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Abstract 

Motivation. Green and black teas are made from the processed leaves of Camellia sinensis. The metal content 
(Zn, Mn, Mg, Cu, Al, Ca, Ba, and K) of commercial tea samples, determined by inductively coupled plasma 
atomic emission spectroscopy, can be used in pattern recognition models to discriminate between the two tea 
types. 
Method. We have investigated the application of SVM (support vector machines) for the classification of 44 tea 
samples (26 black tea and 18 green tea) based on the metal content. An efficient algorithm was tested for the 
selection of input parameters for the SVM models, in order to find the minimum metal profile that provides a 
good separation of the two classes. 
Results. Using the hierarchical descriptor selection procedure, the initial group of eight metals was reduced to a 
set of three metals, namely Al, Ba, and K. The classification of the green and black teas was done with the dot, 
polynomial, radial basis function, neural, and anova kernels. The calibration and leave–20%–out cross–
validation results show that the statistical performances of SVM models depend strongly on input descriptors, 
kernel type and various parameters that control the kernel shape. Several SVM models obtained with the anova 
kernel offered the best results, all with no error in calibration and one error in prediction (for a green tea sample). 
Conclusions. The hierarchical descriptor selection algorithm is an effective procedure to identify the optimum 
set of input variables for an SVM model. Using the Al, Ba, and K content determined with the inductively 
coupled plasma atomic emission spectroscopy, a highly predictive SVM model was developed for the 
classification of green and black teas. 
Keywords. Support vector machines; SVM; tea classification. 

1 INTRODUCTION 

Tea is obtained from the processed leaves of Camellia sinensis. Green tea is obtained by drying 
and roasting the leaves, while for obtaining black tea the leaves are additionally fermented. The 
Oolong tea is obtained when the fermentation is partial. In a recent study, the concentration of eight 
metals (Zn, Mn, Mg, Cu, Al, Ca, Ba, and K) was determined by inductively coupled plasma atomic 
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emission spectroscopy (ICP–AES) for 48 samples of commercial tea (26 black tea; 18 green tea; 4 
Oolong tea) [1]. The concentrations of these metals were used as chemical descriptors in pattern 
recognition models to discriminate between the three tea types. Linear discriminant analysis (LDA) 
and multi–layer feedforward artificial neural networks (ANN) were used for the classification of 
these 48 tea samples. Support vector machines (SVM) represent a new class of machine learning 
algorithms that found numerous applications in various classification and regression models. In this 
study we have investigated the application of SVM for the classification of 44 black and green tea 
samples based on the metal content. The influence of the kernel type on the SVM performances was 
extensively explored using various kernels, namely the dot, polynomial, radial basis function, 
neural, and anova kernels. A new algorithm for selecting relevant structural descriptors in SVM 
models was tested with good results in reducing the input space. 

2 MATERIALS AND METHODS 

2.1 Chemical Data 
The metal content (Zn, Mn, Mg, Cu, Al, Ca, Ba, and K) of 44 commercial tea samples, expressed 

as mg/kg in dry basis, was used as chemical descriptors for the SVM model. The experimental 
values for 44 samples (26 black tea, class +1; 18 green tea, class –1) were taken from literature [1]. 
Because only 4 samples of Oolong tea were determined, we did not consider this tea type in our 
SVM model. In Table 1 we present the Al, Ba, and K content of the 44 samples, together with their 
experimental classification into black or green tea. 

2.2 Structure–Toxicity Models with Support Vector Machines 
Support vector machines were developed by Vapnik [2–4] as an effective algorithm for 

determining an optimal hyperplane to separate two classes of patterns [5–11]. In the first step, using 
various kernels that perform a nonlinear mapping, the input space is transformed into a higher 
dimensional feature space. Then, a maximal margin hyperplane is computed in the feature space by 
maximizing the distance to the hyperplane of the closest patterns from the two classes. The patterns 
that determine the separating hyperplane are called support vectors. This powerful classification 
technique was applied with success in medicine, computational biology, bioinformatics, and 
structure–activity relationships, for the classification of: microarray gene expression data [12], 
translation initiation sites [13], genes [14], cancer type [15–18], pigmented skin lesions [19], HIV 
protease cleavage sites [20], GPCR type [21], protein class [22], membrane protein type [23], 
protein–protein interactions [24], protein subcellular localization [25–27], protein fold [28], protein 
secondary structure [29], specificity of GalNAc–transferase [30], DNA hairpins [31], aquatic 
toxicity mechanism of action [32,33], carcinogenic activity of polycyclic aromatic hydrocarbons 
[34], structure–odor relationships for pyrazines [35], cancer diagnosis from the blood concentration 
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of Zn, Ba, Mg, Ca, Cu, and Se [36]. 

Table 1. Metal content (mg kg–1 dry basis) of tea samples 
and type (class +1, black tea; class –1, green tea) 

No Al Ba K Class 
1 625 17.0 15100 +1 
2 701 19.6 15037 +1 
3 719 19.2 15071 +1 
4 776 15.4 14683 +1 
5 770 16.2 15254 +1 
6 840 15.2 15521 +1 
7 856 15.4 15268 +1 
8 1377 15.0 14804 +1 
9 932 14.4 14802 +1 

10 1483 14.0 13796 +1 
11 950 13.8 14714 +1 
12 1019 13.0 14448 +1 
13 823 20.0 10151 +1 
14 969 14.2 15693 +1 
15 938 19.2 12578 –1 
16 975 26.8 14049 –1 
17 941 16.0 15506 +1 
18 883 16.2 14095 +1 
19 910 24.0 12582 –1 
20 778 12.0 14162 +1 
21 625 33.2 16137 –1 
22 821 23.4 16212 +1 
23 1725 31.8 9011 +1 
24 1126 19.6 14937 +1 
25 593 26 16902 –1 
26 971 36.4 17844 –1 
27 1150 20.8 14263 +1 
28 1046 18.4 16728 +1 
29 1012 21.0 9906 +1 
30 383 3.8 20481 –1 
31 1427 22.4 10997 +1 
32 1130 26.8 10071 +1 
33 167 19.0 17837 +1 
34 769 15.2 24264 –1 
35 831 25.2 18670 –1 
36 757 19.4 23922 –1 
37 767 13.6 20260 –1 
38 685 24.8 23534 –1 
39 833 25.2 24146 –1 
40 703 21.8 24619 –1 
41 1129 29.6 19772 –1 
42 1105 30.6 24251 –1 
43 1682 31.8 20932 –1 
44 659 14.6 23346 –1 

In this study we have investigated the application of SVM for the classification of black and 
green tea using as chemical descriptors the concentration of Zn, Mn, Mg, Cu, Al, Ca, Ba, and K was 
determined by ICP–AES. All SVM models from the present paper for the classification of polar and 
nonpolar pollutants were obtained with mySVM [37], which is freely available for download. Links 
to Web resources related to SVM, namely tutorials, papers and software, can be found in BioChem 
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Links [38] at http://www.biochempress.com. Before computing the SVM model, the input vectors 
were scaled to zero mean and unit variance. The prediction power of each SVM model was 
evaluated with a leave–20%–out (L20%O) cross–validation procedure, and the capacity parameter 
C took the values 10, 100, and 1000. We present below the kernels and their parameters used in this 
study.

The dot kernel. The inner product of x and y defines the dot kernel: 

yxyxK ),( (1)

The polynomial kernel. The polynomial of degree d (values 2, 3, 4, and 5) in the variables x and 
y defines the polynomial kernel: 

dyxyxK )1(),( (2)

The radial kernel. The following exponential function in the variables x and y defines the radial 
basis function kernel, with the shape controlled by the parameter  (values 0.5, 1.0, and 2.0): 

)||||exp(),( 2yxyxK (3)

The neural kernel. The hyperbolic tangent function in the variables x and y defines the neural 
kernel, with the shape controlled by the parameters a (values 0.5, 1.0, and 2.0) and b (values 0, 1, 
and 2): 

)tanh(),( byaxyxK (4)

The anova kernel. The sum of exponential functions in x and y defines the anova kernel, with 
the shape controlled by the parameters  (values 0.5, 1.0, and 2.0) and d (values 1, 2, and 3): 

d

i
ii yxyxK ))(exp(),( (5)

2.3 Descriptor Selection in Support Vector Machines 
All studies that develop QSAR models from a large set of structural descriptors use a wide range 

of algorithms for selecting significant descriptors. Currently, there is no widely accepted algorithm 
for selecting the best group of descriptors for an SVM model. Because an exhaustive test of all 
combinations of descriptors requires too large computational resources, we have used a heuristic 
method for descriptor selection. 

This heuristic algorithm starts from the set of 8 chemical descriptors from [1] (namely, the 
concentration of Zn, Mn, Mg, Cu, Al, Ca, Ba, and K) and generates an optimal set of descriptors by 
applying the following steps: 

(1) Starting from the complete group of N descriptors, all SVM models with one descriptor each 
are computed. For each descriptor or group of descriptors, 78 experiments were performed using the 
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dot, polynomial, radial basis function, neural, and anova kernels, with various parameters (see Eqs. 
(1)–(5) and Table 2). The prediction performances of each SVM experiment are evaluated with the 
L20%O cross–validation procedure, and the accuracy index AC is computed for each experiment, 
namely AC = (TP + TN)/(TP + FP + TN + FN), where TP is the true positive number, FP is the 
false positive number, TN is the true negative number, and FN is the false negative number. The 
descriptor that gives the maximum prediction AC is selected for further experiments. 

(2) Using the descriptor selected in step (1) and each of the remaining N – 1 descriptors, pairs of 
descriptors are tested in SVM models. The pair of descriptors with the maximum prediction AC is 
selected for further experiments. 

(3) In each step, a new descriptor is selected, namely the one that, together with the descriptors 
selected in previous steps, gives the maximum prediction AC. The process stops when prediction 
AC does not increase by adding a new descriptor, or when a certain maximum number of 
descriptors are selected. 

3 RESULTS AND DISCUSSION 

The results of the descriptor selection algorithm show that SVM models obtained with the 
concentration of Al, Ba, and K give the maximum prediction AC = 0.98, with only one error in the 
L20%O prediction, namely sample 15, which is predicted as black tea. Because adding another 
descriptor does not increase the prediction AC, we will discuss only SVM models obtained with 
these three metal concentrations. 

The SVM statistical results obtained with the Al, Ba, and K concentrations are presented in 
Table 2. The calibration of the SVM models was performed with the whole set of 44 compounds 
(26 black tea, SVM class +1; 18 green tea, SVM class –1). The calibration results reported in Table 
2 are: TPc, true positive in calibration, the number of +1 patterns (nonpolar compounds) computed 
in class +1; FNc, false negative in calibration, the number of +1 patterns computed in class –1; TNc,
true negative in calibration, the number of –1 patterns (polar compounds) computed in class –1; 
FPc, false positive in calibration, the number of –1 patterns computed in class +1; SVc, number of 
support vectors in calibration; BSVc, number of bounded support vectors in calibration; ACc,
calibration accuracy. Using complex kernels, SVM models can be calibrated to perfectly 
discriminate two populations of patterns, but only a cross–validation prediction test can demonstrate 
the potential utility of an SVM model. For each SVM model we present in Table 2 the following 
leave–20%–out cross–validation statistics: TPp, true positive in prediction; FNp, false negative in 
prediction; TNp, true negative in prediction; FPp, false positive in prediction; SVp, average number 
of support vectors in prediction; BSVp, average number of bounded support vectors in prediction; 
ACp, prediction accuracy. 
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Table 2. Results for SVM classification of black and green tea using Al, Ba, and K concentration as input data. a

Exp C K   TPc FNc TNc FPc SVc BSVc ACc TPp FNp TNp FPp SVp BSVp ACp
1 10 D   24 2 15 3 14 10 0.89 24 2 14 4 11.6 7.6 0.86
2 100    24 2 15 3 14 10 0.89 24 2 14 4 12.0 7.4 0.86
3 1000    24 2 15 3 14 10 0.89 24 2 14 4 12.0 7.6 0.86
   d                

4 10 P 2  25 1 16 2 13 3 0.93 24 2 14 4 11.6 2.2 0.86
5 100  2  25 1 16 2 13 3 0.93 23 3 13 5 10.6 1.4 0.82
6 1000  2  25 1 16 2 13 3 0.93 23 3 13 5 10.4 1.0 0.82
7 10  3  26 0 18 0 13 0 1.00 23 3 11 7 10.6 0.0 0.77
8 100  3  26 0 18 0 13 0 1.00 23 3 11 7 10.6 0.0 0.77
9 1000  3  26 0 18 0 13 0 1.00 23 3 11 7 10.6 0.0 0.77

10 10  4  26 0 18 0 13 0 1.00 23 3 12 6 11.0 0.0 0.80
11 100  4  26 0 18 0 13 0 1.00 23 3 12 6 11.0 0.0 0.80
12 1000  4  26 0 18 0 13 0 1.00 23 3 12 6 11.0 0.0 0.80
13 10  5  26 0 18 0 14 0 1.00 23 3 13 5 10.4 0.0 0.82
14 100  5  26 0 18 0 14 0 1.00 23 3 13 5 10.4 0.0 0.82
15 1000  5  26 0 18 0 14 0 1.00 23 3 13 5 10.4 0.0 0.82

                  
16 10 R 0.5  25 1 17 1 20 2 0.95 23 3 14 4 18.6 1.8 0.84
17 100  0.5  26 0 18 0 15 0 1.00 24 2 11 7 15.2 0.0 0.80
18 1000  0.5  26 0 18 0 15 0 1.00 24 2 11 7 15.2 0.0 0.80
19 10  1.0  26 0 18 0 24 1 1.00 23 3 13 5 22.4 0.2 0.82
20 100  1.0  26 0 18 0 24 0 1.00 23 3 13 5 22.4 0.0 0.82
21 1000  1.0  26 0 18 0 24 0 1.00 23 3 13 5 22.4 0.0 0.82
22 10  2.0  26 0 18 0 33 0 1.00 22 4 15 3 28.2 0.0 0.84
23 100  2.0  26 0 18 0 33 0 1.00 22 4 15 3 28.2 0.0 0.84
24 1000  2.0  26 0 18 0 33 0 1.00 22 4 15 3 28.2 0.0 0.84

   a b               
25 10 N 0.5 0.0 22 4 13 5 14 12 0.80 19 7 12 6 12.0 9.4 0.70
26 100  0.5 0.0 22 4 12 6 14 10 0.77 17 9 14 4 11.4 8.8 0.70
27 1000  0.5 0.0 22 4 12 6 13 10 0.77 17 9 13 5 11.4 8.4 0.68
28 10  1.0 0.0 19 7 11 7 14 14 0.68 16 10 12 6 12.6 10.0 0.64
29 100  1.0 0.0 19 7 11 7 14 14 0.68 15 11 12 6 12.4 10.2 0.61
30 1000  1.0 0.0 19 7 12 6 14 14 0.70 15 11 12 6 12.0 9.8 0.61
31 10  2.0 0.0 20 6 11 7 17 13 0.70 19 7 12 6 12.4 10.8 0.70
32 100  2.0 0.0 20 6 11 7 16 13 0.70 17 9 13 5 12.4 11.0 0.68
33 1000  2.0 0.0 20 6 11 7 16 13 0.70 17 9 13 5 12.4 11.0 0.68
34 10  0.5 1.0 18 8 10 8 18 16 0.64 14 12 10 8 15.0 13.6 0.55
35 100  0.5 1.0 16 10 10 8 16 16 0.59 15 11 10 8 13.6 12.2 0.57
36 1000  0.5 1.0 16 10 10 8 16 16 0.59 15 11 10 8 13.6 12.2 0.57
37 10  1.0 1.0 18 8 10 8 18 16 0.64 17 9 9 9 14.6 13.8 0.59
38 100  1.0 1.0 18 8 10 8 18 16 0.64 16 10 9 9 14.6 13.4 0.57
39 1000  1.0 1.0 18 8 10 8 18 16 0.64 16 10 9 9 14.8 13.4 0.57
40 10  2.0 1.0 19 7 10 8 18 15 0.66 18 8 8 10 14.4 13.2 0.59
41 100  2.0 1.0 19 7 10 8 18 15 0.66 15 11 7 11 14.6 13.2 0.50
42 1000  2.0 1.0 19 7 10 8 18 15 0.66 15 11 7 11 14.6 13.2 0.50
43 10  0.5 2.0 18 8 9 9 20 18 0.61 15 11 11 7 15.6 15.2 0.59
44 100  0.5 2.0 8 18 13 5 18 18 0.48 15 11 10 8 14.0 12.4 0.57
45 1000  0.5 2.0 8 18 13 5 18 18 0.48 16 10 11 7 12.0 11.2 0.61
46 10  1.0 2.0 17 9 9 9 22 20 0.59 18 8 9 9 16.0 14.4 0.61
47 100  1.0 2.0 8 18 11 7 20 20 0.43 13 13 8 10 15.6 14.4 0.48
48 1000  1.0 2.0 8 18 10 8 18 18 0.41 16 10 8 10 14.8 13.6 0.55
49 10  2.0 2.0 14 12 9 9 20 20 0.52 16 10 6 12 16.4 14.2 0.50
50 100  2.0 2.0 13 13 9 9 20 20 0.50 16 10 7 11 16.4 14.2 0.52
51 1000  2.0 2.0 13 13 9 9 20 20 0.50 16 10 6 12 16.4 14.2 0.50
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Table 2. (Continued) 
Exp C K d TPc FNc TNc FPc SVc BSVc ACc TPp FNp TNp FPp SVp BSVp ACp

52 10 A 0.5 1 25 1 17 1 13 5 0.95 24 2 17 1 11.2 3.6 0.93
53 100  0.5 1 26 0 18 0 11 0 1.00 22 4 16 2 10.0 0.2 0.86
54 1000  0.5 1 26 0 18 0 11 0 1.00 22 4 16 2 10.0 0.0 0.86
55 10  1.0 1 26 0 18 0 14 1 1.00 23 3 16 2 12.4 1.0 0.89
56 100  1.0 1 26 0 18 0 14 0 1.00 23 3 16 2 11.2 0.0 0.89
57 1000  1.0 1 26 0 18 0 14 0 1.00 23 3 16 2 11.2 0.0 0.89
58 10  2.0 1 26 0 18 0 16 0 1.00 24 2 17 1 14.0 0.0 0.93
59 100  2.0 1 26 0 18 0 16 0 1.00 24 2 17 1 14.0 0.0 0.93
60 1000  2.0 1 26 0 18 0 16 0 1.00 24 2 17 1 14.0 0.0 0.93
61 10  0.5 2 26 0 18 0 12 0 1.00 24 2 16 2 12.8 0.0 0.91
62 100  0.5 2 26 0 18 0 12 0 1.00 24 2 16 2 12.8 0.0 0.91
63 1000  0.5 2 26 0 18 0 12 0 1.00 24 2 16 2 12.8 0.0 0.91
64 10  1.0 2 26 0 18 0 22 0 1.00 26 0 17 1 19.0 0.0 0.98
65 100  1.0 2 26 0 18 0 22 0 1.00 26 0 17 1 19.0 0.0 0.98
66 1000  1.0 2 26 0 18 0 22 0 1.00 26 0 17 1 19.0 0.0 0.98
67 10  2.0 2 26 0 18 0 29 0 1.00 25 1 17 1 23.8 0.0 0.95
68 100  2.0 2 26 0 18 0 29 0 1.00 25 1 17 1 23.8 0.0 0.95
69 1000  2.0 2 26 0 18 0 29 0 1.00 25 1 17 1 23.8 0.0 0.95
70 10  0.5 3 26 0 18 0 19 0 1.00 24 2 15 3 16.4 0.0 0.89
71 100  0.5 3 26 0 18 0 19 0 1.00 24 2 15 3 16.4 0.0 0.89
72 1000  0.5 3 26 0 18 0 19 0 1.00 24 2 15 3 16.4 0.0 0.89
73 10  1.0 3 26 0 18 0 24 0 1.00 23 3 17 1 21.4 0.0 0.91
74 100  1.0 3 26 0 18 0 24 0 1.00 23 3 17 1 21.4 0.0 0.91
75 1000  1.0 3 26 0 18 0 24 0 1.00 23 3 17 1 21.4 0.0 0.91
76 10  2.0 3 26 0 18 0 31 0 1.00 24 2 16 2 26.4 0.0 0.91
77 100  2.0 3 26 0 18 0 31 0 1.00 24 2 16 2 26.4 0.0 0.91
78 1000  2.0 3 26 0 18 0 31 0 1.00 24 2 16 2 26.4 0.0 0.91

a The table reports the experiment number Exp, capacity parameter C, kernel type K (dot D; polynomial P; radial basis 
function R; neural N; anova A) and corresponding parameters, calibration results (TPc, true positive in calibration; FNc,
false negative in calibration; TNc, true negative in calibration; FPc, false positive in calibration; SVc, number of support 
vectors in calibration; BSVc, number of bounded support vectors in calibration; ACc, calibration accuracy) and L20%O 
prediction results (TPp, true positive in prediction; FNp, false negative in prediction; TNp, true negative in prediction; 
FPp, false positive in prediction; SVp, average number of support vectors in prediction; BSVp, average number of 
bounded support vectors in prediction; ACp, prediction accuracy). 

The first group of SVM models computed with the Al, Ba, and K concentrations were obtained 
with the dot kernel, with ACc = 0.89 and ACp = 0.86 (experiments 1–3). Also, the neural kernel, 
with ACc between 0.41 and 0.80 and ACp between 0.48 and 0.70, is not a good candidate for the 
SVM models that discriminate black and green tea. The calibration ACc increases to 1 for almost all 
SVM models having a polynomial, radial basis function, and anova kernel. In the L20%O 
prediction, the best results were obtained with the anova kernel: polynomial kernel, ACp between 
0.77 and 0.86; radial kernel, ACp between 0.80 and 0.84; anova kernel, ACp between 0.86 and 0.98. 

The best predictions were obtained in experiments 64–66 with the anova kernel, ACc = 1, and 
ACp = 0.98. Only one error was obtained in the L20%O prediction, namely sample 15, which is 
predicted as black tea in all three experiments. The LDA and ANN classification models reported in 
the literature [1] use as input descriptors the concentration of all eight metals and have fairly good 
AC values: LDA, calibration 0.95 and prediction 0.90; ANN, calibration 1 and prediction 0.95. 
These results are not directly comparable with the results reported in this paper, because in Ref. [1] 
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the Oolong tea samples were considered and different cross–validation methods have been used. 
The results obtained with SVM use a much lower number of chemical descriptors and give slightly 
better prediction statistics. The major finding is the possibility to reduce the input space from eight 
to three metal concentrations, which shows that the SVM descriptor selection algorithm is very 
effective.

4 CONCLUSIONS 

Support vector machines represent an attractive new class of machine learning algorithms that 
can have significant applications in developing structure–activity models, chemometrics, and design 
of chemical libraries. In this study we have investigated the application of SVM (support vector 
machines) for the classification of 44 tea samples (26 black tea and 18 green tea) based on the metal 
concentration. An efficient algorithm was tested for the selection of input parameters for the SVM 
models, in order to find the minimum metal concentration profile that provides a good separation of 
the two classes. Using the hierarchical descriptor selection procedure, the initial group of eight 
metals was reduced to a set of three metals, namely Al, Ba, and K. The classification of the green 
and black teas was done with the dot, polynomial, radial basis function, neural, and anova kernels. 
The calibration and leave–20%–out cross–validation results show that the statistical performances 
of SVM models depend strongly on input descriptors, kernel type and various parameters that 
control the kernel shape. Several SVM models obtained with the anova kernel offered the best 
results, all with no error in calibration and one error in prediction (for a green tea sample). 

The experiments reported in this paper show that the hierarchical descriptor selection algorithm 
is an effective procedure to identify the optimum set of input variables for an SVM model. Using 
the Al, Ba, and K content determined with the inductively coupled plasma atomic emission 
spectroscopy, an SVM model obtained with the anova kernel can effectively discriminate between 
green and black tea samples. 

Supplementary Material 
The mySVM model files for experiments 64, 65, and 66 are available as supplementary material. 
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