a 6.5 0.0 a a a a 
19 halofantrine test 1 6.7 a 7.3 0.6 a a a a 
20 olanzapine test 1 6.7 a 6.3 0.4 a a a a 
21 terikalant test 1 6.6 a 6.4 0.2 a a a a 
23 quinidine test 1 6.5 a 5.7 0.8 a a i a 
27 ondansetron test 1 6.1 a 6.1 0.0 a a a a 
30 desipramine test 1 5.9 a 6.2 0.3 a a i a 
31 mibefradil test 1 5.8 a 6.9 1.1 a a a a 
32 chlorpromazine test 1 5.8 a 6.2 0.4 a a a a 
33 fluoxetine test 1 5.8 a 7.0 1.2 a a a a 
36 imipramine test 1 5.5 a 6.2 0.7 a a a a 
40 norclozapine test 1 5.4 a 6.5 1.1 a i a a 
42 cocaina test 1 5.1 a 5.6 0.5 a a a a 
45 amitriptyline test 1 5 a 6.2 1.2 a a a a 
46 nitrendipine test 1 5 a 5.8 0.8 a i i i 
51 diltiazem test 1 4.8 i 6.4 1.6 a i a a 
52 chlorpheniramine test 1 4.7 i 6.5 1.8 a i i i 
55 diphenhydramine test 1 4.6 i 6.2 1.6 a a i i 
61 grepafloxacin test 1 4.3 i 3.7 0.6 i a i i 
63 sildenafil test 1 5.5 a 6.5 1.0 a a a a 
65 moxifloxacin test 1 3.9 i 3.6 0.3 i a i i 
69 levofloxacin test 1 3 i 3.7 0.7 i a i i 
70 ciprofloxacin test 1 3 i 3.8 0.8 i i i i 
15 domperidone test 2 – a 7.4  a a a a 
29 9–hydroxy risperidone test 2 – a 6.8  a a a a 
37 granisetron test 2 – a 5.9  a i a a 
48 2–hydroxymethyl olanzapine test 2 – i 6.0  a i a a 
50 desmethyl olanzapine test 2 – i 6.3  a i i i 
53 fexofenadine test 2 – i 5.2  a a a a 
57 N–desmethylclozapine test 2 – i 6.5  a a i a 
60 glibenclamide test 2 – i 4.0  i a a a 
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FPTP
TPAccuracy 100  (2)

FNTP
TPySelectivit 100  (3)

TPFNFNTNTNFPFPTP
FNFPTNTPMCC (4)

Table 6. QSAR models results: SDEP values are calculated for test set 1 formed by 30 molecules 
description X selection X PCs Obj. R2 Q2

cross validated SDEC SDEP 
 VIP, coef 320 2 29 0.843 0.736 0.591 0.932 
DRAGON OSC 1421 1 29 0.995 0.979 0.092 0.980 
 GAVS 82 3 29 0.939 0.854 0.318 1.206 

VIP, coef 112 3 29 0.915 0.649 0.374 1.023 EVA OSC 615 2 29 0.998 0.718 0.060 0.991 

Table 7. Results of classification with different QSAR models 
Training set Test set 2 Description X selection TP FP TN FN TP FP TN FN 

 VIP, coef 18 2 6 3 23 6 6 3 
DRAGON OSC 19 1 7 2 20 5 7 6 
 GAVS 20 0 8 1 19 5 7 7 

VIP, coef 18 1 7 3 19 4 8 7 EVA OSC 19 0 8 2 20 4 8 6 
Consensus 1 18 0 8 3 23 4 8 3 

Where: TP= true positive; FP= false positive; TN= true negative; FN= false negative 

Table 8. Results of classification with different models in terms of accuracy, selectivity and Mathews correlation 
coefficient MCC 

Training set Test set 2 Description X selection Acc. Sel. MCC Acc. Sel. MCC 
 VIP, coef 90 86 0.59 79 88 0.42 
DRAGON OSC 95 90 0.75 80 77 0.35 
 GAVS 100 95 0.92 79 73 0.30 

VIP, coef 95 86 0.69 83 73 0.38 EVA OSC 100 90 0.85 83 77 0.42 
Consensus 1 100 86 0.79 85 88 0.57 

Regarding the training set, FP and FN in all 5 QSAR models has an affinity value between 5.5 
and 4.5, thus all compounds whose experimental classification is quite difficult as their affinity 
values are close to the threshold value. Employing the consensus score 1 the classification is usually 
better, just the DRAGON–GAVS and the EVA–OSC models performs slightly better. The 3 FN 
according to consensus score 1 are mefloquine (41, pIC50 = 5.3), dolasetron (43, mean pIC50 = 5) 
and amiodarone (47, pIC50 = 5), all three with border line activity values. 

As regards the test set 2, classification according to consensus score 1 is more accurate then 
classification made according to any other single QSAR model. This is because in general 
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DRAGON and EVA models give wrong classification for different molecules except for molecules 
whose affinity value is very close to the threshold value of 5 and therefore whose experimental 
classification is uncertain. The 3 FN compounds according to consensus score 1 are: quinidine (23,
pIC50 = 6.5), desipramine (30, pIC50 = 5.9) and nitrendipine (46, pIC50 = 5) while the 4 FP 
compounds are: 2–Hydroxymethyl olanzapine (48, pIC50 = 4.9), diltiazem (51, pIC50 = 4.8), 
fexofenadine (53, pIC50 = 4.7) and glibenclamide (60, pIC50 = 4.1). These results show that our 
QSAR models are able to distinguish potent inhibitors of hERG from weaker inhibitors and that 
consensus criterion 1 may be valuable in early drug discovery in pointing out molecules predicted 
as potent hERG inhibitors. 

3.2 PASS and QikProp predictions 
The program PASS was trained to predict the probability of hERG activity, using a set of 

molecules with pIC50 values grater than or equal to 5.0. In this preliminary study we choose a PASS 
probability value (pa) of 0.3. PASS and QikProp predictions suggest again that a consensus score is 
more accurate than a single prediction. PASS, in fact, predicts more FN than FP, respectively 13 
and 8, on the contrary, the predictions of QikProp give a larger number of FP than FN, respectively 
11 and 1 (Table 9). 

A new consensus score, consensus 2 (Table 9), was then calculated according to at least 4 of the 
7 predictions available for 67 compounds (training set and test set 2). Classification according to 
consensus 2 yields a Matthews correlation of MCC = 0.71, the best value obtained. 

Table 9. Results of classification with QSAR models, QikProp and PASS for molecules of training and test set together, 
67 molecules 

Training set + test set 2 Description X selection TP FP TN FN Acc. Sel. MCC 
 VIP, coef 41 8 12 6 84 87 0.49 
DRAGON OSC 39 6 14 8 87 83 0.52 
 GAVS 39 5 15 8 89 83 0.56 

VIP, coef 37 5 15 10 88 79 0.51 EVA OSC 39 4 16 8 91 83 0.60 
QikProp 46 11 9 1 81 98 0.55 
PASS 34 8 12 13 81 72 0.31 
Consensus 1 41 4 16 6 91 87 0.66 
Consensus 2 44 5 15 3 90 94 0.71 
where: TP= true positive; FP= false positive; TN= true negative; FN= false negative; acc=accuracy, sel=selectivity; 
MCC =Mathews correlation coefficient. 

To assess the limits of the prediction scheme, we analyzed the FP and FN produced according to 
consensus 2 (Table 10). Again most misclassifications regard borderline molecules and predicted 
values are not very different from experimental ones except for compounds 53 and 60. SDEP values 
calculated for all compounds in Table 10 but 53 and 60 are in the range of 0.3–0.5 log units, lower 
values then the one calculated for the whole data set indicating that in this case the problem is not 
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the prediction but the classification scheme. In literature [8] the use of the extremes of the data set is 
employed to avoid problems due to experimental errors, particularly important in borderline 
compounds. Considering these results consensus 2 yield just 2 real FP: compound 53 (fexofenadine) 
and compound 60 (glibenclamide). Fexofenadine (53, test set 2, Figure 1, pIC50 = 6.7) classified as 
active has a structure very similar to terfenadine (12, training set, Figure 1, pIC50 = 4.7) classified as 
inactive. As QSAR models are not able to classify molecules with similar structure into different 
class, this result is expected. 

Table 10. Details about FP and FN according to consensus 2. pIC50

DRAGON EVA No. Name pIC50 VIP, COEF OSC GAVS VIP, COEF OSC 
QP PASS

43 dolasetron 4.9 a 5.6 5.0 5.1 4.9 5.0 a i 
47 amiodarone 5 a 5.0 4.8 5.2 5.4 5.0 a i 
46 nitrendipine 5 a 4.1 4.8 5.0 4.8 3.9 a i 
51 diltiazem 4.8 a 5.7 6.0 5.6 5.2 4.9 a i 
48 2–Hydroxymethyl olanzapine 4.9 b 5.1 5.5 5.5 4.8 5.1 a i 
53 fexofenadine 4.7 c 6.8 6.6 6.8 6.3 6.5 a a 
57 N–desmethylclozapine 4.5 b 5.0 5.1 5.0 4.7 4.6 a a 
60 glibenclamide 4.1 c 7.5 7.8 6.3 5.7 5.8 i a 

a Experimental data from [2b] b Experimental data from [2c] c Experimental data from [2a] 

In a similar way glibenclamide (60, test 2, pIC50 = 4.1, Figure 1), inactive compound, is similar 
to other structures which contain the sulfonamide group (3, 4, 5, 63, Figure 1) classified as active 
with pIC50 values ranging from 5.5 to 8.0. Moreover the only pIC50 value available for 
glibenclamide is extracted from [2a] while for compound 63 the two different pIC50 values available 
show significant inter–laboratory variability: 4.0 from [2a] and 5.5 from [2b,c]. QSAR models were 
generated employing experimental values from [2b]. Therefore the difference between the 
experimental and the predicted pIC50 value for compound 60 and consequently the predicted 
misclassification maybe due to experimental error rather then a prediction error. 

4 CONCLUSIONS 

By employing different and independent approaches to predict hERG affinity values, it is 
possible to obtain a consensus score, more reliable than any single method, to be used as a filter in 
the discovery process. 

Five QSAR models were developed employing EVA and DRAGON descriptors followed by 
different approaches to variables selection. In order to verify the real prediction power of these 
models, an external test set of 30 molecules was employed obtaining a SDEP value of about 1 log 
unit: this is an interesting result if you consider the discrepancy observed between experimental IC50

values for hERG inhibition, determined for the same molecules in different laboratories, which may 
be greater than 1 log unit. These models were also employed to classify molecules as blockers or 
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nonblockers of hERG K+ channel. 

A second external test set formed by 38 compounds not included in the training set was used. 
Classification according to consensus score 1, calculated taking into account all 5 QSAR models, is 
more accurate then classification made according to any other single QSAR model. Among 38 
molecules we obtained 3 FN and 4 FP most of which are compounds with borderline affinity value, 
so difficult to classify. These results show that our QSAR models are able to distinguish between 
blockers and nonblockers and that consensus criterion 1 may be valuable in early drug discovery in 
pointing out molecules predicted as potent hERG inhibitors. 

Other two independent approaches to hERG affinity value prediction were then employed by 
means of the software PASS [5] and QikProp [6]. A new consensus score, consensus 2 was then 
calculated according to at least 4 of the 7 predictions available for 67 compounds. Classification 
according to consensus 2 yields a Matthews correlation of MCC = 0.71, the best value obtained. To 
assess the limits of the prediction scheme, we analyzed the FP and FN produced according to 
consensus 2: among 8 misclassified compound just 2 are compounds with no borderline activity 
value.

Considering that, our consensus score is a powerful in silico screening for drug discovery 
process.
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