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Abstract

Artificial immune systems (AIS) are machine learning procedures inspired by the structure and function of the
biological immune system. In this paper we present the first application of the artificial immune recognition
system (AIRS) to the modeling of the human intestinal absorption (HIA) of drugs. The learning task was to
classify a dataset of 196 drugs into a subset of 131 that penetrate the human intestine and a subset of 65 drugs
that do not penetrate the intestine. The chemical structure was encoded with 159 structural descriptors from five
classes, namely constitutional, topological indices, electrotopological state indices, quantum descriptors, and 
geometrical indices. Eight user defined parameters influences the classification performance of the AIRS
algorithm, namely affinity threshold scalar, clonal rate, hypermutation rate, number of nearest neighbors, initial 
memory cell pool size, number of instances to compute the affinity threshold, stimulation threshold, and total
resources. In order to explore the AIRS sensitivity to these parameters, leave–20%–out (five–fold) cross–
validation predictions were performed over a wide range of values for the AIRS parameters. The affinity
threshold scalar has the highest influence on the prediction quality, whereas the remaining parameters have only
a marginal effect. The best predictions of the AIRS algorithm (selectivity 0.794, specificity 0.615, accuracy 
0.735, and Matthews correlation coefficient 0.406) surpass those obtained with several well–established machine
learning methods. In a comparison with 13 machine learning algorithms, AIRS predictions were better in seven 
cases (Bayesian network, naïve Bayes classifier, updateable naïve Bayes classifier, logistic regression, Gaussian
radial basis function network, decision tree with naïve Bayes classifiers at the leaves, and random tree), and 
worse in six cases (K* instance–based classifier, alternating decision tree, C4.5 decision tree, logistic model
trees, random forest, and fast decision tree learner). The results obtained suggest that classifiers based on 
artificial immune systems may be successful in structure–activity relationships (SAR), quantitative structure–
activity relationships (QSAR), drug design, and virtual screening of chemical libraries.
Keywords. Artificial immune system; AIS; artificial immune recognition system; AIRS; human intestinal
absorption; HIA; quantitative structure–activity relationships; QSAR. 

Abbreviations and notations 
AIRS, artificial immune recognition system IMPS, initial memory cell pool size 
ATS, affinity threshold scalar NIAT, number of instances to compute the affinity threshold
CR, clonal rate ST, stimulation threshold
HR, hypermutation rate TR, total resources 
kNN, number of nearest neighbors HIA, human intestinal absorption

# Dedicated to Professor Lemont B. Kier on the occasion of the 75th birthday.
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1 INTRODUCTION 

A large number of machine learning procedures were developed by encoding into an algorithm
the mechanisms and functions of biological systems. Well–known examples of biologically inspired 
algorithms are DNA computing, ant colony optimization, particle swarm optimization, genetic 
algorithms, artificial neural networks, and artificial immune systems. Artificial immune systems
(AIS) represent a family of machine learning procedures that emulate the learning and memory
capabilities of the biological immune system [1–9]. AIS are used with success in pattern 
recognition, function optimization, classification, process control, computer network security, and 
intrusion detection [10–12]. Artificial immune systems were successfully applied to biological and 
medical problems, such as classification of gene expression data [13–15], breast cancer 
identification [16,17], classification of liver disorders [16], detection of heart diseases [18], and 
diagnosis of thyroid diseases [19]. 

Several principles and mechanisms of the immune system were used by Watkins, Timmis, and 
Boggess to assemble an efficient machine learning algorithm, the artificial immune recognition 
system (AIRS) [20–22]. The extensive experiments performed by Brownlee demonstrate the AIRS 
capacity to solve classification problems [23]. We recently published the first application of the 
AIRS algorithm in modeling structure–activity relationships for drug design [24]. The learning task 
was to discriminate between drugs that induce torsade de pointes and drugs that do not induce 
torsade de pointes. In the present study we demonstrate the first AIRS application to the prediction 
of the human intestinal absorption (HIA) of drugs. Using a dataset of 196 drugs and 159 structural 
descriptors [25], AIRS is trained to discriminate between a subset of 131 drugs that penetrate the 
human intestine and a subset of 65 drugs that do not penetrate the intestine. 

2 THE ARTIFICIAL IMMUNE RECOGNITION SYSTEM 

AIRS uses the biological immune system as a source of inspiration in modeling complex systems
[2,20,21]. However, the scope of AIRS is not to simulate the function of the biological immune
system, but to provide an efficient machine learning procedure with general application in 
classification problems. Pathogens that attack an organism are identified and killed by various cell 
types that constitute the immune system. Proteins and protein fragments from pathogens bind to 
receptors situated on the surface of the B–cells and T–cells, thus signaling that foreign cells are 
present in the bloodstream. The recognition mechanism encoded into an antibody may be improved
upon the presentation of several antigens with similar characteristics. 

In the AIRS classification algorithm, an antigen is represented as an n–dimensional vector X = 
{x1, x2, …, xn} and an associated class Y = {+1, –1}. Each structural descriptor xi is a real number (xi

R for i = 1, 2, …, n) representing a numerical feature of the antigen. For quantitative structure–
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activity relationships (QSAR), the X vector contains the structural descriptors for a molecule,
whereas in the class variable Y, +1 encodes the presence of a property and –1 encodes the absence 
of that property. In the present study, this property is the penetration of the human intestine by a 
drug. An identical {X, Y} encoding is used for antibodies (the solutions for the classification 
problem). A B–cell is represented in the AIRS procedure by an artificial recognition ball (ARB). An 
ARB contains an antibody, a number of resources, and a stimulation value. The stimulation value 
measures the similarity between an ARB and an antigen. Each AIRS model has a limited number of 
resources, and ARBs compete for their allocation. Resources are removed from the least stimulated
ARBs, and ARBs without resources are eliminated from the cell population. The ARB population is 
trained during several cycles of competition for limited resources. In each cycle of ARB training, 
the best ARB classifiers generate mutated clones that enhance the antigen recognition process, 
whereas the ARBs with insufficient resources are removed from the population. After training, the 
top ARB classifiers are selected as memory cells. Finally, the memory cells are used to classify 
novel antigens (patterns). 

Detailed descriptions of the artificial immune recognition system may be found in the literature 
[20–23]. We present here only the most important characteristics of the AIRS procedure, in order to 
highlight the parameters that control its classification ability. The steps of the AIRS algorithm are 
summarized below: 

(1) Initialization. The training data are normalized between 0 and 1. The Euclidean distance is 
computed for all pairs of antigens, and then the affinity is determined as the ratio between the 
distance and the maximum distance. The affinity threshold is computed as the average affinity for 
all antigens in the training set. The memory cell pool is populated with randomly selected antigens. 
At the end of the AIRS algorithm, the memory cell pool represents the recognition ARBs used as 
classifiers.

(2) Train for all Antigens 

(2.1) Antigen Presentation. Each training antigen is presented to the memory cell pool, and 
each memory cell receives a stimulation value, stimulation = 1 – affinity. The memory cells with 
the highest stimulation are selected, and a number of mutated clones are created and added to the 
ARB pool. The number of clones generated is computed with the formula:

NumberClones = Stimulation×ClonalRate×HypermutationRate (1)

where ClonalRate and HypermutationRate are user defined parameters.

(2.2) Competition for Limited Resources. The scope of this process is to select those ARBs 
that have the best recognition capabilities, while optimally allocating the resources to the best 
ARBs.

(2.2.1) Perform Competition for Resources 
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(2.2.1.1) Stimulate the ARB Pool with Antigen 
(2.2.1.2) Normalize the ARB Stimulation Values 
(2.2.1.3) Allocate Limited Resources Based on Stimulation. The amount of 
resources allocated to each ARB is: 

Resources = NormalizedStimulation×ClonalRate (2)
(2.2.1.4) Remove ARBs with Insufficient Resources 

(2.2.2) Continue with (2.3) if the Stop Condition is Satisfied. The stop condition for the 
ARB refinement is met when the average normalized stimulation is higher than a user 
defined stimulation threshold.
(2.2.3) Generate Mutated Clones of Surviving ARBs. The number of clones generated is: 

NumberClones = Stimulation×ClonalRate (3)
(2.2.4) Go to (2.2.1) 

(2.3) Memory Cell Selection. In this step, new ARB classifiers are evaluated for inclusion in the 
memory cell pool. An ARB is inserted in the memory cell pool if its stimulation value is better 
than that of the existing best matching memory cell. The existing best matching memory cell is 
then removed if the affinity between the candidate ARB and the existing memory cell is less than 
a CutOff value: 

CutOff = AffinityThreshold×AffinityThresholdScalar (4)
where the AffinityThreshold was computed during the Initialization phase, and the 
AffinityThresholdScalar is a user defined parameter.

(3) Classification. The memory cell pool represents the AIRS classifier. The classification is 
performed with a k–nearest neighbor method, in which the k best matches to a prediction pattern are 
identified and the predicted class is determined with a majority vote. 

3 MATERIALS AND METHODS 

A good intestinal absorption is a major requirement for oral drugs [26–28], and various 
computational models were proposed as fast, reliable, and inexpensive in silico methods to assess 
the intestinal permeability of a chemical compound before synthesis [29–33]. The oral absorption of 
a drug is influence by a large number of variables, such as drug formulation and stability, aqueous 
solubility, contents of the gastrointestinal tract, residence time in the intestine, intestinal 
metabolism, rate of passive intestinal permeability, carrier–mediated influx, and active efflux via
transporters [27]. A wide range of structural descriptors [34–39] and machine learning QSAR 
procedures [40–43] were explored in order to obtain HIA models with good prediction power. 

In the present investigation we apply the AIRS classifier to a dataset of 196 drugs and 159 
structural descriptors [25], in order to discriminate between a subset of 131 drugs that penetrate the 
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human intestine (HIA+) and a subset of 65 drugs that do not penetrate the intestine (HIA–). The 
chemical structure was encoded with 159 structural descriptors from five classes, namely
constitutional, topological indices, electrotopological state indices, quantum descriptors, and 
geometrical indices. Eight user defined parameters influences the classification performance of the 
AIRS algorithm, namely affinity threshold scalar, clonal rate, hypermutation rate, number of nearest 
neighbors, initial memory cell pool size, number of instances to compute the affinity threshold, 
stimulation threshold, and total resources. In order to explore the AIRS sensitivity to these 
parameters, leave–20%–out (five–fold) cross–validation predictions were performed over a wide 
range of values for all eight parameters. All computations were performed with the AIRS2 
implementation of Brownlee [23] using Weka 3.5.4 [44]. 

4 RESULTS AND DISCUSSION 

We investigated the classification performance of AIRS2 over a large range of the eight user 
defined parameters, and for each AIRS model we report the following statistical indices: TPc, true 
positive in calibration (number of HIA+ drugs classified as HIA+); FNc, false negative in 
calibration (number of HIA+ drugs classified as HIA–); TNc, true negative in calibration (number of 
HIA– drugs classified as HIA–); FPc, false positive in calibration (number of HIA– drugs classified
as HIA+); Sec, calibration selectivity; Spc, calibration specificity; Acc, calibration accuracy; MCCc,
calibration Matthews correlation coefficient [45]; TPp, true positive in prediction; FNp, false 
negative in prediction; TNp, true negative in prediction; FPp, false positive in prediction; Sep,
prediction selectivity; Spp, prediction specificity; Acp, prediction accuracy; MCCp, prediction 
Matthews correlation coefficient. 

Affinity Threshold Scalar (ATS). The affinity threshold scalar is used in Eq. (4) to compute a 
cut–off value for memory cell replacement, and takes values between 0 and 1. If the affinity 
between a candidate ARB and the best matching memory cell is lower that the threshold computed
with Eq. (4), then the ARB replaces the memory cell. A high ATS value results in a high 
replacement rate, whereas a low ATS value results in a low replacement rate. In experiments 1–27
(Table 1) we varied the ATS value between 0.01 and 0.95 in order to identify the optimum
replacement regimen. The initial values for the remaining parameters are: clonal rate = 10, 
hypermutation rate = 2, number of nearest neighbors = 3, initial memory cell pool size = 50, 
number of instances to compute the affinity threshold = all, stimulation threshold = 0.5, and total 
resources = 150. These parameters are optimized in the above order, and the optimum value is used 
in all subsequent experiments. The highest prediction MCC = 0.3506 is obtained for ATS = 0.09, 
indicating that for the HIA classification problem a low memory cell replacement rate is beneficial. 
The prediction statistics decrease significantly when ATS increases over 0.1, suggesting that a high 
memory cell replacement rate results in poor AIRS models.
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Table 1. AIRS Calibration and Prediction Statistics for Various Values of ATS (Affinity Threshold Scalar)
Exp ATS TPc FNc TNc FPc Sec Spc Acc MCCc

1 0.01 117 14 44 21 0.8931 0.6769 0.8214 0.5880
2 0.02 117 14 44 21 0.8931 0.6769 0.8214 0.5880
3 0.03 117 14 44 21 0.8931 0.6769 0.8214 0.5880
4 0.04 117 14 44 21 0.8931 0.6769 0.8214 0.5880
5 0.05 117 14 42 23 0.8931 0.6462 0.8112 0.5620
6 0.06 117 14 43 22 0.8931 0.6615 0.8163 0.5750
7 0.07 117 14 43 22 0.8931 0.6615 0.8163 0.5750
8 0.08 117 14 43 22 0.8931 0.6615 0.8163 0.5750
9 0.09 117 14 42 23 0.8931 0.6462 0.8112 0.5620

10 0.10 117 14 41 24 0.8931 0.6308 0.8061 0.5490
11 0.15 115 16 45 20 0.8779 0.6923 0.8163 0.5798
12 0.20 107 24 48 17 0.8168 0.7385 0.7908 0.5423
13 0.25 105 26 42 23 0.8015 0.6462 0.7500 0.4428
14 0.30 102 29 45 20 0.7786 0.6923 0.7500 0.4574
15 0.35 108 23 41 24 0.8244 0.6308 0.7602 0.4570
16 0.40 108 23 41 24 0.8244 0.6308 0.7602 0.4570
17 0.45 108 23 41 24 0.8244 0.6308 0.7602 0.4570
18 0.50 108 23 41 24 0.8244 0.6308 0.7602 0.4570
19 0.55 108 23 41 24 0.8244 0.6308 0.7602 0.4570
20 0.60 108 23 41 24 0.8244 0.6308 0.7602 0.4570
21 0.65 108 23 41 24 0.8244 0.6308 0.7602 0.4570
22 0.70 108 23 41 24 0.8244 0.6308 0.7602 0.4570
23 0.75 108 23 41 24 0.8244 0.6308 0.7602 0.4570
24 0.80 108 23 41 24 0.8244 0.6308 0.7602 0.4570
25 0.85 108 23 41 24 0.8244 0.6308 0.7602 0.4570
26 0.90 108 23 41 24 0.8244 0.6308 0.7602 0.4570
27 0.95 108 23 41 24 0.8244 0.6308 0.7602 0.4570

Exp ATS TPp FNp TNp FPp Sep Spp Acp MCCp
1 0.01 105 26 33 32 0.8015 0.5077 0.7041 0.3174
2 0.02 105 26 33 32 0.8015 0.5077 0.7041 0.3174
3 0.03 103 28 33 32 0.7863 0.5077 0.6939 0.2989
4 0.04 107 24 33 32 0.8168 0.5077 0.7143 0.3364
5 0.05 107 24 33 32 0.8168 0.5077 0.7143 0.3364
6 0.06 106 25 33 32 0.8092 0.5077 0.7092 0.3268
7 0.07 104 27 35 30 0.7939 0.5385 0.7092 0.3365
8 0.08 106 25 34 31 0.8092 0.5231 0.7143 0.3410
9 0.09 107 24 34 31 0.8168 0.5231 0.7194 0.3506

10 0.10 107 24 33 32 0.8168 0.5077 0.7143 0.3364
11 0.15 107 24 28 37 0.8168 0.4308 0.6888 0.2640
12 0.20 107 24 26 39 0.8168 0.4000 0.6786 0.2341
13 0.25 99 32 30 35 0.7557 0.4615 0.6582 0.2200
14 0.30 100 31 30 35 0.7634 0.4615 0.6633 0.2287
15 0.35 103 28 28 37 0.7863 0.4308 0.6684 0.2262
16 0.40 103 28 25 40 0.7863 0.3846 0.6531 0.1811
17 0.45 105 26 25 40 0.8015 0.3846 0.6633 0.1997
18 0.50 105 26 25 40 0.8015 0.3846 0.6633 0.1997
19 0.55 105 26 25 40 0.8015 0.3846 0.6633 0.1997
20 0.60 105 26 25 40 0.8015 0.3846 0.6633 0.1997
21 0.65 105 26 25 40 0.8015 0.3846 0.6633 0.1997
22 0.70 105 26 25 40 0.8015 0.3846 0.6633 0.1997
23 0.75 105 26 25 40 0.8015 0.3846 0.6633 0.1997
24 0.80 105 26 25 40 0.8015 0.3846 0.6633 0.1997
25 0.85 105 26 25 40 0.8015 0.3846 0.6633 0.1997
26 0.90 105 26 25 40 0.8015 0.3846 0.6633 0.1997
27 0.95 105 26 25 40 0.8015 0.3846 0.6633 0.1997
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Clonal Rate (CR). The clonal rate takes integer values, and is used in ARB resource allocation 
and in controlling the clonal mutation for the memory cell population. In Eq (1), CR is used to 
determine the number of mutated clones generated from each memory cell and then added to the 
ARB pool. In Eq. (2), CR is multiplied with the normalized stimulation of an ARB to determine the 
number of resources allocated to that ARB. The number of resources allocated to each ARB is in 
the range [0, CR]. In Eq. (3), CR is involved in the computation of the number of clones generated 
from each ARB during the ARB refinement process. Therefore, the number of ARB clones 
generated is in the range [0, CR]. 

In Table 2 we show the prediction statistics of the AIRS models obtained when the clonal rate 
was varied between 3 and 20 (experiments 28–37). There is no apparent trend for the MCC values 
when CR increases. The best results, MCC = 0.3506, are obtained with CR = 10 and CR = 12, with 
no improvement over the best value obtained in the ATS experiments. CR = 10 is selected for 
further experiments.

Table 2. AIRS Calibration and Prediction Statistics for Various Values of CR (Clonal Rate); (ATS = 0.09)
Exp CR TPc FNc TNc FPc Sec Spc Acc MCCc
28 3 115 16 40 25 0.8779 0.6154 0.7908 0.5140
29 5 114 17 45 20 0.8702 0.6923 0.8112 0.5695
30 8 117 14 44 21 0.8931 0.6769 0.8214 0.5880
31 9 117 14 44 21 0.8931 0.6769 0.8214 0.5880
32 10 117 14 42 23 0.8931 0.6462 0.8112 0.5620
33 11 117 14 45 20 0.8931 0.6923 0.8265 0.6009
34 12 116 15 44 21 0.8855 0.6769 0.8163 0.5773
35 15 116 15 43 22 0.8855 0.6615 0.8112 0.5642
36 17 117 14 43 22 0.8931 0.6615 0.8163 0.5750
37 20 117 14 43 22 0.8931 0.6615 0.8163 0.5750

Exp CR TPp FNp TNp FPp Sep Spp Acp MCCp
28 3 111 20 28 37 0.8473 0.4308 0.7092 0.3045
29 5 103 28 32 33 0.7863 0.4923 0.6888 0.2846
30 8 105 26 28 37 0.8015 0.4308 0.6786 0.2448
31 9 106 25 27 38 0.8092 0.4154 0.6786 0.2394
32 10 107 24 34 31 0.8168 0.5231 0.7194 0.3506
33 11 103 28 35 30 0.7863 0.5385 0.7041 0.3273
34 12 107 24 34 31 0.8168 0.5231 0.7194 0.3506
35 15 105 26 35 30 0.8015 0.5385 0.7143 0.3457
36 17 102 29 34 31 0.7786 0.5231 0.6939 0.3041
37 20 106 25 34 31 0.8092 0.5231 0.7143 0.3410

Hypermutation Rate (HR). The hypermutation rate has integer values and is used in Eq. (1) to 
determine the number of clones for each memory cell, which is in the range [0, CR×HR]. We
investigated the HIA classification for values of the hypermutation rate between 1 and 10, as shown 
in experiments 38–47 (Table 3). The best predictions are obtained with HR = 8, when the prediction 
MCC = 0.3691, which is a small improvement over the values from the previous groups of 
experiments.
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Table 3. AIRS Calibration and Prediction Statistics for Various Values of HR (Hypermutation Rate); (CR = 10)
Exp HR TPc FNc TNc FPc Sec Spc Acc MCCc
38 1 110 21 45 20 0.8397 0.6923 0.7908 0.5300
39 2 117 14 42 23 0.8931 0.6462 0.8112 0.5620
40 3 117 14 43 22 0.8931 0.6615 0.8163 0.5750
41 4 117 14 44 21 0.8931 0.6769 0.8214 0.5880
42 5 117 14 43 22 0.8931 0.6615 0.8163 0.5750
43 6 117 14 44 21 0.8931 0.6769 0.8214 0.5880
44 7 117 14 43 22 0.8931 0.6615 0.8163 0.5750
45 8 117 14 44 21 0.8931 0.6769 0.8214 0.5880
46 9 117 14 45 20 0.8931 0.6923 0.8265 0.6009
47 10 117 14 42 23 0.8931 0.6462 0.8112 0.5620

Exp HR TPp FNp TNp FPp Sep Spp Acp MCCp
38 1 107 24 29 36 0.8168 0.4462 0.6939 0.2787
39 2 107 24 34 31 0.8168 0.5231 0.7194 0.3506
40 3 103 28 32 33 0.7863 0.4923 0.6888 0.2846
41 4 106 25 32 33 0.8092 0.4923 0.7041 0.3125
42 5 101 30 33 32 0.7710 0.5077 0.6837 0.2809
43 6 103 28 35 30 0.7863 0.5385 0.7041 0.3273
44 7 103 28 33 32 0.7863 0.5077 0.6939 0.2989
45 8 106 25 36 29 0.8092 0.5538 0.7245 0.3691
46 9 105 26 32 33 0.8015 0.4923 0.6990 0.3031
47 10 105 26 35 30 0.8015 0.5385 0.7143 0.3457

Number of Nearest Neighbors (kNN). The number k of nearest neighbors is used in the 
classification process, in which the k most stimulated memory cells to a given antigen vote for the 
class (HIA+ or HIA–) of that antigen. In Table 4 we show the prediction statistics of the AIRS 
models obtained when kNN takes values between 1 and 19 (experiments 48–57). The best 
prediction (MCC = 0.3691) is obtained for kNN = 3, with no improvement compared with HR tests. 

Table 4. AIRS Calibration and Prediction Statistics for Various kNN (Number of Nearest Neighbors); (HR = 8) 
Exp kNN TPc FNc TNc FPc Sec Spc Acc MCCc
48 1 117 14 45 20 0.8931 0.6923 0.8265 0.6009
49 3 117 14 44 21 0.8931 0.6769 0.8214 0.5880
50 5 116 15 43 22 0.8855 0.6615 0.8112 0.5642
51 7 113 18 42 23 0.8626 0.6462 0.7908 0.5197
52 9 107 24 44 21 0.8168 0.6769 0.7704 0.4883
53 11 104 27 41 24 0.7939 0.6308 0.7398 0.4200
54 13 107 24 41 24 0.8168 0.6308 0.7551 0.4476
55 15 110 21 41 24 0.8397 0.6308 0.7704 0.4763
56 17 117 14 31 34 0.8931 0.4769 0.7551 0.4142
57 19 119 12 25 40 0.9084 0.3846 0.7347 0.3525

Exp kNN TPp FNp TNp FPp Sep Spp Acp MCCp
48 1 100 31 38 27 0.7634 0.5846 0.7041 0.3430
49 3 106 25 36 29 0.8092 0.5538 0.7245 0.3691
50 5 112 19 29 36 0.8550 0.4462 0.7194 0.3297
51 7 111 20 28 37 0.8473 0.4308 0.7092 0.3045
52 9 113 18 25 40 0.8626 0.3846 0.7041 0.2812
53 11 116 15 23 42 0.8855 0.3538 0.7092 0.2850
54 13 116 15 23 42 0.8855 0.3538 0.7092 0.2850
55 15 115 16 23 42 0.8779 0.3538 0.7041 0.2732
56 17 115 16 22 43 0.8779 0.3385 0.6990 0.2576
57 19 118 13 20 45 0.9008 0.3077 0.7041 0.2623
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Initial Memory Cell Pool Size (IMCPS). The number of initial memory cells has a significant
influence on the AIRS classification performance. The IMCPS parameter was modified between 1 
and 100 (experiments 58–68, Table 5), and the classification results show that when IMCPS < 30 
the prediction statistics decrease. The best prediction MCC is obtained for IMCPS = 50, with no 
improvement compared with HR and kNN experiments.

Table 5. AIRS Calibration and Prediction Statistics for Various IMCPS (Initial Memory Cell Pool Size); (kNN = 3)
Exp IMCPS TPc FNc TNc FPc Sec Spc Acc MCCc
58 1 56 75 31 34 0.4275 0.4769 0.4439 –0.0903
59 10 96 35 35 30 0.7328 0.5385 0.6684 0.2666
60 20 87 44 49 16 0.6641 0.7538 0.6939 0.3941
61 30 107 24 47 18 0.8168 0.7231 0.7857 0.5288
62 40 106 25 47 18 0.8092 0.7231 0.7806 0.5198
63 50 117 14 44 21 0.8931 0.6769 0.8214 0.5880
64 60 115 16 46 19 0.8779 0.7077 0.8214 0.5928
65 70 113 18 46 19 0.8626 0.7077 0.8112 0.5725
66 80 114 17 46 19 0.8702 0.7077 0.8163 0.5826
67 90 113 18 47 18 0.8626 0.7231 0.8163 0.5857
68 100 115 16 48 17 0.8779 0.7385 0.8316 0.6188

Exp IMCPS TPp FNp TNp FPp Sep Spp Acp MCCp
58 1 81 50 33 32 0.6183 0.5077 0.5816 0.1201
59 10 101 30 25 40 0.7710 0.3846 0.6429 0.1631
60 20 107 24 24 41 0.8168 0.3692 0.6684 0.2037
61 30 106 25 31 34 0.8092 0.4769 0.6990 0.2981
62 40 106 25 32 33 0.8092 0.4923 0.7041 0.3125
63 50 106 25 36 29 0.8092 0.5538 0.7245 0.3691
64 60 103 28 34 31 0.7863 0.5231 0.6990 0.3132
65 70 101 30 35 30 0.7710 0.5385 0.6939 0.3095
66 80 104 27 34 31 0.7939 0.5231 0.7041 0.3223
67 90 107 24 32 33 0.8168 0.4923 0.7092 0.3221
68 100 104 27 36 29 0.7939 0.5538 0.7143 0.3506

Number of Instances to Compute the Affinity Threshold (NIAT). NIAT specifies the number
of antigens used to compute the affinity threshold in the AIRS initialization phase. In experiments
69–78 (Table 6) NIAT takes values between 10 and all training samples. The prediction accuracy is 
identical for NIAT = 40 and NIAT = all, but MCC is slightly higher for NIAT = 40, and we selected 
this value for further experiments.

Table 6. AIRS Calibration and Prediction Statistics for Various Values of NIAT (Number of Instances to
Compute the Affinity Threshold); (IMCPS = 50) 

Exp NIAT TPc FNc TNc FPc Sec Spc Acc MCCc
69 10 109 22 39 26 0.8321 0.6000 0.7551 0.4393
70 20 109 22 39 26 0.8321 0.6000 0.7551 0.4393
71 30 109 22 39 26 0.8321 0.6000 0.7551 0.4393
72 40 109 22 39 26 0.8321 0.6000 0.7551 0.4393
73 50 109 22 39 26 0.8321 0.6000 0.7551 0.4393
74 60 109 22 40 25 0.8321 0.6154 0.7602 0.4530
75 80 109 22 40 25 0.8321 0.6154 0.7602 0.4530
76 100 109 22 39 26 0.8321 0.6000 0.7551 0.4393
77 125 109 22 40 25 0.8321 0.6154 0.7602 0.4530
78 all 117 14 44 21 0.8931 0.6769 0.8214 0.5880
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Table 6. (Continued)
Exp NIAT TPp FNp TNp FPp Sep Spp Acp MCCp
69 10 103 28 36 29 0.7863 0.5538 0.7092 0.3415
70 20 104 27 35 30 0.7939 0.5385 0.7092 0.3365
71 30 105 26 36 29 0.8015 0.5538 0.7194 0.3598
72 40 104 27 38 27 0.7939 0.5846 0.7245 0.3785
73 50 105 26 36 29 0.8015 0.5538 0.7194 0.3598
74 60 105 26 36 29 0.8015 0.5538 0.7194 0.3598
75 80 105 26 36 29 0.8015 0.5538 0.7194 0.3598
76 100 104 27 37 28 0.7939 0.5692 0.7194 0.3646
77 125 104 27 37 28 0.7939 0.5692 0.7194 0.3646
78 all 106 25 36 29 0.8092 0.5538 0.7245 0.3691

Stimulation Threshold (ST). The stimulation threshold is a parameter in the range [0, 1] and is 
used to determine the stop condition for the process of refining the ARB pool for a specific antigen. 
The ARB refinement stops when the average normalized ARB stimulation is higher than ST. The 
stimulation threshold was modified from 0.1 to 0.9 (experiments 79–93, Table 7), and the best 
predictions were obtained for ST = 0.53 and ST = 0.55, with a small improvement compared with 
the NIAT tests. For further experiments we selected ST = 0.55. 

Table 7. AIRS Calibration and Prediction Statistics for Various Values of ST (Stimulation Threshold); (NIAT = 40) 
Exp ST TPc FNc TNc FPc Sec Spc Acc MCCc
79 0.10 109 22 39 26 0.8321 0.6000 0.7551 0.4393
80 0.20 109 22 39 26 0.8321 0.6000 0.7551 0.4393
81 0.30 109 22 39 26 0.8321 0.6000 0.7551 0.4393
82 0.40 109 22 39 26 0.8321 0.6000 0.7551 0.4393
83 0.45 109 22 39 26 0.8321 0.6000 0.7551 0.4393
84 0.47 109 22 39 26 0.8321 0.6000 0.7551 0.4393
85 0.49 109 22 39 26 0.8321 0.6000 0.7551 0.4393
86 0.50 109 22 39 26 0.8321 0.6000 0.7551 0.4393
87 0.51 109 22 39 26 0.8321 0.6000 0.7551 0.4393
88 0.53 109 22 39 26 0.8321 0.6000 0.7551 0.4393
89 0.55 109 22 41 24 0.8321 0.6308 0.7653 0.4666
90 0.60 109 22 39 26 0.8321 0.6000 0.7551 0.4393
91 0.70 110 21 39 26 0.8397 0.6000 0.7602 0.4492
92 0.80 110 21 38 27 0.8397 0.5846 0.7551 0.4355
93 0.90 110 21 39 26 0.8397 0.6000 0.7602 0.4492

Exp ST TPp FNp TNp FPp Sep Spp Acp MCCp
79 0.10 104 27 37 28 0.7939 0.5692 0.7194 0.3646
80 0.20 104 27 37 28 0.7939 0.5692 0.7194 0.3646
81 0.30 104 27 37 28 0.7939 0.5692 0.7194 0.3646
82 0.40 104 27 37 28 0.7939 0.5692 0.7194 0.3646
83 0.45 104 27 37 28 0.7939 0.5692 0.7194 0.3646
84 0.47 104 27 37 28 0.7939 0.5692 0.7194 0.3646
85 0.49 104 27 38 27 0.7939 0.5846 0.7245 0.3785
86 0.50 104 27 38 27 0.7939 0.5846 0.7245 0.3785
87 0.51 104 27 38 27 0.7939 0.5846 0.7245 0.3785
88 0.53 104 27 40 25 0.7939 0.6154 0.7347 0.4062
89 0.55 104 27 40 25 0.7939 0.6154 0.7347 0.4062
90 0.60 105 26 34 31 0.8015 0.5231 0.7092 0.3316
91 0.70 104 27 39 26 0.7939 0.6000 0.7296 0.3924
92 0.80 103 28 36 29 0.7863 0.5538 0.7092 0.3415
93 0.90 106 25 36 29 0.8092 0.5538 0.7245 0.3691
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Total Resources (TR). The number of total resources limits the number of B–cells from the 
ARB pool. The amount of resources assigned to an ARB is calculated with Eq. (2) as a number in 
the range [0, CR]. Resources are allocated to the ARBs with high stimulation values, and taken 
from those with small stimulation values. ARBs without resources are removed from the cell 
population. The results obtained (Table 8, experiments 94–99) show that for TR between 25 and 
125 all prediction statistics are identical, and a slight increase is obtained for TR = 150. No 
improvement is obtained, compared with the ST tests. 

Table 8. AIRS Calibration and Prediction Statistics for Various Values of TR (Total Resources); (ST = 0.55) 
Exp TR TPc FNc TNc FPc Sec Spc Acc MCCc
94 25 109 22 39 26 0.8321 0.6000 0.7551 0.4393
95 50 109 22 39 26 0.8321 0.6000 0.7551 0.4393
96 75 109 22 39 26 0.8321 0.6000 0.7551 0.4393
97 100 109 22 39 26 0.8321 0.6000 0.7551 0.4393
98 125 109 22 39 26 0.8321 0.6000 0.7551 0.4393
99 150 109 22 41 24 0.8321 0.6308 0.7653 0.4666

Exp TR TPp FNp TNp FPp Sep Spp Acp MCCp
94 25 104 27 37 28 0.7939 0.5692 0.7194 0.3646
95 50 104 27 37 28 0.7939 0.5692 0.7194 0.3646
96 75 104 27 37 28 0.7939 0.5692 0.7194 0.3646
97 100 104 27 37 28 0.7939 0.5692 0.7194 0.3646
98 125 104 27 37 28 0.7939 0.5692 0.7194 0.3646
99 150 104 27 40 25 0.7939 0.6154 0.7347 0.4062

We presented the AIRS predictions for a large number of experiments, and we showed that this 
classifier is robust and offers stable predictions over a large range of the user defined parameters.
Similarly with previous investigations [24], the largest variation of the prediction MCC was 
observed in the optimization of the affinity threshold scalar ATS. Only marginal improvement was 
obtained in the subsequent rounds, because the default values for these parameters were (near) 
optimal. Compared with SVM models obtained for the same dataset (MCCp = 0.48) [25], the AIRS 
classifier is less successful in predicting the human intestinal absorption of drugs. 

Table 9. Calibration and Prediction Statistics of Several Machine Learning Models
Exp Model TPc FNc TNc FPc Sec Spc Acc MCCc
100 BayesNet 121 10 34 31 0.9237 0.5231 0.7908 0.5041
101 NaiveBayes 119 12 37 28 0.9084 0.5692 0.7959 0.5193
102 NaiveBayesUpdateable 129 2 28 37 0.9847 0.4308 0.8010 0.5433
103 Logistic 131 0 65 0 1.0000 1.0000 1.0000 1.0000
104 RBFNetwork 102 29 51 14 0.7786 0.7846 0.7806 0.5395
105 KStar 131 0 65 0 1.0000 1.0000 1.0000 1.0000
106 ADTree 124 7 58 7 0.9466 0.8923 0.9286 0.8389
107 J48 130 1 63 2 0.9924 0.9692 0.9847 0.9654
108 LMT 121 10 49 16 0.9237 0.7538 0.8673 0.6954
109 NBTree 131 0 56 9 1.0000 0.8615 0.9541 0.8979
110 RandomForest 131 0 65 0 1.0000 1.0000 1.0000 1.0000
111 RandomTree 131 0 65 0 1.0000 1.0000 1.0000 1.0000
112 REPTree 117 14 57 8 0.8931 0.8769 0.8878 0.7543
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Table 9. (Continued)
Exp Model TPp FNp TNp FPp Sep Spp Acp MCCp
100 BayesNet 112 19 28 37 0.8550 0.4308 0.7143 0.3151
101 NaiveBayes 112 19 29 36 0.8550 0.4462 0.7194 0.3297
102 NaiveBayesUpdateable 120 11 26 39 0.9160 0.4000 0.7449 0.3802
103 Logistic 96 35 38 27 0.7328 0.5846 0.6837 0.3091
104 RBFNetwork 94 37 42 23 0.7176 0.6462 0.6939 0.3491
105 KStar 116 15 35 30 0.8855 0.5385 0.7704 0.4579
106 ADTree 113 18 42 23 0.8626 0.6462 0.7908 0.5197
107 J48 106 25 40 25 0.8092 0.6154 0.7449 0.4245
108 LMT 117 14 32 33 0.8931 0.4923 0.7602 0.4282
109 NBTree 108 23 35 30 0.8244 0.5385 0.7296 0.3743
110 RandomForest 114 17 33 32 0.8702 0.5077 0.7500 0.4082
111 RandomTree 98 33 35 30 0.7481 0.5385 0.6786 0.2834
112 REPTree 106 25 43 22 0.8092 0.6615 0.7602 0.4656

Comparison with other Machine Learning Algorithms. The same HIA+/HIA– classification 
problem was investigated with 13 other machine learning algorithms (Table 9, experiments 100–
112), namely Bayesian network (BayesNet), naïve Bayes classifier (NaiveBayes), updateable naïve 
Bayes classifier with kernel estimator (NaiveBayesUpdateable), logistic regression with ridge 
estimator (Logistic), Gaussian radial basis function network (RBFNetwork), K* instance–based 
classifier (KStar), alternating decision tree (ADTree), C4.5 decision tree (J48), logistic model trees 
(LMT), decision tree with naïve Bayes classifiers at the leaves (NBTree), random forest 
(RandomForest), random tree (RandomTree), fast decision tree learner (REPTree). All calculations 
were performed with Weka 3.5.4 [44], using all descriptors. 

Six machine learning algorithms give better predictions than AIRS, namely ADTree (MCCp = 
0.5197), REPTree (MCCp = 0.4656), KStar (MCCp = 0.4579), LMT (MCCp = 0.4282), J48 (MCCp

= 0.4245), and RandomForest (MCCp = 0.4082), whereas AIRS is better than the remaining seven 
algorithms, namely NaiveBayesUpdateable, NBTree, RBFNetwork, NaiveBayes, BayesNet, 
Logistic, and RandomTree. These comparative tests indicate that the artificial immune recognition 
system surpasses several well–established machine learning algorithms, and ay be applied with 
success in HIA structure–activity studies. 

5 CONCLUSIONS 

A large number of machine learning algorithms are inspired from biological processes and 
mechanisms, such as particle swarm optimization, ant colony optimization, bee colony 
optimization, artificial neural networks, genetic algorithms, and DNA computing. Artificial immune
systems represent a new class of biologically inspired algorithms that simulate elements of the 
biological immune system, such as pattern recognition, memory, and optimization. In this paper we 
present the first application of the artificial immune recognition system, AIRS, [20–22] to the 
modeling of the human intestinal absorption of drugs. 
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The AIRS algorithm was applied to the classification of a dataset of 196 drugs into a subset of 
131 that penetrate the human intestine and a subset of 65 drugs that do not penetrate the intestine. 
All classifiers were trained with 159 structural descriptors from five classes, namely constitutional, 
topological indices, electrotopological state indices, quantum descriptors, and geometrical indices 
[25]. The calculations were performed with the AIRS2 algorithm [23] implemented in Weka [44]. 
The classification performance of the AIRS2 algorithm was investigated in 99 experiments and for 
a wide range of values for the eight user defined parameters, namely affinity threshold scalar, clonal 
rate, hypermutation rate, number of nearest neighbors, initial memory cell pool size, number of 
instances to compute the affinity threshold, stimulation threshold, and total resources. The HIA 
prediction ability was estimated with the leave–20%–out (five–fold) cross–validation. 

The best predictions of the AIRS algorithm (selectivity 0.794, specificity 0.615, accuracy 0.735, 
and Matthews correlation coefficient 0.406) surpass those obtained with several well–established 
machine learning methods. The affinity threshold scalar has the highest influence on the prediction 
quality, whereas the remaining parameters have only a marginal effect. In a comparison with 13 
machine learning algorithms, AIRS predictions were better in seven cases (Bayesian network, naïve 
Bayes classifier, updateable naïve Bayes classifier, logistic regression, Gaussian radial basis 
function network, decision tree with naïve Bayes classifiers at the leaves, and random tree). 
However, six machine learning algorithms have better predictions that AIRS (K* instance–based 
classifier, alternating decision tree, C4.5 decision tree, logistic model trees, random forest, and fast 
decision tree learner). The results obtained suggest that classifiers based on artificial immune
systems may be successful in structure–activity relationships (SAR), quantitative structure–activity 
relationships (QSAR), virtual screening of chemical libraries, and drug design. 
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