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Abstract 

Motivation. The flavor class prediction of chemical compounds can be efficiently performed with structure–
odor relationships (SOR), leading to a better understanding of the mechanism of odor perception. SOR models 
for various odor classes were developed with a wide variety of structural descriptors and statistical equations. 
Method. We have investigated the application of support vector machines (SVM) for the classification of 98 
tetra–substituted pyrazines representing three odor classes, namely 32 green, 23 nutty, and 43 bell–pepper. The 
chemical structure of the pyrazines was encoded by five theoretical descriptors, namely the sum of 
electrotopological indices, the number of carbon atoms of the substituent R2, the charge on the first atom of the 
substituent R4 computed with an ab initio method (Hartee–Fock with a 3–21G basis set), and the molecular 
surface of the substituents R1 and R3.
Results. Three sets of SVM experiments were performed for the classification of pyrazines, each one 
considering the classification of one class of compounds against the compounds from the remaining two classes. 
The SVM models were computed with the dot, polynomial, radial basis function, neural, and anova kernels. The 
leave–10%–out cross–validation results represent the main criterion for selecting the best SVM model that has 
the highest prediction power. The results obtained demonstrate that the SVM classification of pyrazines in aroma 
classes depends strongly on the kernel type and various parameters that control the kernel shape. In general, the 
neural kernel gives the worst results. The best predictions were obtained with the polynomial kernel of degree 2 
for the green and bell–pepper classes, and with the anova kernel (  = 0.5 and d = 1) for the nutty pyrazines. 
Conclusions. The classification of chemical compounds in odor classes with SOR models can be efficiently 
made with support vector machines. The solution of the SVM model is a unique hyperplane that guarantees a 
maximum separation between two classes of chemical compounds. This hyperplane can be computed very fast 
and represents the solution of a quadratic programming problem, but the classification results depend on the 
kernel type and structural descriptors. The identification of the optimum predictive kernel and elimination of the 
overfitted SVM models requires extensive cross–validation experiments. 
Keywords. Structure–odor relationships; pyrazine; support vector machines; machine learning; kernel algorithm. 

1 INTRODUCTION 

Various techniques of molecular design can significantly help fragrance researchers to find 
relationships between the chemical structure and the odor of organic compounds [1–3]. A wide 
variety of structural descriptors (molecular fragments, topological indices, geometric descriptors, or 
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quantum indices) and a broad selection of qualitative or quantitative statistical equations were used 
to model and predict the aroma and its intensity for various classes of organic compounds [3–14]. 
Besides providing an important guidance for the synthesis of new fragrances, structure–odor 
relationships (SOR) offer a better understanding of the mechanism of odor perception. 

Support vector machines (SVM) represent a new class of machine learning algorithms for 
classification and regression [15–28] with numerous applications in medicine, bioinformatics and 
chemistry [29–51]. In this paper we present the first application of support vector machines for the 
aroma classification, using literature data [14] for 98 tetra–substituted pyrazines representing three 
odor classes, namely 32 green, 23 nutty, and 43 bell–pepper. 

2 MATERIALS AND METHODS 

2.1 Chemical Data 
A database of 98 tetra–substituted pyrazines (see Figure 1 for the general structure and Table 1 

for the substituents and aroma classes) representing three odor classes, namely 32 green, 23 nutty, 
and 43 bell–pepper, was taken from literature [14]. The chemical structure of the 98 pyrazines was 
encoded by five theoretical descriptors, namely the sum of electrotopological indices, the number of 
carbon atoms of the substituent R2, the charge on the first atom of the substituent R4 computed with 
an ab initio method (Hartee–Fock with a 3–21G basis set), and the molecular surface of the 
substituents R1 and R3 [14]. These five structural descriptors were used in a neural network model 
to separate the pyrazines into aroma classes [14]. While the descriptors used to quantify the 
chemical structure are very important in SVM models, no algorithm is presently available for the 
efficient selection of a group of effective structural descriptors that allow an optimum separation 
into classes of the chemical compounds. 

N

NR4

R3

R1

R2

Figure 1. General structure of the pyrazines. 

2.2 Support Vector Machines 
Support vector machines were developed by Vapnik [15–17] as an effective algorithm for 

determining an optimal hyperplane to separate two classes of patterns [18–28]. In the first step, 
using various kernels that perform a nonlinear mapping, the input space is transformed into a higher 
dimensional feature space. Then, a maximal margin hyperplane (MMH) is computed in the feature 
space by maximizing the distance to the hyperplane of the closest patterns from the two classes. The 
patterns that determine the separating hyperplane are called support vectors. 
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Table 1. Structure and Aroma Class (Green = 1; Nutty = 2; Bell–Pepper = 3) for the 98 Pyrazines 
No R1 R2 R3 R4 Class 
1 N(CH3)2 H H CH2CH(CH3)2 1 
2 OC4H9 H H H 1 
3 OC6H5 H CH(CH3)2 H 1 
4 SC2H5 H (CH2)2CH(CH3)C2H5 H 1 
5 N(CH3)2 CH3 H H 1 
6 OCH3 CH3 CH2CH(CH3)2 H 1 
7 OCH3 CH3 CH2CH(CH3)C2H5 H 1 
8 OCH3 CH3 CH2CH2CH(CH3)C2H5 H 1 
9 OC2H5 CH3 CH(CH3)C2H5 H 1 
10 OC2H5 CH3 CH2CH(CH3)2 H 1 
11 OC2H5 CH3 CH2CH(CH3)C2H5 H 1 
12 OC2H5 CH3 (CH2)2CH(CH3)C2H5 H 1 
13 OC6H5 CH3 CH2CH(CH3)2 H 1 
14 OC6H5 CH3 (CH2)2CH(CH3)C2H5 H 1 
15 SCH3 CH3 CH2CH(CH3)2 H 1 
16 SCH3 CH3 CH2CH(CH3)C3H7 H 1 
17 SC2H5 CH3 CH2CH(CH3)C2H5 H 1 
18 OCH3 COH(CH3)2 CH3 H 1 
19 OCH3 COH(CH3)2 H CH3 1 
20 OCH3 COCH3 H CH3 1 
21 OCH3 COCH3 OCH3 CH3 1 
22 H C2H5 H CH3 1 
23 C2H5 C2H5 H H 1 
24 H CH(CH3)2 CH3 CH3 1 
25 H C4H9 H H 1 
26 H CH2CH(CH3)2 H H 1 
27 SCH3 CH2CH(CH3)2 H H 1 
28 H C5H11 H H 1 
29 H C5H11 CH3 CH3 1 
30 OCH3 C5H11 H H 1 
31 CH3 (CH2)2CH(CH3)2 CH3 H 1 
32 OCH3 C7H15 H H 1 
33 CH3 H CH3 H 2 
34 OCH3 H H H 2 
35 OCH3 H H CH3 2 
36 OC2H5 H H H 2 
37 SCH3 H H H 2 
38 SCH3 H H CH3 2 
39 SC2H5 H H H 2 
40 CH3 CH3 H H 2 
41 CH3 CH3 CH3 H 2 
42 CH3 CH3 CH3 CH3 2 
43 NHCH3 CH3 H H 2 
44 OCH3 CH3 H H 2 
45 OCH3 CH3 H CH3 2 
46 OC2H5 CH3 H H 2 
47 SCH3 CH3 H H 2 
48 SC2H5 CH3 H H 2 
49 H C2H5 H H 2 
50 H C2H5 CH3 CH3 2 
51 CH3 C2H5 H CH3 2 
52 CH3 C2H5 CH3 H 2 
53 SC2H5 C2H5 H H 2 
54 H CH2CH(CH3)2 CH3 CH3 2 
55 SC6H5 C8H17 H H 2 
56 CH3 C3H7 H H 3 
57 OCH3 C3H7 H H 3 
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Table 1. (Continued) 
No R1 R2 R3 R4 Class 
58 SCH3 C3H7 H H 3 
59 CH3 CH(CH3)2 H H 3 
60 OCH3 CH(CH3)2 H H 3 
61 OCH3 CH(CH3)2 H CH3 3 
62 OCH3 CH(CH3)2 CH3 H 3 
63 OCH3 CH(CH3)2 OCH3 CH3 3 
64 OCH3 CH(CH3)2 CH3 OCH3 3 
65 OCH3 CH(CH3)2 OCH3 CH(CH3)2 3 
66 SCH3 CH(CH3)2 H H 3 
67 OCH3 C4H9 H H 3 
68 SC2H5 C4H9 H H 3 
69 CH3 CH2CH(CH3)2 H H 3 
70 OCH3 CH2CH(CH3)2 H H 3 
71 OCH3 CH2CH(CH3)2 H CH3 3 
72 OCH3 CH2CH(CH3)2 CH3 H 3 
73 OCH3 CH2CH(CH3)2 CH3 CH3 3 
74 OCH3 CH(CH3)C2H5 H H 3 
75 OC2H5 C5H11 H H 3 
76 SCH3 C5H11 H H 3 
77 SC2H5 C5H11 H H 3 
78 OCH3 (CH2)2CH(CH3)2 H H 3 
79 OCH3 CH2CH(CH3)C2H5 H H 3 
80 OCH3 (CH2)3CH=CH2 H H 3 
81 OCH3 (CH2)2CH=CHCH3 (E) H H 3 
82 OCH3 (CH2)2CH=CHCH3 (Z) H H 3 
83 OCH3 C6H13 H H 3 
84 OCH3 (CH2)3CH(CH3)2 H H 3 
85 OCH3 CH2CH(CH3)C3H7 H H 3 
86 OCH3 C8H17 H H 3 
87 OC2H5 C8H17 H H 3 
88 SCH3 C8H17 H H 3 
89 SC2H5 C8H17 H H 3 
90 OCH3 C10H21 H H 3 
91 OC2H5 C10H21 H H 3 
92 OCH3 CH3 OCH3 CH3 3 
93 OCH3 C2H5 H H 3 
94 OCH3 CH(CH3)C3H7 H H 3 
95 OCH3 (CH2)6CH(CH3)2 H H 3 
96 OCH3 CH2CH(CH3)C6H13 H H 3 
97 OCH3 CH2CH(CH3)2 H CH2CH(CH3)2 3 
98 OC2H5 CH2CH(CH3)2 H H 3 

This powerful classification technique was applied with success in medicine, computational 
biology, bioinformatics, and structure–activity relationships, for the classification of: microarray 
gene expression data [29], translation initiation sites [30], genes [31], cancer type [32–35], 
pigmented skin lesions [36], HIV protease cleavage sites [37], GPCR type [38], protein class [39], 
membrane protein type [40], protein–protein interactions [41], protein subcellular localization [42–
44], protein fold [45], protein secondary structure [46], specificity of GalNAc–transferase [47], 
DNA hairpins [48], organisms [49], aquatic toxicity mechanism of action [50], carcinogenic activity 
of polycyclic aromatic hydrocarbons [51]. 

All SVM models from the present paper for the classification of pyrazines into three aroma 
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classes were obtained with mySVM [52], which is freely available for download. Links to Web 
resources related to SVM, namely tutorials, papers and software, can be found in BioChem Links 
[53] at http://www.biochempress.com. Three groups of SVM experiments were performed for the 
classification of pyrazines, each one considering the classification of one class of compounds 
against all remaining compounds. Group 1 discriminates the 32 green compounds (class +1) against 
the remaining 66 compounds, group 2 discriminates the 23 nutty compounds (class +1) against the 
remaining 75 compounds, and group 3 discriminates the 43 bell–pepper compounds (class +1) 
against the remaining 55 compounds. Before computing the SVM model, the input vectors were 
scaled to zero mean and unit variance. The prediction power of each SVM model was evaluated 
with a leave–10%–out cross–validation procedure, and the capacity parameter C took the values 10, 
100, and 1000. We present below the kernels and their parameters used in this study. 

The dot kernel. The inner product of x and y defines the dot kernel: 

yxyxK ),( (1)

The polynomial kernel. The polynomial of degree d (values 2, 3, 4, and 5) in the variables x and 
y defines the polynomial kernel: 

dyxyxK )1(),( (2)

The radial kernel. The following exponential function in the variables x and y defines the radial 
basis function kernel, with the shape controlled by the parameter  (values 0.5, 1.0, and 2.0): 

)||||exp(),( 2yxyxK (3)

The neural kernel. The hyperbolic tangent function in the variables x and y defines the neural 
kernel, with the shape controlled by the parameters a (values 0.5, 1.0, and 2.0) and b (values 0, 1.0, 
and 2.0): 

)tanh(),( byaxyxK (4)

The anova kernel. The sum of exponential functions in x and y defines the anova kernel, with 
the shape controlled by the parameters  (values 0.5, 1.0, and 2.0) and d (values 1, 2, and 3): 

d

i
ii yxyxK ))(exp(),( (5)

3 RESULTS AND DISCUSSION 

Similarly with other multivariate statistical models, the performances of SVM classifiers in 
structure–activity studies depend on the combination of several parameters, and the kernel type is 
the most important one. Because the use of SVM models in chemometrics, structure–activity 
studies, and QSAR is only in the beginning, there are no clear guidelines on selecting the most 
effective kernel for a certain classification problem. 
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Table 2. SVM Modeling Results for the Green Aroma (Class +1)a

Exp C K   SV BSV +/+ +/– –/– –/+ CAa ASV ABSV TRa TEa 
1 10 D   44 38 16 16 66 0 0.84 40.1 33.0 0.82 0.80 
2 100    44 38 16 16 66 0 0.84 40.4 32.5 0.82 0.80 
3 1000    44 38 16 16 66 0 0.84 44.0 32.1 0.82 0.80 
   d             
4 10 P 2  28 10 26 6 65 1 0.93 27.1 8.5 0.93 0.85 
5 100  2  31 9 26 6 65 1 0.93 27.6 7.5 0.93 0.85 
6 1000  2  30 9 27 5 65 1 0.94 27.6 7.4 0.94 0.86 
7 10  3  33 9 28 4 65 1 0.95 30.5 6.7 0.96 0.76 
8 100  3  29 4 31 1 64 2 0.97 27.4 2.7 0.99 0.78 
9 1000  3  27 0 32 0 66 0 1.00 25.9 0.0 1.00 0.79 

10 10  4  31 2 31 1 66 0 0.99 28.1 1.6 0.99 0.74 
11 100  4  33 0 32 0 66 0 1.00 28.3 0.0 1.00 0.74 
12 1000  4  33 0 32 0 66 0 1.00 28.3 0.0 1.00 0.74 
13 10  5  33 0 32 0 66 0 1.00 30.7 0.0 1.00 0.72 
14 100  5  33 0 32 0 66 0 1.00 30.7 0.0 1.00 0.72 
15 1000  5  33 0 32 0 66 0 1.00 30.7 0.0 1.00 0.72 
               

16 10 R 0.5  54 9 26 6 65 1 0.93 48.6 8.1 0.93 0.79 
17 100  0.5  46 9 30 2 64 2 0.96 43.3 6.4 0.96 0.77 
18 1000  0.5  38 0 32 0 66 0 1.00 37.8 0.0 1.00 0.75 
19 10  1.0  59 9 26 6 65 1 0.93 56.1 7.2 0.94 0.78 
20 100  1.0  53 1 31 1 66 0 0.99 48.9 0.9 0.99 0.78 
21 1000  1.0  49 0 32 0 66 0 1.00 47.2 0.0 1.00 0.78 
22 10  2.0  75 4 31 1 66 0 0.99 68.1 3.0 0.99 0.77 
23 100  2.0  69 0 32 0 66 0 1.00 64.4 0.0 1.00 0.77 
24 1000  2.0  69 0 32 0 66 0 1.00 64.4 0.0 1.00 0.77 
   a b            

25 10 N 0.5 0.0 38 35 14 18 49 17 0.64 29.8 26.7 0.71 0.73 
26 100  0.5 0.0 32 32 21 11 38 28 0.60 28.9 25.9 0.71 0.73 
27 1000  0.5 0.0 32 32 21 11 38 28 0.60 28.6 25.4 0.71 0.72 
28 10  1.0 0.0 38 38 17 15 33 33 0.51 31.6 28.6 0.68 0.72 
29 100  1.0 0.0 38 38 17 15 33 33 0.51 31.1 28.3 0.68 0.73 
30 1000  1.0 0.0 38 38 17 15 33 33 0.51 31.0 28.2 0.68 0.72 
31 10  2.0 0.0 40 37 13 19 48 18 0.62 32.8 29.9 0.67 0.67 
32 100  2.0 0.0 39 37 13 19 48 18 0.62 32.4 29.5 0.67 0.68 
33 1000  2.0 0.0 36 32 16 16 50 16 0.67 32.4 29.8 0.66 0.68 
34 10  0.5 1.0 53 51 7 25 40 26 0.48 46.8 44.9 0.49 0.46 
35 100  0.5 1.0 53 51 7 25 40 26 0.48 46.7 44.6 0.49 0.46 
36 1000  0.5 1.0 53 50 7 25 41 25 0.49 46.6 44.8 0.50 0.47 
37 10  1.0 1.0 46 46 16 16 30 36 0.47 43.9 42.4 0.51 0.54 
38 100  1.0 1.0 46 46 16 16 30 36 0.47 43.5 41.7 0.52 0.53 
39 1000  1.0 1.0 46 46 16 16 30 36 0.47 43.5 41.7 0.52 0.54 
40 10  2.0 1.0 47 44 10 22 44 22 0.55 34.6 32.7 0.61 0.64 
41 100  2.0 1.0 46 44 10 22 44 22 0.55 33.1 31.4 0.61 0.64 
42 1000  2.0 1.0 46 44 10 22 44 22 0.55 33.0 31.1 0.61 0.64 
43 10  0.5 2.0 50 50 14 18 26 40 0.41 48.0 46.4 0.46 0.43 
44 100  0.5 2.0 50 50 14 18 26 40 0.41 46.8 45.4 0.46 0.43 
45 1000  0.5 2.0 50 50 15 17 26 40 0.42 47.0 45.6 0.46 0.44 
46 10  1.0 2.0 54 52 6 26 40 26 0.47 47.0 46.2 0.48 0.45 
47 100  1.0 2.0 54 52 6 26 40 26 0.47 46.0 45.2 0.48 0.46 
48 1000  1.0 2.0 53 51 7 25 40 26 0.48 46.3 45.3 0.48 0.45 
49 10  2.0 2.0 48 48 18 14 26 40 0.45 44.6 42.9 0.51 0.49 
50 100  2.0 2.0 48 45 9 23 44 22 0.54 44.9 43.1 0.49 0.53 
51 1000  2.0 2.0 48 45 9 23 44 22 0.54 43.5 42.1 0.50 0.55 
   d            

52 10 A 0.5 1 38 20 24 8 63 3 0.89 36.1 18.9 0.89 0.80 
53 100  0.5 1 40 18 25 7 64 2 0.91 35.1 13.6 0.91 0.84 
54 1000  0.5 1 39 12 26 6 64 2 0.92 35.0 10.0 0.92 0.82 
55 10  1.0 1 40 18 25 7 63 3 0.90 38.9 16.1 0.90 0.83 
56 100  1.0 1 39 14 26 6 64 2 0.92 36.4 10.7 0.92 0.82 
57 1000  1.0 1 40 9 28 4 66 0 0.96 34.6 6.1 0.96 0.77 
58 10  2.0 1 46 18 25 7 63 3 0.90 40.8 14.8 0.91 0.82 
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Table 2. (Continued) 
Exp C K d SV BSV +/+ +/– –/– –/+ CAa ASV ABSV TRa TEa 
59 100 A 2.0 1 41 7 29 3 65 1 0.96 37.8 5.7 0.96 0.76 
60 1000  2.0 1 36 3 30 2 66 0 0.98 33.9 1.9 0.99 0.70 
61 10  0.5 2 43 9 26 6 66 0 0.94 38.0 7.2 0.94 0.72 
62 100  0.5 2 37 4 31 1 65 1 0.98 32.8 2.5 0.99 0.73 
63 1000  0.5 2 33 0 32 0 66 0 1.00 31.8 0.0 1.00 0.70 
64 10  1.0 2 42 7 31 1 65 1 0.98 39.1 4.4 0.98 0.71 
65 100  1.0 2 38 0 32 0 66 0 1.00 34.2 0.0 1.00 0.74 
66 1000  1.0 2 38 0 32 0 66 0 1.00 34.2 0.0 1.00 0.74 
67 10  2.0 2 45 1 31 1 66 0 0.99 40.4 0.9 1.00 0.71 
68 100  2.0 2 41 0 32 0 66 0 1.00 40.2 0.0 1.00 0.70 
69 1000  2.0 2 41 0 32 0 66 0 1.00 40.2 0.0 1.00 0.70 
70 10  0.5 3 38 2 31 1 66 0 0.99 34.8 1.5 1.00 0.73 
71 100  0.5 3 36 0 32 0 66 0 1.00 33.7 0.0 1.00 0.74 
72 1000  0.5 3 36 0 32 0 66 0 1.00 33.7 0.0 1.00 0.74 
73 10  1.0 3 40 0 32 0 66 0 1.00 37.5 0.0 1.00 0.70 
74 100  1.0 3 40 0 32 0 66 0 1.00 37.5 0.0 1.00 0.70 
75 1000  1.0 3 40 0 32 0 66 0 1.00 37.5 0.0 1.00 0.70 
76 10  2.0 3 51 0 32 0 66 0 1.00 47.0 0.0 1.00 0.72 
77 100  2.0 3 51 0 32 0 66 0 1.00 47.0 0.0 1.00 0.72 
78 1000  2.0 3 51 0 32 0 66 0 1.00 47.0 0.0 1.00 0.72 

a The table reports the experiment number Exp, capacity parameter C, kernel type K (dot D; polynomial P; radial basis 
function R; neural N; anova A) and corresponding parameters, calibration results (SV, number of support vectors; BSV, 
number of bounded support vectors; +/+, number of +1 patterns (green aroma) predicted in class +1; +/–, number of +1 
patterns predicted in class –1; –/–, number of –1 patterns (nutty and bell–pepper compounds) predicted in class –1; –/+, 
number of –1 patterns predicted in class +1; CAa, accuracy), and cross–validation results (ASV, average number of 
support vectors; ABSV, average number of bounded support vectors; TRa, training accuracy; TEa, test accuracy). 

Table 3. SVM Modeling Results for the Nutty Aroma (Class +1). For Notations see Table 2
Exp C K   SV BSV +/+ +/– –/– –/+ CAa ASV ABSV TRa TEa 

1 10 D   29 23 19 4 71 4 0.92 26.3 20.5 0.93 0.89 
2 100    29 23 19 4 71 4 0.92 26.3 20.3 0.93 0.89 
3 1000    29 23 19 4 71 4 0.92 26.3 20.3 0.93 0.89 
   d             
4 10 P 2  22 5 21 2 74 1 0.97 19.9 4.0 0.97 0.89 
5 100  2  21 4 22 1 74 1 0.98 18.7 2.6 0.98 0.86 
6 1000  2  20 1 22 1 75 0 0.99 18.5 1.0 0.99 0.88 
7 10  3  20 2 22 1 74 1 0.98 19.0 1.4 0.99 0.85 
8 100  3  19 0 23 0 75 0 1.00 17.5 0.0 1.00 0.83 
9 1000  3  19 0 23 0 75 0 1.00 17.5 0.0 1.00 0.83 

10 10  4  22 0 23 0 75 0 1.00 20.2 0.0 1.00 0.85 
11 100  4  22 0 23 0 75 0 1.00 20.2 0.0 1.00 0.85 
12 1000  4  22 0 23 0 75 0 1.00 20.2 0.0 1.00 0.85 
13 10  5  26 0 23 0 75 0 1.00 22.8 0.0 1.00 0.88 
14 100  5  26 0 23 0 75 0 1.00 22.8 0.0 1.00 0.88 
15 1000  5  26 0 23 0 75 0 1.00 22.8 0.0 1.00 0.88 
               

16 10 R 0.5  40 5 22 1 73 2 0.97 36.6 4.2 0.97 0.89 
17 100  0.5  38 3 22 1 74 1 0.98 34.6 2.1 0.99 0.89 
18 1000  0.5  33 0 23 0 75 0 1.00 32.1 0.0 1.00 0.87 
19 10  1.0  53 3 22 1 73 2 0.97 50.1 2.4 0.98 0.89 
20 100  1.0  52 0 23 0 75 0 1.00 48.7 0.0 1.00 0.86 
21 1000  1.0  52 0 23 0 75 0 1.00 48.7 0.0 1.00 0.86 
22 10  2.0  74 1 23 0 75 0 1.00 67.4 0.7 1.00 0.88 
23 100  2.0  71 0 23 0 75 0 1.00 66.4 0.0 1.00 0.88 
24 1000  2.0  71 0 23 0 75 0 1.00 66.4 0.0 1.00 0.88 
   a b            

25 10 N 0.5 0.0 24 21 12 11 65 10 0.79 21.7 18.8 0.78 0.77 
26 100  0.5 0.0 22 20 13 10 65 10 0.80 20.4 17.4 0.80 0.79 
27 1000  0.5 0.0 22 20 13 10 65 10 0.80 20.6 17.8 0.80 0.78 
28 10  1.0 0.0 27 25 10 13 63 12 0.74 23.3 20.2 0.77 0.75 
29 100  1.0 0.0 27 25 10 13 63 12 0.74 22.9 20.0 0.76 0.73 
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Table 3. (Continued) 
Exp C K a b SV BSV +/+ +/– –/– –/+ CAa ASV ABSV TRa TEa 
30 1000 N 1.0 0.0 27 25 10 13 63 12 0.74 22.8 20.5 0.73 0.74 
31 10  2.0 0.0 25 23 11 12 64 11 0.77 24.3 21.7 0.72 0.69 
32 100  2.0 0.0 26 23 11 12 64 11 0.77 24.5 22.2 0.71 0.69 
33 1000  2.0 0.0 26 23 11 12 64 11 0.77 24.5 22.2 0.71 0.69 
34 10  0.5 1.0 34 34 21 2 27 48 0.49 32.1 30.4 0.62 0.49 
35 100  0.5 1.0 34 34 21 2 26 49 0.48 32.1 30.1 0.63 0.55 
36 1000  0.5 1.0 34 34 21 2 26 49 0.48 32.1 29.9 0.65 0.59 
37 10  1.0 1.0 35 33 6 17 59 16 0.66 30.5 29.2 0.61 0.57 
38 100  1.0 1.0 36 33 6 17 59 16 0.66 30.3 29.0 0.61 0.58 
39 1000  1.0 1.0 36 33 6 17 59 16 0.66 30.3 28.8 0.62 0.61 
40 10  2.0 1.0 34 32 7 16 59 16 0.67 30.6 29.2 0.63 0.62 
41 100  2.0 1.0 34 32 7 16 59 16 0.67 30.5 29.1 0.63 0.61 
42 1000  2.0 1.0 34 32 7 16 59 16 0.67 30.4 29.0 0.63 0.61 
43 10  0.5 2.0 37 35 5 18 58 17 0.64 32.3 31.5 0.54 0.56 
44 100  0.5 2.0 36 34 6 17 58 17 0.65 32.1 31.3 0.53 0.56 
45 1000  0.5 2.0 36 34 6 17 58 17 0.65 32.0 31.2 0.53 0.56 
46 10  1.0 2.0 36 36 22 1 23 52 0.46 33.0 32.2 0.53 0.49 
47 100  1.0 2.0 36 34 6 17 58 17 0.65 32.8 32.0 0.52 0.50 
48 1000  1.0 2.0 36 34 6 17 58 17 0.65 32.7 31.7 0.54 0.49 
49 10  2.0 2.0 35 33 6 17 59 16 0.66 30.7 29.2 0.61 0.59 
50 100  2.0 2.0 35 33 6 17 59 16 0.66 30.5 29.1 0.62 0.59 
51 1000  2.0 2.0 35 33 6 17 59 16 0.66 30.5 29.1 0.61 0.59 
   d            

52 10 A 0.5 1 23 9 20 3 73 2 0.95 21.2 7.7 0.96 0.92 
53 100  0.5 1 23 3 22 1 73 2 0.97 19.2 3.1 0.97 0.87 
54 1000  0.5 1 22 3 22 1 74 1 0.98 18.9 1.6 0.98 0.86 
55 10  1.0 1 27 7 22 1 73 2 0.97 22.7 4.8 0.97 0.91 
56 100  1.0 1 20 4 22 1 74 1 0.98 19.5 2.1 0.98 0.86 
57 1000  1.0 1 19 0 23 0 75 0 1.00 17.6 0.0 1.00 0.88 
58 10  2.0 1 25 5 22 1 73 2 0.97 22.4 3.3 0.97 0.89 
59 100  2.0 1 22 0 23 0 75 0 1.00 20.4 0.0 1.00 0.81 
60 1000  2.0 1 22 0 23 0 75 0 1.00 20.4 0.0 1.00 0.81 
61 10  0.5 2 23 3 22 1 73 2 0.97 22.0 2.3 0.98 0.85 
62 100  0.5 2 24 0 23 0 75 0 1.00 22.5 0.0 1.00 0.83 
63 1000  0.5 2 24 0 23 0 75 0 1.00 22.5 0.0 1.00 0.83 
64 10  1.0 2 24 1 23 0 75 0 1.00 23.5 0.6 1.00 0.85 
65 100  1.0 2 24 0 23 0 75 0 1.00 23.3 0.0 1.00 0.85 
66 1000  1.0 2 24 0 23 0 75 0 1.00 23.3 0.0 1.00 0.85 
67 10  2.0 2 32 0 23 0 75 0 1.00 29.9 0.0 1.00 0.87 
68 100  2.0 2 32 0 23 0 75 0 1.00 29.9 0.0 1.00 0.87 
69 1000  2.0 2 32 0 23 0 75 0 1.00 29.9 0.0 1.00 0.87 
70 10  0.5 3 26 0 23 0 75 0 1.00 23.8 0.0 1.00 0.86 
71 100  0.5 3 26 0 23 0 75 0 1.00 23.8 0.0 1.00 0.86 
72 1000  0.5 3 26 0 23 0 75 0 1.00 23.8 0.0 1.00 0.86 
73 10  1.0 3 29 0 23 0 75 0 1.00 27.7 0.0 1.00 0.86 
74 100  1.0 3 29 0 23 0 75 0 1.00 27.7 0.0 1.00 0.86 
75 1000  1.0 3 29 0 23 0 75 0 1.00 27.7 0.0 1.00 0.86 
76 10  2.0 3 39 0 23 0 75 0 1.00 37.5 0.0 1.00 0.88 
77 100  2.0 3 39 0 23 0 75 0 1.00 37.5 0.0 1.00 0.88 
78 1000  2.0 3 39 0 23 0 75 0 1.00 37.5 0.0 1.00 0.88 

Table 4. SVM Modeling Results for the Bell–Pepper Aroma (Class +1). For Notations see Table 2
Exp C K   SV BSV +/+ +/– –/– –/+ CAa ASV ABSV TRa TEa 

1 10 D   48 42 34 9 46 9 0.82 43.5 37.6 0.83 0.74 
2 100    48 42 34 9 46 9 0.82 43.1 36.9 0.82 0.74 
3 1000    48 42 34 9 46 9 0.82 43.3 36.8 0.82 0.74 
   d             
4 10 P 2  27 9 43 0 52 3 0.97 25.3 7.8 0.97 0.88 
5 100  2  27 8 43 0 52 3 0.97 25.2 6.3 0.97 0.84 
6 1000  2  31 8 43 0 52 3 0.97 26.6 5.9 0.97 0.85 
7 10  3  27 5 43 0 52 3 0.97 25.7 3.6 0.98 0.79 
8 100  3  29 3 43 0 53 2 0.98 25.1 2.1 0.98 0.76 
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Table 4. (Continued) 
Exp C K d  SV BSV +/+ +/– –/– –/+ CAa ASV ABSV TRa TEa 

9 1000 P 3  26 0 43 0 55 0 1.00 23.4 0.0 1.00 0.78 
10 10  4  25 1 43 0 55 0 1.00 23.9 0.7 1.00 0.81 
11 100  4  25 0 43 0 55 0 1.00 23.8 0.0 1.00 0.81 
12 1000  4  25 0 43 0 55 0 1.00 23.8 0.0 1.00 0.81 
13 10  5  29 0 43 0 55 0 1.00 27.5 0.0 1.00 0.82 
14 100  5  29 0 43 0 55 0 1.00 27.5 0.0 1.00 0.82 
15 1000  5  29 0 43 0 55 0 1.00 27.5 0.0 1.00 0.82 
               

16 10 R 0.5  43 7 43 0 52 3 0.97 41.9 5.9 0.97 0.89 
17 100  0.5  40 5 43 0 52 3 0.97 38.0 3.8 0.98 0.83 
18 1000  0.5  33 0 43 0 55 0 1.00 31.1 0.0 1.00 0.84 
19 10  1.0  57 5 43 0 52 3 0.97 53.9 4.1 0.97 0.84 
20 100  1.0  52 1 43 0 54 1 0.99 48.4 0.9 0.99 0.88 
21 1000  1.0  51 0 43 0 55 0 1.00 48.4 0.0 1.00 0.87 
22 10  2.0  76 2 43 0 54 1 0.99 67.4 1.3 0.99 0.86 
23 100  2.0  68 0 43 0 55 0 1.00 63.3 0.0 1.00 0.85 
24 1000  2.0  68 0 43 0 55 0 1.00 63.3 0.0 1.00 0.85 
   a b            

25 10 N 0.5 0.0 35 32 26 17 40 15 0.67 32.2 29.2 0.67 0.66 
26 100  0.5 0.0 35 32 26 17 40 15 0.67 32.1 29.7 0.67 0.67 
27 1000  0.5 0.0 36 33 27 16 38 17 0.66 31.9 29.4 0.67 0.67 
28 10  1.0 0.0 38 35 26 17 37 18 0.64 34.3 31.6 0.65 0.66 
29 100  1.0 0.0 38 35 26 17 37 18 0.64 33.2 30.5 0.65 0.64 
30 1000  1.0 0.0 38 35 26 17 37 18 0.64 33.0 30.1 0.66 0.65 
31 10  2.0 0.0 38 36 25 18 37 18 0.63 34.6 32.5 0.64 0.62 
32 100  2.0 0.0 38 36 25 18 37 18 0.63 34.2 32.0 0.64 0.62 
33 1000  2.0 0.0 38 36 25 18 37 18 0.63 33.9 31.7 0.64 0.65 
34 10  0.5 1.0 48 46 20 23 32 23 0.53 40.5 38.5 0.57 0.58 
35 100  0.5 1.0 46 43 21 22 34 21 0.56 39.4 37.4 0.58 0.60 
36 1000  0.5 1.0 46 43 21 22 34 21 0.56 41.6 39.7 0.55 0.55 
37 10  1.0 1.0 40 38 24 19 36 19 0.61 33.3 31.7 0.64 0.63 
38 100  1.0 1.0 38 38 23 20 36 19 0.60 33.0 31.1 0.64 0.63 
39 1000  1.0 1.0 34 34 28 15 35 20 0.64 32.9 31.0 0.64 0.63 
40 10  2.0 1.0 44 42 22 21 35 20 0.58 32.9 30.8 0.65 0.66 
41 100  2.0 1.0 43 41 22 21 35 20 0.58 32.8 30.9 0.65 0.68 
42 1000  2.0 1.0 43 41 22 21 35 20 0.58 32.5 30.7 0.65 0.67 
43 10  0.5 2.0 52 50 18 25 30 25 0.49 47.7 46.4 0.48 0.48 
44 100  0.5 2.0 52 50 18 25 30 25 0.49 46.8 45.8 0.47 0.47 
45 1000  0.5 2.0 52 50 18 25 30 25 0.49 46.8 45.8 0.47 0.47 
46 10  1.0 2.0 46 46 24 19 30 25 0.55 43.9 42.9 0.51 0.57 
47 100  1.0 2.0 46 46 24 19 30 25 0.55 43.0 42.4 0.52 0.58 
48 1000  1.0 2.0 46 46 24 19 30 25 0.55 43.3 42.4 0.51 0.58 
49 10  2.0 2.0 40 40 23 20 35 20 0.59 33.3 31.5 0.64 0.63 
50 100  2.0 2.0 36 34 26 17 38 17 0.65 32.8 31.4 0.64 0.61 
51 1000  2.0 2.0 40 40 23 20 35 20 0.59 32.4 31.2 0.64 0.64 
   d            

52 10 A 0.5 1 31 16 41 2 49 6 0.92 29.0 13.4 0.93 0.87 
53 100  0.5 1 28 11 42 1 51 4 0.95 26.3 8.9 0.95 0.84 
54 1000  0.5 1 25 6 43 0 52 3 0.97 23.7 4.3 0.97 0.82 
55 10  1.0 1 32 14 41 2 50 5 0.93 29.6 11.0 0.93 0.84 
56 100  1.0 1 28 5 42 1 51 4 0.95 25.8 5.2 0.97 0.82 
57 1000  1.0 1 24 2 43 0 53 2 0.98 24.1 1.8 0.98 0.82 
58 10  2.0 1 31 8 42 1 52 3 0.96 29.6 7.4 0.96 0.84 
59 100  2.0 1 29 3 43 0 53 2 0.98 27.0 1.9 0.98 0.81 
60 1000  2.0 1 26 1 43 0 55 0 1.00 24.0 0.3 1.00 0.78 
61 10  0.5 2 31 5 43 0 52 3 0.97 28.1 3.7 0.97 0.84 
62 100  0.5 2 28 1 43 0 54 1 0.99 25.3 0.9 0.99 0.80 
63 1000  0.5 2 29 0 43 0 55 0 1.00 25.6 0.0 1.00 0.83 
64 10  1.0 2 31 2 43 0 54 1 0.99 29.4 1.5 0.99 0.82 
65 100  1.0 2 29 0 43 0 55 0 1.00 26.3 0.0 1.00 0.82 
66 1000  1.0 2 29 0 43 0 55 0 1.00 26.3 0.0 1.00 0.82 
67 10  2.0 2 36 1 43 0 55 0 1.00 33.9 0.8 1.00 0.85 
68 100  2.0 2 35 0 43 0 55 0 1.00 31.8 0.0 1.00 0.84 
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Table 4. (Continued) 
Exp C K d SV BSV +/+ +/– –/– –/+ CAa ASV ABSV TRa TEa 
69 1000 A 2.0 2 35 0 43 0 55 0 1.00 31.8 0.0 1.00 0.84 
70 10  0.5 3 29 1 43 0 55 0 1.00 26.6 0.8 1.00 0.80 
71 100  0.5 3 30 0 43 0 55 0 1.00 26.5 0.0 1.00 0.81 
72 1000  0.5 3 30 0 43 0 55 0 1.00 26.5 0.0 1.00 0.81 
73 10  1.0 3 33 0 43 0 55 0 1.00 29.1 0.0 1.00 0.83 
74 100  1.0 3 33 0 43 0 55 0 1.00 29.1 0.0 1.00 0.83 
75 1000  1.0 3 33 0 43 0 55 0 1.00 29.1 0.0 1.00 0.83 
76 10  2.0 3 39 0 43 0 55 0 1.00 37.5 0.0 1.00 0.85 
77 100  2.0 3 39 0 43 0 55 0 1.00 37.5 0.0 1.00 0.85 
78 1000  2.0 3 39 0 43 0 55 0 1.00 37.5 0.0 1.00 0.85 

Each group of SVM models consists of 78 experiments. Table 2 presents the statistical results for 
group 1 (class +1 for green compounds), Table 3 collects the SVM results for group 2 (class +1 for 
nutty compounds), and Table 4 offers the results for group 3 (class +1 for bell–pepper compounds). 
The calibration results reported in Tables 2, 3 and 4 are: SV, number of support vectors; BSV, 
number of bounded support vectors; +/+, number of +1 patterns predicted in class +1; +/–, number 
of +1 patterns predicted in class –1; –/–, number of –1 patterns predicted in class –1; –/+, number of 
–1 patterns predicted in class +1; CAa, accuracy. Using complex non–linear kernels, SVM can be 
calibrated to perfectly discriminate two populations of patterns, but only a cross–validation test can 
demonstrate the potential utility of an SVM model and avoid overfitting. For each SVM model we 
present in Tables 2, 3 and 4 the following leave–10%–out (L10%O) cross–validation statistics: 
ASV, average number of support vectors; ABSV, average number of bounded support vectors; TRa, 
training accuracy; TEa, test accuracy. As implemented in mySVM, C is scaled by 1/number of 
training examples. 

The group 1 of experiments discriminates between the 32 green compounds (class +1) against 
the remaining 66 nutty and bell–pepper compounds. The statistical results for these 78 SVM models 
presented in Table 2 show that the calibration and prediction results vary widely with the kernel 
function. The results obtained with the dot kernel (Table 2, experiments 1–3) do not depend on the 
value of C, with TEa = 0.80. However, the number of support vectors is quite large, and better 
prediction results are obtained with the polynomial and anova kernels. In the models obtained with 
the polynomial kernel (Table 2, experiments 4–15) TEa takes values between 0.72 and 0.86, with 
the best results obtained in the experiment 6, with a polynomial kernel of degree 2 and C = 1000. 
For the experiment 6, in the SVM model calibration five green compounds are classified in the class 
–1 (5, 23, 27, 30, and 32) and the nutty compound 54 is classified as green. A clear overfitting 
effect is observed for the polynomial kernel, with calibration results improving when the 
polynomial degree increases from 2 to 5 (CAa increases from 0.93 to 1), while the L10%O cross–
validation TEa decreases from 0.86 to 0.72 with the increase of the polynomial degree. This is an 
obvious demonstration of the fact that SVM models can be overfitted when too complex kernels are 
used. The L10%O cross–validation test is a reliable method for locating the SVM model with the 
best prediction power, although other cross–validation partitioning of this group of compounds can 
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offer equally good guiding in selecting the best kernel. 

The next group of SVM models (Table 2, experiments 16–24) was obtained with the radial basis 
function kernel. While the calibration results are good (CAa takes values between 0.93 and 1), the 
prediction results are low (TEa takes values between 0.77 and 0.79), a clear sign of overfitting. The 
results obtained with the neural kernel (Table 2, experiments 25–51) have the lowest statistics from 
the group of SVM models developed for the green compounds, with low calibration (CAa takes 
values between 0.41 and 0.64) and prediction (TEa takes values between 0.43 and 0.73) statistics. It 
is clear that the neural kernel is not a good candidate for the classification of green compounds. 

The last group of SVM models for the classification of the green compounds was obtained with 
the anova kernel (Table 2, experiments 52–78), with overall good calibration (CAa between 0.89 
and 1) and L10%O prediction (TEa between 0.70 and 0.84) statistics. When  and d increase, the 
calibration results increase, while the prediction statistics decrease, showing that overfitted SVM 
models are obtained with high values for  and d. The best results obtained with the anova kernel 
(Table 2, experiment 53, with C = 100,  = 0.5, d = 1, CAa = 0.91, and TEa = 0.84) are very close to 
those obtained with the best SVM model for the classification of green aroma (experiment 6), 
indicating that this kernel is an interesting alternative for the polynomial kernel for this 
classification problem. The calibration of the SVM model from the experiment 53 results in seven 
green compounds classified in the class –1 (1, 5, 23, 27, 30, 31, and 32) and two nutty compounds 
(50 and 54) are classified as green. Six from these nine compounds (5, 23, 27, 30, 32, and 54) were 
not correctly separated in experiment 6, indicating that this group of molecules is difficult to 
characterize with this SAR model. If we consider that the experimental classification of these 
compounds is correct, only additional structural descriptors can improve the SVM model and allow 
a correct classification of all molecules. 

The group 2 of experiments considers the classification of the 23 nutty compounds (class +1) 
against the remaining 75 green and bell–pepper compounds (class –1). A global examination of the 
statistical results for these 78 SVM models presented in Table 3 reveals some interesting trends 
regarding the predictive power of each kernel, which roughly decreases in the following order: 
anova, dot, radial basis function, polynomial, and neural. The results obtained with the dot kernel 
(Table 3, experiments 1–3) do not depend on the value of C, with CAa = 0.92 and TEa = 0.89. 
Using 29 support vectors, this simple kernel gives a surprisingly good classification, compared with 
the other, more complex, kernels. The polynomial kernel (Table 3, experiments 4–15, CAa between 
0.97 and 1, TEa between 0.83 and 0.88) has overall good results, with the best predictions for 
experiment 4 (C =10, CAa = 0.97, TEa = 0.89) which has the same prediction statistics with the dot 
SVM, but the model has a lower number of support vectors (SV = 22) and better calibration 
statistics with only three classification errors (compounds 5, 46, and 54). As observed in other SAR 
studies [50,51], the classification performance in calibration for the polynomial kernel increases 
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with the increase of the degree d, offering a complete separation for experiments 8–15. Usually, the 
prediction statistics decrease when d increases, but for the separation of the nutty compounds the 
minimum prediction is obtained for experiments 8 and 9, and then TEa increases to 0.88 when d =5. 

The SVM models for the nutty aroma obtained with the radial basis function kernel (Table 3, 
experiments 16–24) are fairly good, with CAa between 0.97 and 1, and TEa between 0.86 and 0.89. 
However, the number of support vectors is significantly larger compared with the polynomial 
kernel, making these SVM models of little practical interest. For example, the experiment 4 
(polynomial kernel, d = 2, TEa = 0.89) has a calibration SVM model with 22 support vectors while 
in the experiment 17 (radial kernel, TEa = 0.89) the SVM model has 38 support vectors. Although 
we have investigated a large number of neural kernel SVM models for the classification of nutty 
aroma (Table 3, experiments 25–51) this group of SAR models has low calibration (CAa takes 
values between 0.48 and 0.80) and prediction (TEa takes values between 0.49 and 0.78) statistics. 
Similarly with the results obtained for the green aroma, these statistical indices indicate that the 
neural kernel is the worst function in the classification of the nutty compounds. 

Good SVM models for the nutty aroma were obtained with the anova kernel (Table 3, 
experiments 52–78), with overall high calibration (CAa between 0.95 and 1) and L10%O prediction 
(TEa between 0.81 and 0.92) statistics. When  and d increase, the calibration statistics improve and 
a perfect separation is obtained between nutty and non–nutty compounds. However, TEa decreases 
(although not monotonically), indicating that for large  and d the SVM models are slightly 
overfitted. The best two SVM models for the classification of the nutty aroma are obtained with the 
anova kernel (Table 3, experiment 52, with C = 10,  = 0.5, d = 1, CAa = 0.95, and TEa = 0.92; 
experiment 55, with C = 10,  = 1, d = 1, CAa = 0.97, and TEa = 0.91), a result that adds further 
evidence to our previous findings indicating the anova kernel as a good candidate for highly 
predictive SVM models. The calibration from the experiment 52 gives an SVM model with 23 
support vectors in which three nutty compounds classified in the class –1 (46, 53, and 54) and two 
green compounds (5 and 22) are classified as nutty. The SVM model from experiment 55 has only 
three classification errors (compounds 5, 22, and 54) but the number of support vectors increases to 
27 and TEa is slightly lower. 

The group 3 of experiments considers the classification of the 43 bell–pepper compounds (class 
+1) against the remaining 55 green and nutty compounds (class –1). A comparison of the statistical 
results from Table 4 shows that the best prediction is obtained in experiment 16 (C = 10, radial 
kernel,  = 0.5, CAa = 0.97, and TEa = 0.89) followed by experiment 4 (C = 10, polynomial kernel, 
d = 2, CAa = 0.97, and TEa = 0.88) and experiment 21 (C = 1000, radial kernel,  = 1, CAa = 1, and 
TEa = 0.87). However, if we consider also the number of support vectors in each model, then 
experiment 4 (SV = 27 and ASV = 25.3) gives a better SVM model than experiment 16 (SV = 43 
and ASV = 41.9). When comparable statistical results are obtained, the SVM model with fewer 
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support vectors must be preferred. In experiments 4 and 16, the calibration SVM model classifies 
the green compounds 27, 30 and 32 as having a bell–pepper aroma, while in experiment 21 all 
compounds are correctly classified. The neural kernel (Table 4, experiments 25–51) gives the worst 
results for the classification of bell–pepper compounds (CAa between 0.49 and 0.67, and TEa 
between 0.47 and 0.68). Considering that we have investigated a fairly large number of SVM 
models with a neural kernel that span a wide selection of values for the parameters a and b, the 
conclusion of our experiments is that the neural kernel is not fit for the classification of green, nutty, 
and bell–pepper aroma. 

Fairly good SVM models for the classification of bell–pepper aroma were obtained with the 
anova kernel (Table 4, experiments 52–78), with statistical results close to those obtained with the 
polynomial and radial kernels (CAa between 0.92 and 1, and TEa between 0.81 and 0.78). The best 
SVM model obtained with the anova kernel (Table 4, experiment 52, with C = 10,  = 0.5, d = 1, 
CAa = 0.92, and TEa = 0.87) has prediction results close to those from experiment 4, but with more 
support vectors, i.e. 31 instead 27. Also, the number of calibration errors is larger, with two bell–
pepper compounds (92 and 93) classified in the class –1, and with six green compounds (18, 19, 27,
30, 31, and 32) classified as having a bell–pepper aroma. The results from Table 4 indicate that the 
separation surface between the bell–pepper compounds and the remaining 55 pyrazines can be 
approximated with sufficient precision by a polynomial of degree 2 kernel, while more complex 
kernel functions decrease the calibration or prediction statistics. An increase in the performances of 
the SVM model can be obtained by investigating other sets of structural descriptors, while more 
complicated separation functions have little to add. 

4 CONCLUSIONS 

Support vector machines represent a new class of machine learning algorithms that can have 
significant applications in structure–activity relationships, chemometrics, and design of chemical 
libraries. In the SVM approach, two clusters of patterns are optimally separated with a hyperplane 
that maximizes the separation between the two classes. Using various kernels, a non–linear 
mapping transforms the input space into a higher dimensional feature space, and then a quadratic 
programming algorithm determines a unique maximal margin hyperplane. The possibility to 
discriminate clusters separated by non–linear surfaces, the unique solution for the class separation, 
and the fast optimization are three important advantages of SVM. 

In this study we have investigated the application of SVM classification models for the 
classification of 98 tetra–substituted pyrazines representing three odor classes, namely 32 green, 23 
nutty, and 43 bell–pepper [14]. The chemical structure of the 98 pyrazines was encoded by five 
theoretical descriptors, namely the sum of electrotopological indices, the number of carbon atoms of 
the substituent R2, the charge on the first atom of the substituent R4 computed with an ab initio
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method (Hartee–Fock with a 3–21G basis set), and the molecular surface of the substituents R1 and 
R3 [14]. The SVM applications in structure–activity models, chemometrics, and chemical libraries 
clustering are only in the beginning and for the moment there are no clear rules on selecting the 
most efficient parameters that control the SVM performances, namely the kernel and the set of 
structural descriptors that are essential for the SVM model. We have explored the influence of the 
kernel type on the SVM performances by testing various kernels, namely the dot, polynomial, radial 
basis function, neural, and anova kernels. Because there is no simple algorithm for descriptor 
selection in SVM models, we have used the theoretical indices from [14]. 

The results obtained demonstrate that the SVM classification of pyrazines in aroma classes 
depends strongly on the kernel type and various parameters that control the kernel shape. From our 
SVM experiments we have selected as best models those that have the best statistics in the leave–
10%–out cross–validation test. Another important parameter that must be monitored in an SVM 
study is the number of support vectors, and when SVM models with close L10%O statistics have 
been obtained, we have preferred the SVM models with a lower number of support vectors. The 
best predictions were obtained with the polynomial kernel of degree 2 for the green and bell–pepper 
classes, and with the anova kernel (  = 0.5 and d = 1) for the nutty pyrazines. In general, the neural 
kernel gives the worst results, while the radial basis function kernel gives good results for the 
separation of nutty and bell–pepper aroma, but with a much larger number of support vectors than 
the polynomial and anova kernels. The L10%O statistics show that more complex kernels tend to 
overfit, as clearly indicated by the decrease of prediction statistics when the degree of the 
polynomial kernel increases from 2 to 5. In this study we have not addressed the important problem 
of selecting significant descriptors in SVM models. In QSAR studies it is generally accepted that it 
is more important to screen a wide variety of structural descriptors instead of using too 
sophisticated mathematical models. The same is true for SVM models, and the improvement of the 
classification of pyrazines in aroma classes can come from other sets of structural descriptors. 

Supplementary Material 
The mySVM model files for the classification of pyrazines with green, nutty, and bell–pepper aroma are available as 

supplementary material. 
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