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Abstract 

Motivation. Phenols are widely used in agriculture as biocides and disinfectants and in various industries. Most 
synthetic phenolic compounds are toxic and are classified as hazardous pollutants. Their mechanism of toxic 
action (MOA) classes are usually predicted by quantitative structure–activity relationships (QSAR) models. In 
this study, we report the support vector machine (SVM) model for identifying four MOA of phenols. 
Method. The structures of 221 phenols were described by the molecular electronegativity distance vector 
(MEDV). The SVM algorithm with one–against–one multi–class classification method was used to construct the 
QSAR models for four MOA classes (polar narcotics, weak acid respiratory uncouplers, precursors to soft 
electrophiles, and soft electrophiles). The predictive power of each model was estimated by leave–one–out 
(LOO) cross validation method. 
Results. In order to find MOA classifiers with high predictive power, we have investigated 345 SVM models 
generated from two SVM methods and two kernels including linear and radial basis function (RBF). The key 
factors affecting the quality of SVM models are kernel type, its corresponding parameters that control the kernel 
shape, and the capacity parameter C. We used a RBF kernel with  = 0.0004 and a capacity parameter C = 128, 
which has the highest accuracy index for leave–one–out cross–validation. The accuracy index for all 221 
compounds (with 13 compounds misclassified) is 94.1%. To test the stability of this SVM model, we have 
uniformly chosen 155 from all 221 compounds for training, and the remaining compounds were included in the 
test set. The training set was used to construct a new SVM model with the parameters of  = 0.0004 and C = 128. 
It has been shown that 16 compounds (8 in the training set and 8 in testing set) were misclassified, which gives 
an accuracy index of 92.8%. These results show that the SVM model has a high quality for predicting the aquatic 
toxicity mechanism for new chemical compounds, when appropriate SVM parameters and molecular descriptors 
are used. 
Conclusions. The SVM method based on MEDV descriptors allows satisfactory classification of phenols with 
respect to four MOA which are based on experimental toxicity to the ciliate Tetrahymena pyriformis. This 
approach can be used to predict the aquatic toxicity mechanism and to select the appropriate QSAR model based 
on MEDV descriptors for new phenolic compounds. 
Keywords. Support vector machines; structure–toxicity relationships; quantitative structure–activity 
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relationships; QSAR; aquatic toxicity; mechanism of action; ciliate Tetrahymena pyriformis.
Abbreviations and notations 
MOA, mechanism of toxic action –SVMC,  support vector classification 
SVM, support vector machines QSAR, quantitative structure–activity relationships 
MEDV, molecular electronegativity distance vector  LDA, stepwise linear discriminant analysis 
C–SVMC, C support vector classification LOO, leave–one–out 

1 INTRODUCTION 

Today, more and more chemical compounds are used widely in our society because of rapid 
increase of industry and economy. Most of these chemical compounds can be environmental 
pollutants. Because of this, during the past decade a great deal of effort has been put into the study 
of the relationships between a compound’s structure and its toxicity. Significant progress has been 
made to classify chemical compounds according to their mechanism of toxicity and to screen them 
for their environmental risk assessment [1–5]. The toxicological data are necessary to assess the 
impact of such compounds on the environment. Because of the time and financial resources 
required, toxicological data are not available for all chemical compounds. Quantitative structure–
activity relationships (QSAR) are used as scientifically credible tools to predict the acute toxicity of 
chemicals when few empirical data are available. QSAR has been widely used in modeling and 
predicting toxicities of organic compounds [2]. 

Phenols are versatile and important industrial organic chemicals. They are widely used in 
agriculture as biocides and disinfectants and in various industries such as coal conversion, metal 
casting, paper manufacturing, and resin production [6]. Most synthetic phenolic compounds are 
toxic and are classified as hazardous pollutants. Phenols, especially chlorosubstitued phenols, have 
been of interest to environmental toxicologists, and their toxic potencies have been assessed in 
several test systems. 

The toxicity of phenols involves a numbers of different mechanisms and modes of action. 
Phenols exhibit toxicity via several mechanisms. Most substituted phenols act by the polar narcosis 
mechanism. Some phenols act by other mechanisms which include respiratory uncoupling, pro–
electropilic and soft electrophilic reactivity [7]. A number of QSAR investigations have been 
performed to predict the mechanism of toxic action (MOA) of phenols [8–11]. Existing methods for 
classifying compounds according to MOAs can be grouped into two types of approaches. One is a 
qualitative approach based on simple structural characteristics. The other is based on statistical 
analysis of physico–chemical properties [5]. The first approach is simple and relatively successful 
for phenols with only few substituents, but when substituents associated with different MOAs are 
present in a molecule, it is limited because of the limitation to the type of the substituents in training 
set. The second classification (based on physico–chemical properties) has some disadvantages, 
which include the availability and use of the descriptors, the difficulty of mechanistic interpretation 
with some types of descriptors, and the fact that the property profile of the initial compounds may 
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differ significantly from the metabolically activated toxicant. Recently, several classification 
models based on various statistics methods have been derived for a set of phenols using quantum 
mechanical based descriptors, additional whole molecule descriptors and empirical physico–
chemical descriptors [5,7,12,13]. 

Support vector machines (SVM) represent a new class of machine learning algorithms developed 
by Vapnik [14,15]. SVM found numerous applications in various classification and regression 
models such as MOA prediction [12,16–18], classification of microarray gene expression data [19], 
estimation of aqueous solubility [20], classification of organophosphate nerve agent simulants [21]. 
In this study we have investigated the application of SVM, based on the MEDV [22–28], for the 
recognition of the aquatic toxicity mechanism for the compounds previously explored by Aptula [5] 
and Ren [7]. 

2 MATERIALS AND METHODS 

2.1 Chemical Data 
In this study we have investigated the application of SVM for 221 phenols from four MOA 

classes [5], which included 153 polar narcosis (marked as label 1), 18 weak acid respiratory 
uncouplers(marked as label 2), 27 precursors to soft electrophiles (marked as label 3) and 23 soft 
electrophiles (marked as label 4). The classification was based on 37 MEDV descriptors calculated 
from the method of the MEDV descriptors [22–28]. The MOA of phenols are presented in table 1. 
For testing the stability of model, we uniformly chose 2/3 of all 221 compounds (155 compounds) 
as training set, the rest 66 compounds as testing set. 

2.2 Multi–class classification for Support Vector Machines
A detailed description of the theory of SVM can be seen in several excellent books and tutorials 

[15,29,30]. In SVM, the input space is transformed into a higher dimensional feature space by using 
different kernels that perform a nonlinear mapping, and then, find out the maximal margin 
hyperplane between two classes in that higher dimensional space. Furthermore, SVM solved the 
classification problem by support vector that determined the separating hyperplane. 

Although SVM were originally designed for binary classification, it can also be extend to solve 
multi–class classification. How to effectively extend SVM for multi–class classification is still an 
on–going research issue. Currently there are two types of approaches for multi–class SVM. One of 
the frequently used methods is to decompose the multi–class problem into a set of binary 
classification problems and then combine these binary classifiers. There are two approaches that can 
be used for this purpose [31], i.e., “one–against–all” and “one–against–one”. 
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Table 1. Structure of phenols and mechanisms of toxic action (1, polar narcosis; 2, weak acid respiratory uncouplers; 3, 
precursors to soft electrophiles; 4, soft electrophiles). 
No Name MOAEXP MOAAll MOATRN

Training set 
1 1,3,5–trihydroxybenzene 1 3 1 
3 2,3,5–trichlorophenol 1 1 1 
4 2,3,5–trimethylphenol 1 1 1 
5 2,3,6–trimethylphenol 1 1 1 
7 2,3–dimethylphenol 1 1 1 
8 2,4,5–trichlorophenol 1 1 1 

10 2,4,6–tribromoresorcinol 1 1 1 
11 2,4,6–trichlorophenol 1 1 1 
13 2,4,6–tris (dimethylaminomethyl) phenol 1 1 1 
14 2,4–dibromophenol 1 1 1 
15 2,4–dichlorophenol 1 1 1 
17 2,4–dimethylphenol 1 1 1 
18 2,5–dichlorophenol 1 1 1 
20 2,6–di–tert–butyl–4–methylphenol 1 1 1 
21 2,6–dichloro–4–fluorophenol 1 1 1 
23 2,6–difluorophenol 1 1 1 
24 2,6–dimethoxyphenol 1 1 1 
25 2–allylphenol 1 1 1 
27 2–bromophenol 1 1 1 
28 2–chloro–4,5–dimethylphenol 1 1 1 
30 2–chlorophenol 1 1 1 
31 2–cyanophenol 1 1 1 
33 2–ethylphenol 1 1 1 
34 2–fluorophenol 1 1 1 
35 2–hydroxy–4,5–dimethylacetophenone 1 1 1 
37 2–hydroxy–4–methoxybenzophenone 1 1 1 
38 2–hydroxy–5–methylacetophenone 1 1 1 
40 2–hydroxybenzylalcohol 1 1 1 
41 2–hydroxyethylsalicylate 1 1 1 
43 2–methoxy–4–propenylphenol 1 1 1 
44 2–methoxyphenol 1 1 1 
45 2–phenylphenol 1 1 1 
47 3,4,5–trimethylphenol 1 1 1 
48 3,4–dichlorophenol 1 1 1 
50 3,5–dibromosalicylaldehyde 1 1 1 
51 3,5–dichlorophenol 1 1 1 
53 3,5–diiodosalicylaldehyde 1 1 1 
54 3,5–dimethoxyphenol 1 1 1 
55 3,5–dimethylphenol 1 1 1 
57 3–acetamidophenol 1 1 1 
58 3–bromophenol 1 1 1 
60 3–chloro–5–methoxyphenol 1 1 1 
61 3–chlorophenol 1 1 1 
63 3–ethoxy–4–hydroxybenzaldehyde 1 1 1 
64 3–ethoxy–4–methoxyphenol 1 1 1 
65 3–ethylphenol 1 1 1 
67 3–hydroxy–4–methoxybenzylalcohol 1 1 1 
68 3–hydroxyacetophenone 1 1 1 
70 3–hydroxybenzoic acid 1 1 1 
71 3–hydroxybenzyl alcohol 1 1 1 
73 3–isopropylphenol 1 1 1 
74 3–methoxyphenol 1 1 1 
75 3–phenylphenol 1 1 1 
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Table 1. (Continued) 
No Name MOAEXP MOAAll MOATRN
77 4–tert–octylphenol 1 1 1 
78 4–tert–butylphenol 1 1 1 
80 4–allyl–2–methoxyphenol 1 1 1 
81 4–benzyloxyphenol 1 1 1 
82 4–bromo–2,6–dichlorophenol 1 1 1 
84 4–bromo–3,5–dimethylphenol 1 1 1 
85 4–bromo–6–chloro–2–cresol 1 1 1 
87 4–butoxyphenol 1 1 1 
88 4–chloro–2–isopropyl–5–methylphenol 1 1 1 
90 4–chloro–3,5–dimethylphenol 1 1 1 
91 4–chloro–3–ethylphenol 1 1 1 
92 4–chloro–3–methylphenol 1 1 1 
94 4–chlororesorcinol 1 3 1 
95 4–cyanophenol 1 1 1 
97 4–ethylphenol 1 1 1 
98 4–fluorophenol 1 1 1 

100 4–hexyloxyphenol 1 1 1 
101 4–hexylresorcinol 1 1 1 
102 4–hydroxy–2–methylacetophenone 1 1 1 
104 4–hydroxy–3–methoxybenzonitrile 1 1 1 
105 4–hydroxy–3–methoxybenzylalcohol 1 1 1 
107 4–hydroxy–3–methoxyphenethylalcohol 1 1 1 
108 4–hydroxyacetophenone 1 1 1 
110 4–hydroxybenzamide 1 1 1 
111 4–hydroxybenzoic acid 1 1 1 
112 4–hydroxybenzophenone 1 1 1 
114 4–hydroxyphenethylalcohol 1 1 1 
115 4–hydroxyphenylacetic acid 1 1 1 
117 4–iodophenol 1 1 1 
118 4–isopropylphenol 1 1 1 
120 4–phenylphenol 1 1 1 
121 4–propylphenol 1 1 1 
122 4–sec–butylphenol 1 1 1 
124 5–bromo–2–hydroxybenzylalcohol 1 1 1 
125 5–bromovanillin 1 1 1 
127 5–methylresorcinol 1 3 1 
128 5–pentylresorcinol 1 1 1 
130 , , –trifluoro–4–cresol 1 1 1 
131 ethyl–3–hydroxybenzoate 1 1 1 
132 ethyl–4–hydroxy–3–methoxyphenylacetate 1 1 1 
134 isovanillin 1 1 1 
135 3–cresol 1 1 1 
137 methyl–4–hydroxybenzoate 1 1 1 
138 methyl–4–methoxysalicylate 1 1 1 
140 2–cresol 1 1 1 
141 2–vanillin 1 1 1 
142 4–cresol 1 1 1 
144 phenol 1 1 1 
145 resorcinol 1 3 1 
147 salicylaldoxime 1 1 1 
148 salicylamide 1 1 1 
149 salicylhydrazide 1 1 1 
151 salicylic acid 1 1 1 
152 syringaldehyde 1 1 1 
154 2,3,4,5–tetrachlorophenol 2 2 2 
155 2,3,5,6–tetrachlorophenol 2 2 2 
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Table 1. (Continued) 
No Name MOAEXP MOAAll MOATRN
157 2,3–dinitrophenol 2 2 2 
158 2,4,6–trinitrophenol 2 2 2 
159 2,4–dichloro–6–nitrophenol 2 2 2 
161 2,5–dinitrophenol 2 2 2 
162 2,6–dichloro–4–nitrophenol 2 4 4 
164 2,6–dinitro–4–cresol 2 2 2 
165 2,6–dinitrophenol 2 2 2 
167 3,4–dinitrophenol 2 2 2 
168 4,6–dinitro–2–cresol 2 2 2 
169 pentabromophenol 2 2 2 
171 pentafluorophenol 2 2 2 
172 1,2,3–trihydroxybenzene 3 3 3 
174 2,3–dimethylhydroquinone 3 3 3 
175 2,4–diaminophenol 3 3 3 
177 2–aminophenol 3 3 3 
178 3,5–di–tert–butylcatechol 3 3 3 
179 3–aminophenol 3 3 3 
181 4–acetamidophenol 3 1 1 
182 4–amino–2,3–dimethylphenol 3 3 3 
184 4–aminophenol 3 3 3 
185 4–chlorocatechol 3 1 1 
187 5–amino–2–methoxyphenol 3 3 3 
188 5–chloro–2–hydroxyaniline 3 3 3 
189 6–amino–2,4–dimethylphenol 3 3 3 
191 catechol 3 1 1 
192 chlorohydroquinone 3 1 1 
194 methoxyhydroquinone 3 3 1 
195 methylhydroquinone 3 3 1 
197 tetrachlorocatechol 3 3 3 
198 trimethylhydroquinone 3 3 3 
199 2,6–dibromo–4–nitrophenol 4 2 4 
201 2–amino–4–nitrophenol 4 4 4 
202 2–chloro–4–nitrophenol 4 4 4 
204 2–nitrophenol 4 4 4 
205 2–nitroresorcinol 4 4 4 
207 3–hydroxy–4–nitrobenzaldehyde 4 4 4 
208 3–methyl–4–nitrophenol 4 4 4 
209 3–nitrophenol 4 4 4 
211 4–chloro–2–nitrophenol 4 4 4 
212 4–chloro–6–nitro–3–cresol 4 4 4 
214 4–methyl–2–nitrophenol 4 4 4 
215 4–methyl–3–nitrophenol 4 4 4 
217 4–nitrocatechol 4 4 4 
218 4–nitrophenol 4 4 4 
219 4–nitrosophenol 4 4 4 
221 5–hydroxy–2–nitrobenzaldehyde 4 1 1 

Testing set 
2 2–tert–butyl–4–methylphenol 1 1 1 
6 2,3–dichlorophenol 1 1 1 
9 2,4,6–tribromophenol 1 1 1 

12 2,4,6–trimethylphenol 1 1 1 
16 2,4–difluorophenol 1 1 1 
19 2,5–dimethylphenol 1 1 1 
22 2,6–dichlorophenol 1 1 1 
26 2–bromo–4–methylphenol 1 1 1 
29 2–chloro–5–methylphenol 1 1 1 
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Table 1. (Continued) 
No Name MOAEXP MOAAll MOATRN
32 2–ethoxyphenol 1 1 1 
36 2–hydroxy–4–methoxyacetophenone 1 1 1 
39 2–hydroxyacetophenone 1 1 1 
42 2–isopropylphenol 1 1 1 
46 2–tert–butylphenol 1 1 1 
49 3,4–dimethylphenol 1 1 1 
52 3,5–dichlorosalicylaldehyde 1 1 1 
56 3,5–di–tert–butylphenol 1 1 1 
59 3–chloro–4–fluorophenol 1 1 1 
62 3–cyanophenol 1 1 1 
66 3–fluorophenol 1 1 1 
69 3–hydroxybenzaldehyde 1 1 1 
72 3–iodophenol 1 1 1 
76 3–tert–butylphenol 1 1 1 
79 4,6–dichlororesorcinol 1 1 1 
83 4–bromo–2,6–dimethylphenol 1 1 1 
86 4–bromophenol 1 1 1 
89 4–chloro–2–methylphenol 1 1 1 
93 4–chlorophenol 1 1 1 
96 4–ethoxyphenol 1 1 1 
99 4–heptyloxyphenol 1 1 1 

103 4–hydroxy–3–methoxyacetophenone 1 1 1 
106 4–hydroxy–3–methoxybenzylamine 1 1 1 
109 4–hydroxybenzaldehyde 1 1 1 
113 4–hydroxybenzylcyanide 1 1 1 
116 4–hydroxypropiophenone 1 1 1 
119 4–methoxyphenol 1 1 1 
123 4–tert–pentylphenol 1 1 1 
126 5–fluoro–2–hydroxyacetophenone 1 1 1 
129 6–tert–butyl–2,4–dimethylphenol 1 1 1 
133 ethyl–4–hydroxybenzoate 1 1 1 
136 methyl–3–hydroxybenzoate 1 1 1 
139 nonylphenol 1 1 1 
143 4–cyclopentylphenol 1 1 1 
146 salicylaldehyde 1 1 1 
150 salicylhydroxamic acid 1 1 1 
153 vanillin 1 1 1 
156 2,3,5,6–tetrafluorophenol 2 2 1 
160 2,4–dinitrophenol 2 2 2 
163 2,6–diiodo–4–nitrophenol 2 2 4 
166 3,4,5,6–tetrabromo–2–cresol 2 2 2 
170 pentachlorophenol  2 2 2 
173 1,2,4–trihydroxybenzene 3 3 1 
176 2–amino–4–tert–butylphenol 3 3 3 
180 3–methylcatechol 3 3 3 
183 4–amino–2–cresol 3 3 3 
186 4–methylcatechol 3 3 1 
190 bromohydroquinone 3 1 1 
193 hydroquinone 3 3 1 
196 phenylhydroquinone 3 1 1 
200 2–amino–4–chloro–5–nitrophenol 4 4 4 
203 2–chloromethyl–4–nitrophenol 4 4 4 
206 3–fluoro–4–nitrophenol 4 4 4 
210 4–amino–2–nitrophenol 4 4 4 
213 4–hydroxy–3–nitrobenzaldehyde 4 4 4 
216 4–nitro–3–(trifluoromethyl)–phenol 4 4 2 
220 5–fluoro–2–nitrophenol 4 4 4 
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In the “one–against–all” approach, k SVM models are constructed where k is the number of 
classes and the i–th SVM is trained with all of the examples in the i–th class with positive labels, 
and all the other examples with negative labels. In the case of “one–against–one” approach, 
k(k 1)/2 classifiers are constructed, with each classifier trained to discriminate between a class pair 
i–th and j–th [30]. Several published works have shown that the “one–against–one” is more suitable 
for practical use than the “one–against–all” [31–33]. In our present study, the “one–against–one” 
approach implemented in LIBSVM [30] is used for the multi–class classification problem. 

All SVM models from our study for the classification of 4 classes were obtained with LIBSVM 
[30], which can be downloaded freely. This tool provided the SVM with two classification methods, 
C–SVMC and –SVMC, and four kernels, linear, polynomial, radial basic function (RBF), and 
sigmoid kernel. However, in our experiment only the linear and RBF kernel were tested because the 
SVM based on the polynomial and sigmoid kernel required a too long time for training. The two 
kernels and their parameter used in this study are )(),( i

T
i xxxxK ,

2

),( ixx
i exxK  with  = 0, 

0.00025 2N (N = 0, 1, 2… 9) respectively. The capacity parameter C of C–SVMC or  of –SVMC
took the value C = 1 2N (N = 0, 1, 2…12),  = 0.001 2N (N = 0, 1, 2…9). The predictive ability of 
each SVM model was tested against LOO cross–validation method. 

2.3 Calculation of Molecular Descriptors
From the literature [24], the original MEDV descriptor )91,,3,2,1(vxv  can be calculated. 

First, the relative electronegativity (e) of a non–hydrogen atom is calculated using the atomic type, 
atomic attributes, and intrinsic state (I) of the atom defined in Table 2: 

jall

ij
ijjiii dIIIe 2/)( (1)

where ijd  is the shortest graph distance between two atoms, atom i and j. Then, the MEDV 
descriptor vx  is calculated from the following formula: 

)91,,2,1,;13,,2,1,(
,

2 vkllk
d
ee

xx
ljki ij

ji
klv (2)

where k or l is the atomic type of the atom i or j in the molecule. 

From the MEDV descriptors, only 48 MEDV have one or more nonzero elements where 4 
descriptors ( 37x , 38x , 47x  and 48x ) contain 1 nonzero element, 3 descriptors ( 6x , 46x  and 55x )
contain 2 nonzero elements, and 4 descriptors ( 37x , 49x , 52x  and 85x ) have 3 nonzero elements. The 

11 descriptors with too few nonzero elements should be eliminated from the 48 descriptors with 
nonzero elements. So, there are in fact 37 nonzero MEDV descriptors to be employed in our study. 
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Table 2. The atomic types, atomic attributes and intrinsic state (I) for various non–hydrogen atoms 
atom type attribute I atom Type attribute I Atom type Attribute I

CH3 1 1 2.0000 ~C 3 16 1.8333 N= 7 30 2.2361 
CH2 2 2 1.5000 OH 9 17 2.4495 SH 9 31 1.7691 
CH< 3 3 1.3333 O 10 18 1.8371 S 10 32 1.1567 

>C< 4 4 1.2500 =O 9 19 3.6742 =S 9 33 2.3134 
=CH2 1 5 3.0000 ~O 9 20 3.0619 >S= 11 34 1.1340 
=CH2 2 6 2.0000 NH2 5 21 2.2361 S 12 35 1.1227 
=C< 3 7 1.6667 NH 6 22 1.6771 F 13 36 2.6458 
=C= 2 8 2.5000 >N 7 23 1.0882 Cl 13 37 1.9108 

CH 1 9 4.0000 =NH 5 24 3.3541 Br 13 38 1.6536 
C 2 10 2.5000 =N 6 25 2.2361 I 13 39 1.5345 

~CH2 1 11 2.5000 N 5 26 4.4721 PH3 5 40 1.6149 
~CH 2 12 1.7500 ~NH 5 27 2.7951 PH 6 41 1.0559 
~CH< 3 13 1.5000 ~N 6 28 1.9566 >P 7 42 0.8696 
~CH~ 2 14 2.0000 ~N~ 6 29 2.2361 P< 8 43 0.9006 

C 3 15 1.6667         
a The symbols “~” and “ ” represent one and two conjugated double bonds, respectively 

3 RESULTS AND DISCUSSION 

In structure–activity studies, the performance of SVM depends on the combination of several 
parameters. Those parameters included SVM methods, kernel type and the various parameters that 
control kernel shape. Up to now most SVM software cannot work effectively for model selection 
because there is no general criterion to select SVM approach, kernel type and parameters of kernel. 
In this study, using all 211 compounds as training set, we tested two SVM methods with grid–
search methods for classification, C–SVMC and –SVMC with various parameters mentioned 
above, for a total 345 SVM model for each MOA experiment. 

Table 3. The highest accuracy index classification rate of two SVM methods 
SVM methods Kernel The highest rate (%) 

Linear 86.36 C–SVMC RBF 89.54 
Linear 88.18 –SVMC RBF 89.09 

The calculated result shows that when employing C–SVMC with RBF kernel, the highest 
accuracy index (the percent of the number of compounds correctly classified to the number of 
overall compounds in certain class) of LOO is 89.55% (see Table 3), namely 23 compounds are 
misclassified, which indicates that the classification power of C–SVMC is higher than that of –
SVMC. However, three C–SVMC models with the parameters of C = 128 and  = 0.0004, C = 4 
and  = 0.0064, and C = 2 and  = 0.0064, respectively, have the same rate values of 89.55%. The 
accuracy index for LOO of the SVM models with other parameters are shown in Figure 1. From 
Figure 1, it is obvious that when 0.0002< <0.128, the rates are generally the highest and the rates 
remain almost unchanged with the parameter C.
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Figure 1. The relation between the accuracy index of LOO and parameter  with different parameter C. 

As mentioned above, there are three models with the highest LOO accuracy index. How to 
choose the best model which has the highest predicted power is a key problem. According to the 
theory of SVM, the number of support vector is very important. The accuracy index always 
increases with the number of support vector, but the generalization ability of SVM model will 
decrease. In other words, the smaller the number of support vector is, the larger the generalization 
power of SVM model is [15]. The number of support vector of three models which have the same 
rate values of 89.55%, is 84, 118 and 121, respectively. So we chose the SVM model with small 
number of support vector. Namely, the best SVM model is C–SVMC with a BRF kernel and the 
corresponding parameters of C = 128 and  = 0.0004. 

After choosing SVM parameters, we generated the following 12 discriminant functions to 
classify the 4 MOA classes according to the one–against–one procedure. 
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Discriminant for the 2nd class of MOA: 
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LIBSVM uses the following voting strategy: if discriminant says the unknown sample x is in the 
i–th class, then the vote for the i–th class is added by one. Otherwise, the j–th is increased by one. 
Then we predict the unknown sample x is in the class with the largest number of votes. According 
to the result of voting strategy, 13 compounds are misclassified (see Table 4). These compounds 
are: 1, 1,3,5–trihydroxybenzene; 94, 4–chlororesorcinol; 127, 5–methylresorcinol; 145, resorscinol; 
162, 2,6–dichloro–4–nitrophenol; 181, 4–acetamidophenol; 185, 4–chlorocatechol; 190,
bromohydroquinone; 191, catechol; 192, chlorohydroquinone; 196, phenylhydroquinone; 199, 2,6–
dibromo–4–nitrophenol; 221, 5–hydroxy–2–nitrobenzaldehyde (see the column MOAALL in Table 
1). The numbers of compounds misclassified are 4, 1, 6 and 2 for four classes of MOAs of phenols, 
respectively. The accuracy index is 208/221 = 94.12% for all classes, 149/153 = 97.39 for class 1, 
17/18 = 94.44% for class 2, 21/27 = 77.77% for class 3, and 21/23 = 91.30% for class 4. 

In order to test stability of the SVM model, first, we used 155 compounds in the training set to 
construct the SVM classifier with chose parameters: BRF kernel, parameter C = 128 and 
 = 0.0004. There are 8 compounds in the training set and 8 ones in the testing set to be 

misclassified (see Table 4). These compounds are: 156, 2,3,5,6–tetrafluorophenol; 162, 2,6–
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dichloro–4–nitrophenol; 163, 2,6–diiodo–4–nitrophenol; 173, 1,2,4–trihydroxybenzene; 181, 4–
acetamidophenol; 185, 4–chlorocatechol; 186, 4–methylcatechol; 190, bromohydroquinone; 191,
catechol; 192, chlorohydroquinone; 193, hydroquinone; 194, methoxyhydroquinone; 195,
methylhydroquinone; 196, phenylhydroquinone; 216, 4–nitro–3–(trifluoromethyl)–phenol; 221, 5–
hydroxy–2–nitrobenzaldehyde respectively (see Table 1). 

Table 4. The number of misclassifications of two models which are 221 compounds model and 155 compounds model 
The number of misclassification 

for 221 compounds model 
The number of misclassification 

for 155 compounds model Type of MOA 
Training set Testing set 

1, polar narcosis 4/153 0/107 0/46 
2, weak acid respiratory uncouplers 1/18 1/13 2/5 
3, precursors to soft electrophiles 6/27 6/19 5/8 
4, soft electrophiles 2/23 1/16 1/7 

And then, k–fold cross–validation was used for model validation. All compounds were randomly 
divided into k (k = 2, 5, 10) subsets with equal percentages of each MOA present in each subset. 
Then a model was fitted taking k–1 of these subsets as the training set to construct the SVM 
classifier with the following parameters: BRF kernel, parameter C = 128 and  = 0.0004, and the 
remaining one as a test set. The cross–validation accuracy is 88.64%, 88.18%, and 90.91%, 
respectively. 

Aptula et al. [5] studied this data set employing 3–6 molecular descriptors with LDA, and those 
LDA models achieved 86–89% overall accuracy index for the four mechanisms. In those models, 
two equalized complementary subsets subdivided from all compounds were taken as external 
prediction and training set respectively, and used the leave–one–out cross validation method to 
avoid pitfalls accidentally. From this result, we concluded that several compounds belonging to 
polar narcotics (class 1) are predicted as pro–electrophiles (class 3) and that some others belonging 
to class 3 are predicted as class l. There are also several compounds that are misclassified between 
respiratory uncouplers (class 2) and soft electrophiles (class 4). In the first step of the Ren’s [7] 
two–step method, all compounds are classified into two groups, one including class 1 and class 3 
and the other including class 2 and mode 4. In the second step, class 1 and class 3, class 2 and class 
4 were discriminated respectively. The quality of this two–step is better than LDA (see Table 5). 
Yao [12] also used the same data set and divided all compounds into two groups similar to Aptula. 
A model constructed by SVM achieved 93.6% overall accuracy. In Spycher’s [13] study, the data 
set has some small changes and additional descriptors. It contains 220 compounds (155 class 1, 19 
class 2, 24 class 3, and 22 class 4), and two compounds of the training set were assigned to a 
different MOA than Aptula, Yao, Ren and this study. No. 179 and 187 in Table 1 were reassigned 
as class 1, 199 was classified as class 2, and 198 was omitted. A 21–dimensional model that 
successfully discriminated between the four MOAs was developed. Its overall predictive power was 
estimated to 92% using 5–fold cross–validation. 
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Compared with the results of Ren, Aptula and Yao, the present study also gives a better result of 
classification of MOAs, but the accuracy index for precursors to soft electrophiles (class 3) is lower 
than that of Ren, and Aptula in some cases. This may indicate that the MEDV descriptors are not 
efficient for this mechanism. It is also possible that some phenols act by more than one mechanism, 
or mixed mechanisms. Spycher’s overall predictive power using 5–fold cross–validation was better 
than that of this study, but the data set is different (see Table 5). 

Table 5. The accuracy index of three methods (%). 
Type of MOAs Ren [7] Aptula [5] Spycher [13] a Spycher [13] b Yao [12] This study 
1, polar narcosis 95.7 84.3–96.7 98.1 96.8 – 97.39 
2, weak acid respiratory uncouplers 73.2 55.6–77.8 68.4 94.7 – 94.44 
3, precursors to soft electrophiles 83.5 37.0–92.6 79.2 79.2 – 77.77 
4, soft electrophiles 86.4 69.6–87.0 86.4 77.3 – 91.30 
Overall prediction 90.9 – 92.3 92.7 93.6 c 94.12 
a Result in CPG NN; b Result in multinomial logistic regression; c Average of two experiment. 

Table 6. Analysis of result of this study, each row indicates how the compounds of each class (class 1– to class 4) are 
assigned by SVM to different modes of action (columns) 

 Class 1 Class 2 Class 3 Class 4 
Class 1 149 0 6 1 
Class 2 0 17 0 1 
Class 3 4 0 21 0 
Class 4 0 1 0 21 

Aptula suggested that weak acid respiratory uncoupling phenols (class 2) and precursors to soft 
electrophile phenols (class 3) were similar in the sense of mechanisms classification. However, after 
analyzing the distance between mechanisms, Ren suggested that when using 4–mechanism model 
and when the prediction accuracy for class 2 was high, the low prediction accuracy for class 3 does 
not necessarily imply that class 2 and class 3 are similar in the molecular descriptor space. Yao 
summarized the study of Aptula, showing that several samples belonging to class 1 are predicted as 
class 3 and that some others belonging to class 3 are predicted as class 1. There are also several 
compounds misclassified between class 2 and class 4. Obviously, our results are similar to ones of 
the literature [12] (also see Table 6). 

4 CONCLUSIONS 

In this study we have investigated the application of SVM with one–against–one multi–class 
classification method for the classification of 221 phenols compounds from four MOA classes 
(polar narcosis, weak acid respiratory uncouplers, precursors to soft electrophiles and soft 
electrophiles). The MOA classification was based on MEDV descriptors. The prediction power of 
each SVM model was evaluated with a leave–one–out cross–validation procedure. Because there is 
no general criterion for SVM model selection, we have investigated two SVM with grid–search 
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method methods (C–SVMC with parameter C = 1 2N, N = 0, 1, 2…12 and –SVMC with 
 = 0.001 2N, N = 0, 1, 2…9) with two kernels (linear and RBF kernels with =0, 0.00025 2N, N=0, 

1, 2… 9). There are total 345 SVM models have been built. The result showed that the quality of 
SVM models classifiers for MOA depends strongly on SVM methods, the kernel type and various 
parameters that control the kernel shape. We took a RBF kernel with  = 0.0004 and capacity 
parameter of C = 128 of C–SVMC to construct the final SVM model which has the highest 
accuracy index of leave–one–out cross validation. The accuracy index of all 221 compounds is 
94.1%, 13 compounds are misclassified. To test the stability of this SVM model, we have uniformly 
chosen 2/3 from all 221 compounds as a training set which is used to obtain a new SVM model, the 
rest compounds being used as a testing set. A total of 16 compounds (8 in the training set and 8 in 
testing set) were misclassified, which gives an accuracy index of 92.8%. The result indicates that 
SVM model has a high ability for predicting the aquatic toxicity mechanism, if we employ 
appropriate parameters of SVM and molecular descriptors. 
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