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Abstract 

Possibilities are indicated for purely graph–theoretically defined model Hamiltonians for molecular electronic 
structure. It is emphasized that many of the models so described are chemically interesting, go substantively 
beyond the Hückel model, and are yet little explored from a mathematical point of view. Thence it seems that a 
rich diversity of further chemical graph–theoretic work awaits. It is noted for several models that there is a 
possibility of some theorems reminiscent of those for the Hückel model, and that wave–function ansätze for the 
eigenstates of these “refined” graph–theoretic models often naturally lead to novel graph invariants, which are 
mathematically little explored. 
Keywords. Graph theory; Hückel model; quantum chemistry. 

1 Historical Perspective and Nenad Trinajsti

In the early 1970s research in chemical graph theory rapidly developed, with a motivational 
recognition that formal mathematical graph theory makes especially close contact with chemistry. 
Indeed the mathematical field of “graph theory” apparently drew its name from chemistry when 
Sylvester [1] in 1878 became infatuated by molecular structural formulas then often termed 
“graphical formulas”. Utilization of the connection languished for some time, so that often such a 
connection was not mentioned either in chemistry or graph theory texts. In any event Nenad 
Trinajsti  was one of the researchers central to the reinvigoration of chemical graph–theoretical 
work in the 1970s. As a result there was a tremendous out–pouring of chemical graph–theoretic 
research. Nenad was interested cosmopolitanly in all of chemical graph theory, publishing a seminal 
book [2] in the field. He has worked on reframing Hückel theory, on enumerating molecular 
isomers, on enumerating resonance–theoretic quantities, on making graph–structure/property
correlations, and similarly on making graph–structure/bio–activity correlations (QSAR), as well as 
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numerous other chemical applications of graph theory. Indeed he has exhibited a very wide range of 
interests beyond chemical graph theory, with others including mathematical chemistry, the 
philosophy and history of science (particularly as relevant to chemistry and to Croatia), and 
literature. But especially in chemical graph theory Nenad managed to interest many other people in 
the area, and he ended up collaborating with many. 

One of the first areas of chemical graph theory attracting Nenad’s interest at Zagreb concerned 
the idea of merging formal graph theoretic ideas to electronic structure theory, so that in fact 
already in 1977 the group at Zagreb published [3] the survey Topological Approach to the
Chemistry of Conjugated Molecules. In fact, graph–theoretic electronic–structure models were a 
main topic which Nenad and I along with Milan Randi  discussed at a Sanibel meeting about 1981. 
There I emphasized that the Pauling–Wheland Valence–Bond (VB) model [4] could be expressed 
purely graph theoretically in an elegant mathematical form making it the same [5] as the standard 
(isotropic spin–1/2) Heisenberg spin Hamiltonian. It was understood that thence there was a 
prospect of proving graph–theoretic theorems for this VB model, perhaps paralleling the many 
already noted results for the Hückel model, as discussed in [2]. Indeed, I already had in hand some 
such theorematic results, most of which eventually appeared [6]. Further, Nenad and I met again at 
Sanibel, and we collaborated on an article [7] emphasizing that though the so–called “Hubbard” 
model went qualitatively beyond the Hückel model in including explicit electron–electron 
interaction, it still was fundamentally graph theoretical, so that one might also attempt graphical 
theorematic results for the Hubbard model as well. With this additional pair interaction though the 
problem seems to become more difficult, and various results which have been established [2,8,9] 
have been comparatively limited. Since then Nenad and I have continued our interest in novel 
electronic structure models expressed in a graph–theoretic framework. Later another collaborative 
work [10] developed a “Simpson–Herndon” model Hamiltonian, which is defined on a space of 
orthogonal Kekulé structures, and which gives rise to the conjugated–circuits resonance energy, of 
Herndon [11] and of Randi  [12]. 

2 Preview 

Thence it seems appropriate here to look further at the range of graph–theoretically formulatable 
models for molecular electronic structure, it being understood that the graph–theoretic relation 
offers promise of direct connection to classical chemical–bonding ideas. Or further one may view 
such models as various sorts of intermediates between the quantitative quantum–mechanical 
Schrödinger equation and classical chemical bonding ideas. It may be emphasized that here 
“model” is taken to entail an effective Hamiltonian, whose eigenvalue spectrum is to correlate to 
molecular energies, and whose eigenvectors are to correspond to molecular electronic structure. A 
molecular graph is denoted by G, which most simply is that of the –network of a conjugated 
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hydrocarbon. Typically the number of vertices (or sites) of G is denoted by N, and the edges of G
are between neighbor (bonded) pairs of sites. Here an attempt is made to make a relatively 
comprehensive identification of the various purely graph–theoretic models available for molecular 
graphs, with the focus primarily on the mathematical formulation of the models. Much of the 
discussion is framed in terms of conjugated –networks, though especially later here there is 
attention to more general circumstances. 

3 Simple Hückel MO Model

The most prominent example of a graph theoretically framed model Hamiltonian is that early on 
described by Hückel [13] for conjugated –networks. Here the 1–electron Hamiltonian matrix is 
essentially just the graph–theoretic adjacency matrix A  of the molecular –network graph G, with 
matrix elements: 

1,     ~
0,  otherwiseij

i j
A

where i and j are sites of G and i~j indicates that i and j are neighbors in G. Significantly the model 
is relatively easy to numerically solve (just entailing the diagonalization of the N×N matrix A), and 
further there has been an immense amount of characterization of A in both the chemical and 
mathematical literature, so that we do not even attempt a listing of original results. A nice concise 
chemical graph–theoretic book [3] reviews this subject, while Nenad’s broader book [2] devotes 
some space to this also. The chemical literature is enormous, there probably being more than a 
dozen other more chemically oriented works focused on the Hückel model, and also a few other 
books viewing it from a chemical graph–theoretic perspective. One recent book covering 
mathematical results fairly thoroughly (along with some chemical results deemed to be of a 
mathematical nature) is the up–dated edition of Cvetkovi , Doob, and Sachs [14]. 

An alternative so–called “second–quantized” way to represent the Hückel model may be 
mentioned, first because of its elegance and second because this sort of representation is especially 
convenient for several other models (which even may be purely graph–theoretic). This 
representation uses Fermion creation and annihilation operators ia  and ia which create (if not 

already present) and annihilate (if already present) an orbital occupancy for a spin–  electron at site 
i. Then the (many–electron) Hückel Hamiltonian is: 

HMO
~

(  )
G

i j j i
i j

H a a a a

where the i~j sum is over neighbor pairs (i.e., edges) of G, and the –sum is over spins (  and ).
Here the operator i ja a  evidently simply moves a –spin electron from site j to site i. This model 

has not only 1–electron eigenfunctions, but also many–electron eigenfunctions, which are just 
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(antisymmetrized) products of the 1–electron functions. The eigenvalues of HHMO are just 
corresponding sums of those of A.

4 Simple Covalent–Space VB Model

Another important early example of a graph theoretically framed model Hamiltonian is the 
covalent–space valence–bond (or VB) model of Pauling and Wheland [4] for neutral conjugated –
networks. Though again the model is specified by the graph, there has been little study of it in the 
mathematical literature. However there has been extensive study in the physics literature, 
traditionally viewed as describing the magnetic character of inorganic networks, and called the 
(isotropic spin–1/2) Heisenberg model. This model is conveniently defined on a 2N–dimensional 
space of N–fold spin products 1 2 3 ... N , with each 1i  and N the number of sites of 
the molecular graph G. For each site i there are site–spin operators , ,x y z

i i is s s , in terms of which the 

model Hamiltonian may be presented as 

VB
~

2
G

i j
i j

H s s

If one wishes to avoid these spin operators (with preference to permutations), it may be noted 
that 2 1/ 2 ( )i j spins s ij  may be viewed as the operator which transposes spins i  and j .

Though the model is purely graph–theoretic, an exact solution is generally a challenge, with the 
possibility of the need to diagonalize a matrix with dimension increasing exponentially with system 
size, so that Pauling and Wheland [5] advocated as a reasonable simplifying ground–state 
approximation: the diagonalization in a sub–space of dominant resonance structures, often the so–
called Kekulé structures with nearest–neighbor pairings only (in which case we might interpret this 
restriction to be a new model P-W-ResThH ). Rather amusingly the fairly extensive physics literature 

before the mid–1980s seldom made reference to Pauling and Wheland [4] or to the associated 
resonance–theoretic ideas they advocated. Indeed the solid–state solution techniques via Neel states, 
or Neel–state perturbation theory, or antiferromagnetic spin waves were so different than Pauling 
and Wheland’s ideas about resonance that one might wonder whether they were dealing with the 
same model. As it turns out the two different approaches are most [15] adequate for rather different 
structural circumstances: 

(a) Neel–state based approaches work best for bipartite (or alternant) graphs with higher vertex 
degrees (>3), such as occur for many of the studied solid–state species in physics; and 

(b) resonance–theoretic based approaches work best for graphs G with low vertex degrees (  3) 
and with G having many Kekulé structures, such as for the more stable benzenoids of chemistry. 

And yet further it was emphasized first by Hartmann [16] and then especially by Malrieu and 
Maynau [17] that the Neel–state based ideas even worked fairly well for (alternant) chemical 
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species. Reviews [18] of work relating to this model are found in a recent general overview of VB 
theory, and a comparable number of reviews mostly by different authors are found in an earlier 
book [19] (with Nenad as co–editor). 

5 Spin–Free VB Model 

The covalent–space VB model may be represented in other manners, which may seem more 
natural to a graph theoretician. In a “spin–free” representation one may presume a basis 

1 2
(1) (2) ... ( )

Ni i i N , with ( )i a  being an orbital for electron a  at a site i , these orbitals most 

conveniently being identified as orthonormal. Then a simplest graph–theoretic Hamiltonian may be 
represented as 

sf-Heis
~

( )
G

i j
H ij

where the (ij) are transposition permutations for the (spin–free) orbital indices. Evidently there are 
N! ways of permuting electrons around amongst the N different –centers, so that this gives an 

! !N N  matrix representation, which may be blocked according to the symmetries of the symmetric 
group of permutations on the electron coordinates. The eigenvalues associated to the relevant 
symmetric–group symmetries are shifted by N/2 from those of VBH  above, and have different 

degeneracies. E.g., these correspondences have been discussed [20,21]. In fact the spin–free 
representation is essentially that as originally given by Heisenberg [22], with the representation as 
in VBH  above being due to Dirac [23] and the utility of Dirac’s representation being elucidated (and 

thereby promulgated) by Van Vleck [24]. The representation of Pauling and Wheland [4] was yet 
different than either as in VBH  or sf-HeisH  above. 

6 Free–Electron Model 

Another interesting purely graph–theoretic model developed most seriously in the decade around 
1950 is the so–called free–electron model, again originally formulated for conjugated –networks.
This entails one–dimensional unit–length line segments between adjacent vertices, with the line 
segments joined at the vertices. Then on this piecewise 1–dimensional network one takes the model 
Hamiltonian to be the Schrödinger equation for non–interacting electrons. That is the Hamiltonian 
up to proportionality is just 

2

free-e 2
~

G

i j ij

H
x

with xij the length along the line segment between adjacent sites i and j. Further there is a question 
of boundary conditions: one typically demands solutions vanishing at degree–1 vertices, and at 
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higher degree vertices there is continuity and a condition on derivative sums for the solutions on the 
incident line segments. Though very simple and elegant with many of the same features as the 
simple Hückel model, this free–electron model has been relatively little studied in chemistry in 
recent years, though earlier there was a fair amount of interest in the model. See e.g., Platt’s group’s 
reprint collection [25]. The solution of the model is reduced to the diagonalization of an N N
matrix much like the adjacency matrix (i.e., more like the Laplacian matrix), so that it seems that 
many deemed the model to be a sort of Hückel–like. Sometimes this model has been termed the 
“chemical network model”, though a better name in this regard would be “non–interacting–electron 
chemical–network model” or “free–electron chemical–network model”. 

7 Digression on Parametrics 

The Hückel, the free–electron, and VB models are interesting in that they appear parameter–free, 
though to fit experimental spectra a multiplicative constant dependent on the units for measuring 
energy may be included. The constant for the Hückel model is in chemistry usually denoted as  (or 
sometimes t especially in physics). The constant for HVB is denoted as J (or sometimes –J), and 
termed the exchange parameter. Sometimes the various models are shifted by an additive constant. 

The graph–theoretic models to be described next here incorporate parameters beyond a simple 
scale factor, though these models still may be categorized as purely graph–theoretic. That is, the 
parameters can be introduced in a manner dependent solely on graph–theoretic information, e.g., so 
that ground–state eigenvalues and eigenspectra may be viewed as graph invariants, possibly as a 
function of the parameters introduced. Many of these ensuing models have found interest for 
inorganic networks – to make the model purely graph–theoretic the sites are best viewed as all of 
the same chemical type of site. 

8 Slightly Extended Hückel Model 

A simple parametric graph–theoretic model is just a slightly extended Hückel model. See, e.g.,
Streitweiser [26] for a nice discussion. One may introduce an overlap matrix I sA , with I the 
identity matrix, A the adjacency matrix, and s an “overlap” parameter. Then the model is defined 
via the generalized eigenvalue equation 

( )Ac I sA c

with c  the (column) eigenvector with eigenvalue . This model is well–known to have the same 
eigenvectors as A, with the eigenvalues  given in terms of the corresponding eigenvalues  of A
as /(1 )s . Then much of the theory for the simple Hückel model carries over to this 

slightly extended version. 
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A next higher order model which still is purely graph–theoretic uses a further generalized 
eigenvalue equation: 

( ' ') ( )A A c I sA c

where 'A  is a next–neighbor matrix (i.e., with non–zero elements 'ijA , all =1, for i~~j), and '  is a 

next–neighbor electron–transfer parameter. From a graph–theoretic view '  is a general parameter, 

though for chemical purposes the values of interest are when it is but a fraction of  (and further s is 
but a fraction of 1). Here the eigenvector c  and eigen–energy  are generally different than in the 
preceding generalized eigenvalue equation, and are not typically simply related to those of the usual 
simple Hückel model. More generally more distant electron–transfers and overlaps are 
incorporated, though usually in a geometry–dependent manner, even with s, , and '  typically 

also geometry dependent, whence we do not term such a fully extended Hückel model to be purely 
graph theoretical. 

9 Nonorthogonal–Orbital Covalent–Space VB Model 

The covalent–space VB model may be somewhat analogously extended to include intersite 
overlap. That is, one may consider the atomic orbitals on the different centers to be non–orthogonal, 
most simply with the sole correction being an overlap of s between orbitals on adjacent sites. This 
model has seldom been written down in any elegant form. But we still might try, first for the 
overlap operator for a graph G’,

edges
2

1
( ')

k
k

k P
S G I s P

where I is the identity, and the P sum is over all sets of k disjoint edges of G’ with P being the 
corresponding k–fold transposition interchanging the pairs of sites in each of these edges. Then the 
Hamiltonian operator is 

non-orth.VB
~

( ) ( ) ( { , })
G

i j
H G J ij S G i j

where { , }G i j  represents the graph obtained from G by deletion of sites i and j (and the edges 

incident thereon). The generalized eigen–problem to be considered is 

non-orth.VB ( ) ( )H G E S G

with  the wave–function (or eigenfunction), and E the energy. This model underlies the 

ordinary VB model HVB (or Hsf–Heis), as early emphasized by Van Vleck [27] with the derivation 
from one to the other historically engendering a good deal of confusion. This history and a 
relatively straightforward derivation (from Hnon–orth.VB to HVB) may be found elsewhere [28]. There 
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have been rather few studies of this model on its own, one notable exception being in the work of 
Mulder and Oosterhoff [29] in their VB exposition of the Hückel rule and Woodward–Hoffmann 
rules, though in their (still graph–theoretic) model they include additional cyclic permutations. A 
significant point is that for greatest precision the orbitals should be “anti–orthogonalized” (so as to 
have more intersite overlap than bare atomic orbitals) – though there were several recognitions of 
this, by Mueller and Eyring [30, 31], by Wheland [32], and by Epiotis [33], the point seems not to 
have been generally well recognized till the seminal ab initio computation on benzene by Cooper et
al [34], whence many ab initio VB works have followed [35]. 

10 Hubbard Model 

An elegant purely graph–theoretic model with explicit electron–electron interaction is that of 
Hubbard [36] (who viewed it as a simple model interpolating between separated–atoms and metal). 
This model may be defined on a 4N dimensional space with a basis of Slater determinants built from 
2N orthonormal spin orbitals, one spin–up and one spin–down orbital for each site. That is, each site 
has either 0 electrons, 1 spin–up electron, 1 spin–down electron, or 2 electrons of opposite spins. 
Then with the use of Fermion creation and annihilation operators ia  and ia  for spin  on site i,

the Hamiltonian is concisely given as: 

Hubbard 0
~

'( )
G G

i j j i i i j j
i j i

H t a a a a a a a a

where t and 0
'  are parameters (respectively, representing electron hopping and electron repulsion). 

Here the first t–term may be viewed just as a many–electron representation of the Hückel 
Hamiltonian, and the second 0

' –term is a simple form for electron–electron repulsion. For t=0 one 

obtains a simple model for separated atoms, while instead with 0
'  = 0 one has a simple model for a 

metal. With the 0
' –term, exact solutions become very challenging, and nice theorematic results 

seem even harder to come by than for the Heisenberg model, though we should mention results of 
Lieb [37] for the half–filled case, as is of interest for neutral conjugated –network hydrocarbons. 
The Hubbard model is especially popular in some more theoretically oriented areas of solid–state 
physics.

11 Hubbard/PPP and PPP/Hubbard Models 

Yet two more related graph–theoretic models are what we term the Hubbard/PPP and 
PPP/Hubbard models. These are intermediate between the Hubbard model and a full geometry–
dependent PPP model [38,39] which would then supercede graph theory. These models are all 
defined on the same space as the Hubbard model, and the resultant Hamiltonians are again neatly 
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expressible in terms of Fermion creation and annihilation operators. The Hamiltonians contain 
terms like those of the Hubbard model with an additional one or two terms, 

Hubbard/PPP 0 1
~ ~

PPP/Hubbard 0 1 2
~ ~ ~~

" "

"' "' "'

( ) (1- )(1- )

( ) (1- )(1- ) (1- )(1- )

G G G

i j j i i i j j i j
i j i i j

G G G G

i j j i i i j j i j i j
i j i i j i j

H t a a a a a a a a n n

H t a a a a a a a a n n n n

where i i i i in a a a a  is a number operator, the i~~j sum is over next–nearest neighbor pairs of 

sites in G, and "
m and "'

m  are additional parameters, having to do with Coulombic interactions 

between nearest–neighbor and next–nearest neighbor pairs of sites. The appropriate values of '
m ,

"
m , and "'

m  to use in the Hubbard, Hubbard/PPP, and PPP/Hubbard models are different, since they 

appropriately measure [40,41] nearer electron–electron interactions relative to the first neglected 
inter–site Coulomb interactions. That is, if m denotes the typical mth neighbor interaction 
(asymptotically usually taken to be of the Coulombic form e2/rm) for the full PPP model, then 

0 0 1
' , 0 0 2

" , 1 1 2
" , 0 0 3

"' , 1 1 3
"' , and 2 2 3

"' . These models 

seem to be even more difficult to treat than the Hubbard model. Perhaps the bulk of the applications 
of these various models (Hubbard/PPP) have been by way of SCF solutions, which of course are 
just a (well–defined) approximation. But we emphasize the graph–theoretic nature, such as does not 
occur for the usual full Parisier–Parr–Pople (PPP) model which contains Coulombic interactions 
between every pair of sites at particular geometric locations. The point is that usually the interaction 
parameter ij between vertices i and j is taken to depend (beyond graph theory) on the geometric 
distance between vertices i and j. In the Hubbard/PPP and PPP/Hubbard models above we have 
chosen the various Coulombic interaction strengths to depend solely upon the (shortest–path) 
graph–theoretic distances dij between pairs of sites i and j. Especially for the nearest and next–
nearest–neighbor cases the geometric distances are reasonably correlated with the graph–theoretic 
distances, at least in benzenoids. In principle one could introduce yet further distant Coulombic 
interaction terms still depending solely upon graph–theoretic distance. There are several texts 
making significant discussion of the PPP model (and particularly its SCF solutions) from a 
quantum–chemical viewpoint. One nice discussion and reprint collection is that of Parr [42]. 

12 tJ and tJV Models 

There also are VB graph–theoretic models applicable for ions of conjugated –networks. Such 
models are conveniently expressed on a basis of atomic configurations of minimal ionicity, here 
viewed as (±) the number of sites with other than a single –electron. Thence there is a charge–
transfer matrix element t for moving an electron around, while not changing the ionicity. And 
further there may be a matrix element V for the Coulomb interaction of two adjacent charged sites, 
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and in fact one might incorporate even further distant Coulomb interactions, though beyond next–
nearest neighbors, geometry conventionally becomes relevant (thereby superceding ordinary graph 
theory). Such models may be neatly represented in terms of creation and annihilation operators 
thusly

~ ~ ~
( ) 2 (1 )(1 )

G G G

i jtJ i j j i i jj i i j
i j i j i j

H t a a n h a a n h J s s V n n

where for the case with electrons fewer in number than the sites, i i jn a a  and 

1j j j jh a a n  are “particle” and “hole” projection operators, and i i in n n . When the 
number of electrons exceeds the number of sites, then the occurrences of in  and ih  in the t–term 

are interchanged. This model was formulated [43] without the V–term, though the t–part of this 
model was earlier considered by Fisher and Murrell [44], where it was noted that cycles with 4n–
electron cycles prefer triplet spin multiplicity while 4n+2–electron cycles prefer singlet spin 
multiplicity (when the number of electrons and sites are different). The model without the V–term
has been much studied in the physics literature in recent years, under the name of the tJ model – 
see, e.g., a relevant review [45] (on the theory of high–T superconductivity). The inclusion of the 
nearest neighbor Coulomb interaction V has been suggested by Schlottmann [46]. Without the V–
term this may be viewed as a VB analogue of the Hubbard model, while with the V–term it may be 
viewed as a VB analogue of the Hubbard/PPP model HHubbard–PPP, and if a next–nearest neighbor 
Coulomb term were added one would obtain a VB analogue of the PPP/Hubbard model. 

13 Simpson–Herndon Model

The Simpson–Herndon model is also purely graph–theoretic. It is defined on a space of 
neighbor–paired resonance structures, also called Kekulé structures. For this model the Kekulé 
structures are taken as orthonormal. The Hamiltonian involves operators ,dC  and C  for a cycle C

in G such that in application to a Kekulé–structure state )  they give 0 if the Kekulé structure 

does not exhibit conjugation around C. When such a )  does exhibit conjugation around C, these 

operators give back a Kekulé structure which is the same as )  except possibly on the C portion of 

G: , ) )C d  and )C  give the same result except that in )C  the pattern of conjugation 

around C is reversed. It can be proved [47] that for benzenoid structures only conjugated circuits of 
sizes 4n+2 occur. Then the Simpson–Herndon model may be written as: 

6 cycle 10 cycle

S-H 1,o 1,d , 2( )C C d C
C C

H R R R

where R1,0, R1,d, and R2 are parameters, and the two sums are over cycles of G of the indicated sizes. 
In the earlier work of Simpson [48] and Herndon [11] the “diagonal” term ,C d  was not considered 
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(i.e., R1,d = 0). But as later seen [10] from quantum–chemical derivation this extra term occurs, 
though with a simple ground–state wave–function ansätz this does not influence the overall form 
for the so–called “conjugated–circuits” resonance energy [11, 12]. The diagonal term makes some 
difference in higher order refinements for the ground–state energy, and likely it makes more 
important differences for excited states. Higher order terms for larger conjugated–circuits are also 
sometimes suggested [10,12], though the associated parameters are smaller. Some review of the 
field has in fact been made by Nenad and co–workers [49,50], and also see other reviews [51,52]. 

14 Herndon–Hosoya Model

Another possibility for graph–theoretic models is to define them on an even smaller space, of so–
called “Clar structures”. A Clar structure S of G is a spanning subgraph consisting of 6–cycles and 
isolated edges, such that no triple of edges of S circumscribe a 6–cycle of G. That is, each S may be 
constructed from a Kekulé structure  by identifying different conjugated 6–circuits (identified as 
triples of edges spanning a 6–cycle of G) in , and replacing disjoint ones by 6–cycles till no 
conjugated 6–circuits remain. (When two conjugated 6–circuits of  occur in adjacent hexagons, 
then only one becomes replaced by a 6–cycle, so that one  may give rise to more than one Clar 
structure . Also evidently one  with m 6–cycles results from 2m different Kekulé structures, each 
with different conjugation patterns around the m 6–cycles.) One might view each Clar–structure 
state as a linear combination of Kekulé states, each 6–cycle being resolvable into two patterns of 
edges around the 6–cycle. A first model Hamiltonian would then simply view a new model to be 
but a restriction of the Simpson–Herndon model to the sub–space of Clar structures. In this 
interpretation the Clar structures would be non–orthogonal to one another, though this non–
orthogonal model seems so far to be completely uninvestigated. But a yet simpler form of model 
results if one considers orthonormal Clar–structure states ) , and one may imagine two simple 

operators ( )C  and ( ; ')C C  for C and C' being adjacent 6–cycles of G such that these operators 
act on )  to give 0 unless C S  whence ( ) ) )C  and ( ', ) )C C  gives back ')  with '

the same 6–cycles as  except having C' instead of C, whereas if no such ' exists, the result is 0. 
Then a plausible Hamiltonian as first suggested by Herndon and Hosoya [53] is 

6 6

Herndon-Hosoya
~ '

( ) ( '; )
cycles cycles

C C C
H C C C

where  and  are parameters. Though the initial work is quite favorable, little further work has 
been done with this model. In chemical graph theory there has been much use of Clar structures 
(sans an explicit Hamiltonian model), and the success further recommends the exploration of such 
models. Randi  gives a seminal review [52] on aromaticity with much focus on Clar structures, and 
this thence further supports the likely relevance of HHerndon–Hosoya.
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Notably this model may be viewed [28,53] as the “last” of a sequence of systematically related 
VB–based models: 

nonorth.VB VB P-W-ResTh S-H nonorth-Clar-str Herndon-Hosoya... H H H H H H

and the manner of derivation from one to the other has been discussed [28]. Further relations to a 
sequence of MO–based models have also been indicated [54]. 

15 Interacting–Electron Chemical–Network Model

The free–electron model might be extended in a purely graph–theoretic manner to include 
electron–electron interaction. Here to retain a purely graph–theoretic framework, the trick is to 
invoke a meaningful electron–electron interaction which does not incorporate geometric 
information. Perhaps the simplest such interaction is a delta–function interaction ( , )m n

understood to be non–zero (and integrating to 1) only when the coordinates of electrons m and n are 
at the same position in the network. Then 

2

int network 2
~

( , )
( )

G

i j m m nij

H m n
x m

where  and  are parameters, and ( )ijx m  is understood to refer to a position for the mth electron 

along the (i,j)th edge. This model seems both non–trivial to solve and little studied, though one 
might view it as related to the free–electron model Hfree–e in a manner analogous to the way in 
which the Hubbard model HHubbard is related to the simple Hückel model HHMO. Of course one can 
imagine longer–range Coulomb repulsions, say falling off as a function of the distance measured 
along the bonds. 

16 Multi–orbital Models 

Especially in proceeding beyond conjugated –networks the vertices of a graph might be 
naturally chosen to identify localized orbitals in place of individual atomic centers. That is, for 
saturated hydrocarbons one might identify 4 different tetrahedral hybrid orbitals to each carbon and 
1 atomic orbital to each hydrogen. Thus letting M denote the molecular graph with A the set of 
atomic centers and B the set of bonds, one understands that a~b for a A and b B means that bond 
b of M is incident on atom a of M. The graph G+ then is defined with vertex set 

{( , )  ,  , & ~ }V a b a A b B a b

and an edge set E which is partitioned into intra–atomic and inter–atomic pieces intraE and interE

given as 
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intra

inter

{( , ), ( , ')}  ,  , '  , ~  , ~ '  , & '

{( , ), ( ', )}  ,  , '  , ~  , ' ~  , & '

{ }
{ }

E a b a b a A b B b B a b a b b b

E a b a b a A b B a A a b a b a a

Then (to describe such –bonded hydrocarbon systems) a very simple model Hamiltonian matrix 
which might be considered is a weighted adjacency matrix, with elements 

intra

( , ),( ', ') inter

 ,  {( , ), ( ', ')}   
( )   ,  {( , ), ( ', ')}   

0  ,    otherwise                   
a b a b

a b a b E
H a b a b E

where  and  are parameters. From a quantum chemical perspective one might naturally invoke 
further parameters, with different  values for CC and CH bonds, though recommended [55] values 
are in fact quite similar (to <10%). Also different site energies for C and H atoms could be 
introduced. H–atom site energies may perhaps [56] be as great as 0.5  with reference to that for a 
C–atom, though others have used [57] a value as little as 0.2  Indeed with such additional 
parameters the model has been much studied by way of empirical computations, as has been 
reviewed [58]. Sometimes even then the result can be considered purely graph–theoretic, with 
different parameters associated with sites of different degrees. Here the above first–mentioned 
model is somewhat simplified, though one might hope for a degree of chemical relevance while also 
achieving a little greater mathematical simplicity, which might aid in the development of elegant 
mathematical (graph–theoretic) theorems. Of course, even further “decorations” could be 
entertained, e.g., with electron–electron interactions introduced much as for the Hubbard or 
Hubbard/PPP models. And presumably even chemical–network versions of these models could be 
considered. Most of the work to date goes beyond graph theory to involve geometry–dependence, 
there being very extensive use of different sorts of multi–orbital models, typically described as 
various “extended Hückel” models and as various “NDO” models. 

Deserving special attention is an article by Pople and Santry [59], who develop a model of the 
sort in the previous paragraph. In their 0–order model they take =0 (in our above notation), noting 
that this amounts to an assumption that 2s and 2p orbitals are degenerate. But they also allow 
additional (smaller) secondary –parameters between (a,b) and (a',b') orbitals for atomic centers a
and a’ which are bonded while 'b b . Further first–order perturbation–theoretic corrections to this 
0–order model are obtained, to reveal a nice bond–energy additivity. The overall paper could be 
viewed as “chemical graph–theoretic” though the work pre–dates the growth of this field. Overall 
Pople and Santry’s work [59] indicates that indeed there is much further graph–theoretic 
development that should be possible. 

Another related sort of graph–theoretic model attends just to bond orbitals. There results 
something like a Hückel model for a what is sometimes called the “line graph” of the molecular 
graph. One could also include electron–electron interactions. But for neutral species the number of 
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electrons is double the number of (spin–free) orbitals, so that all that results is a single energy, 
which we do not here view as a model Hamiltonian. If on the other hand ionized species are 
considered then a non–trivial line–graph based model results, or alternatively the graph could 
represent local excitations of bond orbitals (to anti–bonding orbitals) with the adjacency matrix of 
this line graph representing the interactions between these local excitations. Albeit quite natural, 
this sort of modeling seems to have been little explored, though one may note the success found in 
Simpson’s work [60,61,62]. This sort of model may be viewed as analogous to standard “molecular 
exciton theory” for molecular crystals (see, e.g., Davydov [63]). 

17 On–Site Interactions 

On–site interactions lead to a purely graph–theoretic model if all sites are treated in the same 
way. For the Hückel, Hubbard, and Hubbard/PPP type models one may add an on–site 1–electron 
interaction. For the Hückel model this amounts to adding a scalar, say , to every element of the 
diagonal of the adjacency matrix, whence the MO eigenvalues are all rather trivially shifted by 
and the MO eigenvectors remain unchanged. For the Hubbard and PPP type models this amounts to 
adding ii

n  to the Hamiltonians, and this simply shifts all M–electron energies by M and again 

leaves the (electron–number–conserving) eigenvectors unchanged. But note that these shifts are 
different for different numbers of electrons (even when M–electron energies are made up from the 
1–electron Hückel MO energies), whence this can be important in understanding ionization 
energies.

For the chemical network models the on–site interactions are rather naturally represented by 
delta–function interactions ( , )

m
i m  at the sites i of G. For the free–electron case, this leads to 

relatively straightforward modifications (of boundary conditions at nodes) as was noted when such 
a model was proposed [64,65] for hetero–atom species with different on–site interactions for 
different hetero–atoms. But even for homo–atomic systems such on–site interactions are quite 
reasonable (treating the atoms as different than bonds), and though “uniform”, this does not simply 
shift the energies. What this would do for the interacting chemical network model seems not to have 
been considered at all. 

Much elaborated 1–electron–like models are also conceivable which in effect include electron–
electron interaction. More explicitly one may imagine a discrete analog of the Hohenberg–Kohn 
theorem [66]. That is, one considers a range of Hubbard/PPP–type Hamiltonians with fixed t–term 
and fixed (purely graph–theoretic) 2–electron part but variable on–site 1–electron interactions. 
Letting H0 be the fixed part, the Hamiltonians then to be considered are of the form 

1 2 0( ) ( , ,..., )
G

N i i
i

H H H n
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(with the ni site number operators as in the Hubbard/PPP–type models). The electron density for an 
arbitrary normalized wave–function (whether it be an eigenfunction or not) is 0i in

with ii
 the total number of electrons. Then the considered analog of the Hohenberg–Kohn 

theorem would say that there exists a function ( )F  such that the ground–state energy is given as 
†min( )  { ( ) }E F

where the superscript † indicates a transpose of a vector and 
† G

i ii
 gives the expectation 

over G
i ii
n . Indeed this result for ( )E  may be neatly proved closely following Levy’s proof 

[67], dealing with the standard (geometry–dependent) Schrödinger equation. Of course for a purely 
graph–theoretic problem the i  all are 0, but still the same function ( )F  applies. The real trick is 

to find this ( )F , or at least a reasonable approximation thereto. But e.g., Kohn and Sham [68] 

indicate an approach to do this for the ordinary Schrödinger equation, with 1/rij electron–electron 
interaction. And also there has been much work since then on this consequent “density functional 
theory”, even with many texts, e.g. by Parr and Yang [69]. Moreover, Schindlmayr and Godby [70] 
fact indicate some beginning toward the estimation of ( )F  for the Hubbard model. Thus one 

might surmise that there could be a comparable theory for graph models, say of the Hubbard/PPP 
type.

18 Hetero–Atomic Models 

It is of general chemical interest to consider models with hetero–atoms. However these generally 
are not of a purely graph–theoretic nature though involving different atomic labels for different 
types of atoms. In some cases these may still be considered as purely graph–theoretic – most simply 
when all the atoms are the same (hetero–) atom. E.g., one circumstance for this with all sites boron 
atoms is considered in a graph–theoretic framework by King and Rouvray [71, 72]. More generally 
the model remains purely graph–theoretic when each type of atom is associated to a different 
degree. That is, on–site interactions ( )

G
i ii

d n  (with di the degree of site i and  a function, of 

these degrees) could be incorporated in the Hückel, slightly extended Hückel, Hubbard, 
Hubbard/PPP, or PPP/Hubbard models and still retain the purely graph–theoretic nature. When 
incorporated in the Hückel model with the site energy further dependent on the electron density at a 
site, the model is often termed [26] the  model, though in a more general way this may be viewed 
as naught but an SCF approximation to a Hubbard–type model. Still these models are not addressed 
here in any detail. Many aspects of the general (non–graph–theoretic) case are discussed in more 
chemically oriented texts, as that of Streiweiser [26] on the Hückel MO side, while Epiotis [73] 
presents results on the VB side. Theorematic results of a somewhat graph–theoretic nature arise in 
Dewar and Dougherty’s text [74]. 
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19 Miscellaneous Models 

Another possible graph–theoretic model is that of a higher spin Heisenberg spin Hamiltonian, 
which in its simplest form is “parameterless”. These have notable application for describing the 
exchange coupling amongst high–spin atomic ions. In solid–state physics this is a traditional model 
for the study of magnetism, with G which often are simple crystal lattices. Further (especially in 
chemistry) there is increasing interest in high–spin molecules or ions in place of simple atomic ions, 
and of finite molecular clusters in place of crystal lattices. See, e.g., Kahn’s text [75] and a
collection [76] of reviews. 

There has also been notable activity especially in the physics literature on a variety of other 
“many–body” models, which are devised so as to be exactly soluble. These may involve higher 
spins on the sites of the system or have unusually strong next–neighbor interactions or some other 
artifice which happens to facilitate an exact solution. Often these models are not so well motivated 
as to potential chemical application, though likely some may describe suitable inorganic materials. 
An opening to the rather extensive literature is found in the clear review of Ovchinnikov et al [77]. 

20 Overview and Relation to Graph Invariants 

It is seen that there are a great variety of purely graph theoretic chemically interesting electronic–
structure models and that for many of these a systematic development has been little attempted. 
Beyond chemistry to mathematical graph theory, one may wonder why some of models should not 
be of fundamental interest. As a general conclusion it then seems that there awaits a great deal more 
of chemical graph theory which can be studied in this electronic–structure realm (aside from isomer 
enumeration, structure–property correlations, reaction–graph characterization, and related graph 
theory). True, some of the models seem significantly more intransigent than the simple Hückel 
model, especially when electron–electron interaction is allowed. But this intransigence may be but a 
signal of greater chemical relevance, and already there are several fundamental theorems for the 
exact solutions for some of these models. E.g., for the simple VB model [6,78,79,80], and a few for 
the Hubbard model [7,8,9,37], some of which even extend further to the Hubbard/PPP or 
PPP/Hubbard models. 

Exact but quite complicated “analytic” solutions are available for the Heisenberg [81] and 
Hubbard [82] models for both the linear chain and the simple cycle, though these seem not to be 
readily extendable either to other geometries or to the Hubbard/PPP or PPP/Hubbard models. Still 
there is a whole host of other models. Sometimes exact results (short of an exact solution) are even 
rather readily possible. For instance, an application of the Frobenius–Perron theorem (e.g., as 
reviewed by Gantmacher [83]) rather readily leads to the result that for the Simpson–Herndon 
model the exact ground state consists of a positive linear combination of all the Kekulé structures. 
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Granted the representation in terms of Kekulé structures there are then theorems [84,85] 
describing a consequent long–range order. And likewise, for the Herndon–Hosoya model the exact 
ground state consists of a positive linear combination of all the Clar structures. These results should 
in turn lead to signs of selected ground–state expectation values for these models, all somewhat 
paralleling theorems [6,80] for signs of selected expectation values for the simple Heisenberg model 
as follow from a consideration of its representation on the spin–product basis. Of the various 
models without electron–electron interaction it is surmised that there is even more promise of 
various exact results. Thus it seems likely that much can be done as regards exact theorematic 
results for a great variety of purely graph–theoretic model Hamiltonians. 

Beyond the theorematic results for exact solutions, theorems for various approximate solutions 
are conceivable. With purely graph–theoretic models, reasonable wave–function ansätze should be 
describable in a purely graph–theoretic manner. A fairly well–known example of this involves a 
suite of neat “particle–hole” theorems [86,87] for the “restricted Hartree–Fock” approximations for 
the Hubbard and Hubbard/PPP models. And for the simple covalent–space VB model there are neat 
results for various different approximate solutions, e.g., as for the Néel–state and perturbative 
corrections thereto [16,17,88]. 

Novel graph invariants often may be associated with the different graph–theoretic models. The 
SCF Hartree–Fock ground–state energies for the Hubbard and PPP type models as discussed in the 
previous paragraph provide a simple such example. More generally a reasonable wave–function 
ansätze |  for the ground–state wave–function for any of the graph–theoretic models may be 
expected to give rise to interesting graph invariants | , |H| , and other expectation values. 
For instance for the Simpson–Herndon model already mentioned, a rather natural wave–function 
ansatz | ) is just a sum over all the Kekulé structures, in which case ( | ) is the number of Kekulé 
structures and ,d( ) ( )n cyc n cyc

C CC C
 (such as appear in ( |H| ) is the overall 

conjugated n–circuit count Kn (i.e., the number of conjugated n–circuits summed over all Kekulé 
structures). This leads [10,11] to the conjugated–circuits standard [11,12] resonance–energy 
expression.

Further ansätze with Kekulé–structure weights depending on the number of conjugated 6–
circuits in each Kekulé structure have been investigated [89], and lead to further graph invariants. 
The weight choice #(6, )x  with #(6, ) the number of conjugated 6–circuits in  is size–consistent and 
leads to a conjugated–circuits polynomial also motivated otherwise [90]. Another ansätze takes 
weights which are products of edge weights for each edge in , and leads to exact solutions [91] in 
certain circumstances. In the context of the VB model there are various Néel–State–based energies 
and Kekulé–structure–based energies, thereby leading to novel graph invariants. Further there are 
several other models we have noted for which comparatively little seems to have been seriously 
attempted. 
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Indeed, it is intended in a future paper to address in a general manner approximate many–body 
graph–theoretic solutions for these models with electron–electron interaction. Such a general 
discussion for a general class of quasi–1–dimensional structures is presented elsewhere [92], and a 
discussion of a few such many–body solutions for the Heisenberg and Simpson–Herndon model has 
been indicated [93]. In any event there certainly seems much that can be done, especially for several 
of the very little studied models. 

21 Conclusion and General Outlook 

Evidently there are a great many purely graph–theoretic electronic–structure models, which 
though of fundamental relevance have been little studied graph theoretically. Some “extended 
Hückel” and “NDO” models are very widely used in “canned” packages with the underlying 
formulation going beyond graph theory, while other models with explicit electron–correlation have 
been less widely used. But both types are seen to have substantive purely graph–theoretic 
representations (though perhaps simplified). Of the chemical graph–theoretic work on electronic 
structure most of it is focused on the simple Hückel model, while a smaller portion attends to simple 
VB–based resonance–theoretic ideas (typically short of a model Hamiltonian). It seems that there is 
a substantive prospect for much new chemical graph theory. Indeed it is perhaps surprising that 
more of the plausible models have not been followed up to any great extent. 

Further it may be surmised that there is an extended theory of “colored” graphs so as to correlate 
more completely with classical molecular structures. That is, one might define a colored or 
chemical graph as an ordinary graph with an additional “type labelling” or coloring for the vertices. 
For chemical relevance the different “types” or colors may be identified to different elements. 
Perhaps with no more than a dozen such atoms there results a description of the great bulk of 
organic chemistry, where such chemical graphs are most useful – correlating most closely with 
what is chemically realizable. Still these chemical graphs are rather modest (well–defined) 
extensions of ordinary graphs, so that much interesting mathematical theory might be surmised. 
That such is not only possible but likely is indicated in the systematics indicated in Dewar and 
Doughtery’s text [74] on “Perturbed Molecular Orbital Theory”. This is still far from geometry–
dependence, and relatively little graph theoretically studied, though there seems to be a potential for 
a neat mathematical theory inter–relating classical valence theory and quantum–chemical molecular 
electronic structure. 

Finally it may be argued that these possibilities for graph–theoretic models are not diminished by 
success of ab–initio quantum–chemical computation. As long ago emphasized by Coulson [94] 
such computations might like experimental observations be viewed as another means by which to 
generate numerical data, so that such reliable computations might be deemed “computer 
experiments”, which need interpretation, rationalization, and understanding just as much as 
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traditional laboratory experiments. Thence the success of ab initio theory should in reality only 
provide more data to be handled by a simpler theory. At the same time with interest in ever larger 
nano–structures, where ab initio work becomes ever more demanding of computer time, there 
remains a need for simple models to deal not only qualitatively but also quantitatively (albeit 
approximately) with electronic structure. The overall outlook should please Nenad in indicating a 
large body of further relevant chemical graph theory to study. 
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