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Abstract

Motivation. A high interest in predicting physical, chemical, and biological properties of halogenated
compounds is generated by the urgent need to develop alternatives to chlorofluorocarbons, new compounds with
low ozone depletion potential and a low global warming potential. Quantitative structure–retention relationships
(QSRR) for halogenated compounds can be used to predict gas chromatographic retention indices by using
theoretical descriptors computed from the chemical structure. 
Method. QSRR models for the gas chromatographic retention indices of 207 halogenated compounds are
established with the CODESSA (Comprehensive Descriptors for Structural and Statistical Analysis) program.
Results. The best results are obtained with a group of QSRR models with six structural descriptors, with a
correlation coefficient between 0.994 and 0.993 and a leave–one–out cross–validation correlation coefficient
between 0.992 and 0.991. All QSRR models contain the Kier and Hall connectivity index 1 v, the number of F
atoms NoF, and the gravitation index for all pairs of atoms G1. A fourth descriptor comes from the class of
charged–partial surface area indices, while the remaining two descriptors are related to the number of I or Br 
atoms, bond order, or Randi  connectivity index 1 .
Conclusions. QSRR models developed with CODESSA allow accurate computation of the gas chromatographic
retention indexes of halogenated compounds using simple constitutional, topological, geometric, electrostatic
and quantum descriptors that can be computed with standard quantum chemistry packages.
Keywords. Quantitative structure–retention relationships; halogenated organic compounds; CODESSA; gas
chromatographic retention indices. 

1 INTRODUCTION

Halogen–containing organic compounds are an important class of chemicals, with numerous
industrial and laboratory applications. They are used as solvents, plastics, anesthetics, foaming
agents, refrigerants, and pesticides. Bromochlorofluorocarbons are used as fire extinguishing 
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agents. Fluoro–compounds are extensively investigated as contrast agents in X–ray and MRI, and 
for use as antihypoxic agents in surgical and liquid ventilation procedures. On the other hand, the 
use of chlorofluorocarbons (CFCs) has damaging effects on the stratospheric ozone layer, and all 
halogenated compounds have an important contribution in global warming by the green house 
effect, and halogenated organic compounds are widespread pollutants of surface and underground 
water. A high interest in predicting physical, chemical, and biological properties of halogenated 
compounds is generated by the urgent need to develop alternatives to CFCs, new compounds with
low ozone depletion potential and a low global warming potential. The identification of halogenated
compounds can be made with the method of gas chromatographic peak comparison with a standard 
sample of the each compound. Because samples of pure compounds are not always available it is 
important to develop quantitative structure–retention relationships (QSRR) that can efficiently
predict retention parameters by using theoretical descriptors computed from the chemical structure.

Chromatographic retention is a physical phenomenon that is primarily dependent on the 
interactions between the solute and the stationary phase. Molecular group contribution methods are 
widely employed to estimate gas chromatographic retention parameters [1–3]. The difficulty of this 
approach is represented by the definition of a consistent set of groups and by the necessity to
compute the contribution of each group from a statistically significant number of molecules where
the respective group is present. This method is limited to molecules containing only the groups 
presented in the calibration set of molecules. Also, some group contribution schemes are not 
comprehensive enough to cover multiple substitutions of functional groups.

With the aid of QSRR the interactions associated with this phenomenon can be related to the 
constitutional, molecular graph (topological), geometrical, electrostatic, and quantum descriptors of
the molecules. Gas chromatographic QSRR models have been successfully developed for a large 
number of compound classes: alkanes [4–6], alkenes [4,7], alkylbenzenes [8], polycyclic aromatic
hydrocarbons [9], various hydrocarbons from naphthas [10], various aromatic compounds [11], 
alkanes, alkenes, alcohols, esters, ketones [12], monoterpenes, di– and tricyclic methyl esters and 
alcohols, and monocyclic ketones and alcohols [13], chlorinated alkanes [14], chlorinated benzenes 
[15], chlorinated dibenzodioxins [16], polychlorinated biphenyls [17,18], polyhalogenated 
biphenyls [19], polychlorinated dibenzofurans [18,20], pyrazines [21], diverse drug compounds
[22], odor–active aliphatic compounds with oxygen–containing functional groups [23], stimulants
and narcotics [24], anabolic steroids [25], sulfur vesicants [26], diverse organic compounds [27]. 

Integrated strategies for generating structure–property models were proposed along the years. 
These approaches use various programs that allow the rapid input of the chemical structures of the 
molecules under study, geometry optimization with molecular mechanics and quantum methods, 
calculation of a large set of descriptors, generation and validation of statistical structure–property
models. The ADAPT program [28] is designed to compute the 3–dimensional structure of the 
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investigated chemical compounds, and to use constitutional, geometric and quantum information in
order to generate a large number of descriptors. Various statistical models such as Multi–Linear
Regression (MLR) or neural networks are tested in order to obtain the best structure–property 
model. ADAPT was extensively applied to the estimation of gas chromatographic retention indices
of various classes of organic compounds [7,10,17,19,21–26]. Other software programs that can 
compute a large set of descriptors and then use them in various QSAR models are OASIS 
(Optimized Approach based on Structural Indices Selection) [29], PRECLAV (PRoperty Evaluation 
by CLAss Variables) [30], and CODESSA (Comprehensive Descriptors for Structural and 
Statistical Analysis) [31–33]. 

The CODESSA program developed by Katritzky and coworkers [31–33] implements a 
structure–property approach which uses about 500 structural parameters representing constitutional, 
topological, geometrical, electrostatic and quantum descriptors of the chemical compounds. The 
computed structural descriptors are used to develop models of the investigated property. CODESSA 
was successfully employed in structure–property studies concerning the prediction of gas 
chromatographic retention indices [27], normal boiling temperatures [34,35], melting temperatures
for substituted benzenes [36], physical properties of substituted pyridines [37], solubility of gases
and vapors in water [38], solvent polarity scale [39], polymer glass transition temperatures [40], 
critical micelle concentration [41], normal boiling temperatures of organic compounds containing 
halogen, oxygen, and sulfur [42], liquid viscosity of organic compounds [43]. The goal of the 
present work is to employ computer–assisted methods to develop QSRR equations relating 
structural features of various halogenated compounds to their experimental gas chromatographic
retention indices.

2 MATERIALS AND METHODS 

The QSRR models for the estimation of the gas chromatographic retention indices of various 
halogenated compounds are established in the following five steps: molecular structure input and 
generation of the files containing the chemical structures stored in a computer–readable format;
quantum mechanics geometry optimization with a semi–empirical method; structural descriptors 
computation; structural descriptors selection; structure–retention models generation with the multi–
linear regression method.

GC Retention Data. Retention indices (RI) of 207 halogenated aliphatic and alicyclic 
compounds were taken from the literature [44], and are presented in Table 1. The chromatograms
were recorded on a Hewlett–Packard Model 5890A gas chromatograph equipped with flame
ionization detector, with the following operating conditions: fused–silica 50 m × 0.2 mm capillary 
column coated with methyl silicone, carrier gas (nitrogen) flow velocity 10 cm/s, injection port and 
detector temperatures 270 °C. The temperature program comprised an initial isothermal period of 5 
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min at 40 °C, followed by a temperature increase of 2 °C/min up to 200 °C, and a final isothermal
stage at this temperature. The retention indices of the halogenated compounds were computed using 
1–bromoalkanes as standards. A good linear relationship between retention time and carbon number 
of the 1–bromoalkanes was observed, except for bromomethane and bromoethane. If the retention 
time of any compound was smaller than that of bromomethane, the retention index for that 
compound was calculated by considering methane as standard compound.

Table 1. Structure and Gas Chromatographic Retention Indices of 207 Halogenated Compounds
Nr. Compound RI Nr. Compound RI

1 Bromotrichloromethane 434 47 1-Bromo-2-chloroethane 390
2 Tetrabromomethane 726 48 1,1-Dibromoethane 406
3 Dichlorodifluoromethane 0 49 1,2-Dibromoethane 465
4 Trichlorofluoromethane 158 50 1,2-Dichloroethane 315
5 Chloropicrin 443 51 Dichloromethyl methyl ether 340
6 Tetrachloromethane 338 52 1,1-Difluoroethane 0
7 Tetraiodomethane 1497 53 1,2-Diiodoethane 682
8 Bromodichloromethane 374 54 Bromoethane 200
9 Chlorodibromomethane 458 55 Chloroethane 110

10 Bromoform 546 56 Chloromethyl methyl ether 226
11 Chloroform 292 57 Iodoethane 284
12 Iodoform 905 58 Octachloropropane 1225
13 Bromochloromethane 284 59 1,1,1,2,3,3,3-Heptachloropropane 1034
14 Dibromomethane 363 60 (Z)-1,2,3-Trichloropropene 532
15 Dichloromethane 206 61 (E)-1,2,3-Trichloropropene 573
16 Diiodomethane 582 62 Methyltrichloroacetate 585
17 Bromomethane 100 63 1,1,2,3,3-Pentachloropropane 787
18 Iodomethane 200 64 1,1,3-Trichloroacetone 613
19 1,1,1-Trichloro-2,2,3-trifluoroethane 210 65 2,3-Dibromopropene 532
20 1,1,2-Trichloro-1,2,2-trifluoroethane 211 66 1,1-Dichloropropene 327
21 Trichloroacetonitrile 351 67 (Z)-1,3-Dichloropropene 406
22 Tetrachloroetylene 481 68 (E)-1,3-Dichloropropene 425
23 1,2-Difluoro-1,1,2,2-tetrachloroethane 387 69 2,3-Dichloropropene 367
24 Hexachloroethane 744 70 Methyl dichloroacetate 513
25 Tribromoethylene 637 71 1,1,1,2-Tetrachloropropane 596
26 Pentabromoethane 1172 72 1,1,2,3-Tetrachloropropane 682
27 Trichloroethylene 372 73 1,2,2,3-Tetrachloropropane 639
28 Trichloroacetaldehyde 382 74 3-Bromo-1-propene 284
29 Pentachloroethane 641 75 (Z)-1-Bromo-1-propene 265
30 (Z)-1,2-Dibromoethylene 410 76 (E)-1-Bromo-1-propene 275
31 (E)-1,2-Dibromoethylene 438 77 Bromoacetone 433
32 1,2-Dibromo-1,1-dichloroethane 689 78 Methyl bromoacetate 490
33 rac-1,2-Dibromo-1,2-dichloroethane 744 79 3-Chloro-1,2-dibromopropane 734
34 meso-1,2-Dibromo-1,2-dichloroethane 747 80 1,2,3-Tribromopropane 815
35 1,1,2,2-Tetrabromoethane 929 81 3-Chloro-1-propene 208
36 Chloroacetonitrile 345 82 (Z)-1-Chloro-1-propene 194
37 1,1-Dichloroethylene 202 83 (E)-1-Chloro-1-propene 203
38 (E)-1,2-Dichloroethylene 234 84 Chloroacetone 310
39 1,1,1,2-Tetrachloroethane 513 85 Methyl chloroacetate 431
40 1,1,2,2-Tetrachloroethane 565 86 1,1,2-Trichloropropane 507
41 Bromoethylene 131 87 1,2,3-Trichloropropane 572
42 1,1,2-Tribromoethane 687 88 1-Bromo-3-chloropropane 521
43 Chloroethylene 50 89 1,2-Dibromopropane 515
44 Methylchloroformate 252 90 1,3-Dibromopropane 597
45 1,1,1-Trichloroethane 318 91 2,2-Dibromopropane 436
46 1,1,2-Trichloroethane 433 92 1,2-Dichloropropane 362
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Table 1. (Continued)
Nr. Compound RI Nr. Compound RI
93 1,3-Dichloropropane 441 149 2,2-Dimethyl-1,3-dichloropentane 554
94 2,2-Dichloropropane 287 150 1-Bromopentane 500
95 1-Bromopropane 300 151 2-Bromopentane 451
96 2-Bromopropane 248 152 2-Bromo-2-methylbutane 416
97 1-Chloropropane 218 153 1-Chloropentane 423
98 2-Chloropropane 177 154 1-Chloro-3-methylbutane 389
99 Chloromethyl ethyl ether 315 155 2-Chloro-2-methylbutane 338

100 1-Iodopropane 385 156 1-Iodopentane 590
101 2-Iodopropane 337 157 1-Iodo-3-methylbutane 547
102 Hexachloro-1,3-butadiene 885 158 2-Iodo-2-methylbutane 509
103 Ethyl trifluoroacetate 209 159 Tetradecafluoro-2-methylpentane 0
104 meso-1,2,3,4-Tetrabromobutane 1195 160 Tetradecafluorohexane 0
105 (Z)-1,3-Dichloro-2-butene 493 161 -BHC 1356
106 (E)-1,3-Dichloro-2-butene 509 162 -BHC 1388
107 (Z)-1,4-Dichloro-2-butene 553 163 -BHC 1434
108 (E)-1,4-Dichloro-2-butene 573 164 -BHC 1454
109 3,4-Dichloro-1-butene 451 165 3-Bromocyclohexene 663
110 3-Bromo-1-butene 338 166 cis-1,4-Dichlorocyclohexane 775
111 4-Bromo-1-butene 378 167 trans-1,4-Dichlorocyclohexane 741
112 (E)-1-Bromo-2-butene 416 168 Bromocyclohexane 645
113 (Z)-2-Chloro-2-butene 278 169 Chlorocyclohexane 559
114 (E)-2-Chloro-2-butene 305 170 Iodocyclohexane 738
115 3-Chloro-1-butene 259 171 2,3-Dibromo-2,3-dimethylbutane 726
116 1-Chloro-2-methyl-1-propene 297 172 1,6-Dibromohexane 965
117 3-Chloro-2-methyl-1-propene 303 173 1-Bromohexane 600
118 1,2-Dibromobutane 622 174 1-Bromo-4-methylpentane 564
119 1,3-Dibromobutane 648 175 1-Chlorohexane 524
120 1,4-Dibromobutane 725 176 2-Chlorohexane 476
121 rac-2,3-Dibromobutane 581 177 3-Chlorohexane 476
122 meso-2,3-Dibromobutane 593 178 1-Iodohexane 692
123 1,2-Dichlorobutane 466 179 Tetradecafluoromethylcyclohexane 68
124 1,3-Dichlorobutane 490 180 Hexadecafluoroheptane 30
125 1,4-Dichlorobutane 558 181 Bromocycloheptane 779
126 2,2-Dichlorobutane 404 182 Chlorocycloheptane 699
127 2,3-Dichlorobutane 428 183 1-Bromoheptane 700
128 1,2-Dichloroethyl ethyl ether 526 184 2-Bromo-2-methylhexane 604
129 2,2’-Dichlorodiethyl ether 632 185 2-Bromo-2,4-dimethylpentane 565
130 1-Bromobutane 400 186 1-Chloroheptane 626
131 2-Bromobutane 356 187 2-Chloroheptane 572
132 2-Bromo-2-methylpropane 301 188 1-Iodoheptane 791
133 2-Bromoethyl ethyl ether 479 189 1,8-Dibromooctane 1170
134 1-Chlorobutane 320 190 1,8-Dichlorooctane 987
135 2-Chlorobutane 284 191 1-Bromooctane 800
136 1-Chloro-2-methylpropane 291 192 1-Bromo-2-ethylhexane 753
137 2-Chloro-2-methylpropane 220 193 1-Chlorooctane 720
138 1-Iodobutane 483 194 1-Iodooctane 892
139 2-Iodo-2-methylpropane 381 195 1-Bromononane 900
140 Hexachlorocyclopentadiene 999 196 1-Chlorononane 820
141 1,1,1,5,5,5-Hexafluoropentan-2,4-dione 208 197 1-Chloroadamantane 945
142 Bromocyclopentane 525 198 2-Chloroadamantane 989
143 1-Bromo-3-methyl-2-butene 517 199 1,10-Dibromodecane 1374
144 Chlorocyclopentane 449 200 1,10-Dichlorodecane 1192
145 1,4-Dibromopentane 772 201 1-Bromodecane 1000
146 1,5-Dibromopentane 836 202 1-Chlorodecane 919
147 2,4-Dibromopentane 677 203 1-Bromoundecane 1100
148 1,5-Dichloropentane 676 204 1-Chloroundecane 1019
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Table 1. (Continued)
Nr. Compound RI
205 1,12-Dibromododecane 1579
206 1-Bromododecane 1200
207 1-Bromotridecane 1300

Molecular Structure Input. Three–dimensional models of the 207 halogenated compounds
were generated with HyperChem [45] and optimized with the MM+ molecular mechanics program
implemented in HyperChem. The HyperChem files were exported in a format suitable for the 
AMPAC [46] program.

Quantum Mechanics Computations. The geometry optimization was performed on a Pentium 
200 MHz with the semiempirical quantum method AM1 [47] using the AMPAC 5.0 program [46]. 
The following set of key words were used in all quantum computations: AM1 PRECISE
VECTORS BONDS PI KPOLAR ENPART.

Structural Descriptors Generation. The HyperChem structure files and the AMPAC output 
files were used by the CODESSA program [48] to compute a total of 518 structural descriptors. For
certain compounds it was not possible to compute some descriptors and in the subsequent 
computations we have assumed a zero value in all such cases. CODESSA computes five classes of
structural descriptors: constitutional (number of various types of atoms and bonds, number of rings,
molecular weight, etc.); topological (Wiener index, Randi  connectivity indices, Kier and Hall 
connectivity indices, Kier shape indices, information content indices, etc.); geometrical (gravitation
indices, moments of inertia, molecular volume and surface area, etc.); electrostatic (when atomic
charges are computed on the basis of atomic electronegativity: minimum and maximum partial
charges, polarity parameter, charged partial surface area descriptors, etc.); quantum (minimum and 
maximum partial charges, Fukui reactivity indices, dipole moment, HOMO and LUMO energies, 
etc.). The definition of all descriptors used in the present study can be found in the CODESSA 
Reference and User’s Manuals. 

Structural Descriptors Selection. A selection of descriptors is accomplished with the aim to
reduce the pool of descriptors by eliminating those that satisfy the following conditions: (a) the
descriptor has a constant value for all molecules investigated; (b) in the monoparametric correlation 
with the gas chromatographic retention indices the descriptor has a squared correlation coefficient 
lower than 0.1; (c) in the monoparametric correlation the descriptor has a t–test value lower than 
0.1; (d) in the monoparametric correlation the descriptor has a F–test value lower than 1; (e) the 
descriptor has an intercorrelation coefficient higher than 0.990 with another descriptor, and the 
second one has a higher squared correlation coefficient in the monoparametric correlation with the 
retention index. In this phase 298 descriptors were removed, and 220 descriptors were selected for 
the generation of the multiparametric correlations.

Structure–Retention Models Generation. The development of multilinear regression (MLR)
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QSRR models with CODESSA comprises the following steps: (a) all biparametric regression
equations are computed for pair of descriptors with an intercorrelation coefficient lower than 0.8;
(b) the 10 best pairs of descriptors in biparametric correlations are selected for the development of 
multiparametric equations; (c) to an MLR model containing n descriptors a new descriptor is added
to generate a model with n + 1 descriptors if the new descriptor is not significantly correlated with
the previous n descriptors (intercorrelation coefficient lower than 0.8). Step (c) is repeated until 
MLR models with a certain maximum number of descriptors were obtained. 

Table 2. Notation of the CODESSA Descriptors Involved in the QSRR Equations Presented in Table 3
Descriptor Notation Typea

Number of H atoms NoH C
Number of F atoms NoF C
Relative number of F atoms RNoF C
Number of Br atoms NoBr C
Relative number of Br atoms RNoBr C
Number of I atoms NoI C
Relative number of I atoms RNoI C
Gravitation index (all bonds) G2 C
Gravitation index (all pairs) G1 C
Topographic electronic index (all pairs) (electrostatic) Te E
Total molecular surface area (electrostatic) TMSAe E
Weighted PNSA (PNSA1*TMSA/1000) (electrostatic) WNSA1e E
Difference in CPSAs (PPSA2–PNSA2) (electrostatic) DPSA2e E
Difference in CPSAs (PPSA3–PNSA3) (electrostatic) DPSA3e E
Fractional PNSA (PNSA3/TMSA) (electrostatic) FNSA3e E
Weighted PNSA (PNSA3*TMSA/1000) (electrostatic) WNSA3e E
XY Shadow XYs G
Molecular volume V G
Molecular surface area S G
Final heat of formation Hf Q
Total molecular surface area (quantum) TMSAq Q
Atomic charge weighted PNSA (quantum) PNSA3q Q
Weighted PPSA (PPSA3*TMSA/1000) (quantum) WPSA3q Q
Maximum –  bond order BO  max Q
Total molecular two–center resonance energy / number of atoms MTCRE Q

 polarizability (computed from the dipole moment) Q
Minimum one–electron reactivity index for a F atom OERIF min Q
Minimum net atomic charge for a I atom QI min Q
Wiener index W T
Randi  connectivity index (order 1) 1 T
Randi  connectivity index (order 2) 2 T
Randi  connectivity index (order 3) 3 T
Kier and Hall connectivity index (order 0) 0 v T
Kier and Hall connectivity index (order 1) 1 v T
Kier and Hall connectivity index (order 3) 3 v T

a The descriptor type is coded with C for constitutional, E for electrostatic, G for
geometric, Q for quantum, and T for topological

3 RESULTS AND DISCUSSION
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with C for constitutional, E for electrostatic, G for geometric, Q for quantum, and T for topological.

Table 3. Statistical Indices r, rcv, s, F, and Structural Descriptors Involved in the Multi–
Linear Regression Equations Containing Up to Six Descriptors Developed to Compute
the Gas Chromatographic Retention Indices of 207 Halogenated Compounds

Eq. Descriptors Type r rcv s F
 1 1 v T 0.887 0.885 143 758
 2 0 v T 0.854 0.850 161 553
 3 Q 0.772 0.765 197 302
 4 3 v T 0.751 0.744 205 265
 5 TMSAq Q 0.722 0.715 215 223
6 V G 0.705 0.693 220 202

 7 XYs G 0.696 0.689 223 193
8 S G 0.689 0.682 225 186

 9 TMSAe E 0.684 0.677 226 180
10 WPSA3q Q 0.659 0.652 233 158
11 0 v NoF TC 0.956 0.955 91 1084
12 0 v RNoF TC 0.950 0.948 97 952
13 1 v NoF TC 0.946 0.945 101 873
14 1 v Hf TQ 0.943 0.941 104 816
15 1 v RNoF TC 0.942 0.939 105 801
16 0 v Hf TQ 0.940 0.938 106 777
17 1 v W TT 0.937 0.934 109 728
18 1 v Te TE 0.933 0.929 112 680
19 0 v OERIF min TQ 0.932 0.923 113 673
20 0 v 2 TT 0.930 0.925 114 653
21 1 v NoF G1 TCC 0.975 0.974 69 1314
22 1 v NoF G2 TCC 0.971 0.970 74 1130
23 1 v NoF WNSA1e TCE 0.971 0.970 74 1122
24 1 v NoF NoH TCC 0.969 0.967 78 1024
25 0 v NoF 3 TCT 0.967 0.964 79 975
26 1 v NoF G1 DPSA3e TCCE 0.987 0.984 51 1865
27 1 v NoF G1 WNSA3e TCCE 0.987 0.984 51 1836
28 1 v NoF G1

1 TCCT 0.985 0.984 53 1704
29 1 v NoF G1 DPSA2e TCCE 0.985 0.983 54 1629
30 1 v NoF G1 PNSA3q TCCQ 0.983 0.982 57 1481
31 1 v NoF G1 DPSA3e NoBr TCCEC 0.991 0.989 43 2093
32 1 v NoF G1 DPSA3e RNoBr TCCEC 0.990 0.988 44 2020
33 1 v NoF G1 WNSA3e NoBr TCCEC 0.990 0.988 44 1990
34 1 v NoF G1 WNSA3e RNoBr TCCEC 0.990 0.988 45 1932
35 1 v NoF G1 DPSA3e NoI TCCEC 0.990 0.988 45 1925
36 1 v NoF G1 DPSA3e NoI 1 TCCECT 0.994 0.992 36 2534
37 1 v NoF G1 DPSA3e NoBr BO  max TCCECQ 0.993 0.992 36 2467
38 1 v NoF G1 WNSA3e NoI 1 TCCETC 0.993 0.992 37 2326
39 1 v NoF G1 DPSA3e NoI MTCRE TCCETQ 0.993 0.991 37 2311
40 1 v NoF G1DPSA3e RNoBr BO  max TCCECQ 0.993 0.991 38 2284
41 1 v NoF G1 FNSA3e NoI 1 TCCTEC 0.993 0.991 38 2267
42 1 v NoF G1 WNSA3e QI min

1 TCCETQ 0.993 0.991 38 2266
43 1 v NoF G1 WNSA3e NoBr BO  max TCCECQ 0.993 0.991 38 2246
44 1 v NoF G1 WNSA3e RNoI 1 TCCETC 0.993 0.991 38 2232
45 1 v NoF G1 FNSA3e RNoI 1 TCCTEC 0.993 0.991 38 2225

The best multi–linear regression equations with up to six descriptors generated by CODESSA
are presented in Table 3. For each equation we report the descriptors involved, their type, and the 
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statistical indices of the model, i.e. the correlation coefficient r, the leave–one–out cross–validation 
correlation coefficient rcv, the standard deviation s, and the F–test value. An inspection of the best 
ten mono–parametric correlations reported in Table 3 Eqs. (1)–(10), shows that the Kier and Hall 
1 v and 0 v indices, with r = 0.887 and r = 0.854, respectively, are by far the best descriptors 
surpassing the more complex electrostatic or quantum descriptors. 

All best 10 bi–parametric correlations presented in Table 3 Eqs. (11)–(20) contain at least a
topological index, either 0 v or 1 v. The second descriptor is NoF in Eqs. (11) and (13), RNoF in 
Eqs. (12) and (15), heat of formation Hf in Eqs. (14) and (16), the minimum one–electron reactivity 
index for a F atom, OERIF min, in Eq. (19), the topographic electronic index Te in Eq. (18), or a 
second topological index, such as the Wiener index W in Eq. (17), or the Randi  connectivity index
2 . The introduction of a second descriptor significantly improves the statistical indices of the 
QSRR model, such as in Eq. (11), when the use of 0 v together with NoF gives r = 0.956, rcv = 
0.955, s = 91, and F = 1084. 

A further improvement of the QSRR models is obtained by using three descriptors, as can be 
seen from the statistics of Eqs. (21)–(25), with r between 0.975 and 0.967, and the leave–one–out 
cross–validation correlation coefficient rcv between 0.974 and 0.964. The importance of the Kier 
and Hall connectivity indices in the QSRR modeling of the retention indices for halogenated 
compounds is once again indicated by their presence in this group of equations, namely 1 v in Eqs.
(21)–(24) and 0 v in Eq. (25). The second descriptor is NoF for all five QSRR models with three 
structural descriptors, indicating the particular behavior of F compared with the other halogens. The
third descriptor brings some variation in these equations, showing that similar QSRR models can be
obtained with different combinations of structural descriptors. 

The best QSRR models with four descriptors, presented in Table 3 Eqs. (26)–(30), show a 
further improvement in the statistical indices, with r between 0.987 and 0.983, and rcv between 
0.984 and 0.982. For all these QSRR models the first three descriptors are identical with those from 
Eq. (21), namely 1 v, NoF, and the gravitation index for all pairs of atoms G1. The fourth descriptor 
is either from the class of charged–partial surface area indices (CPSA) or the Randi  connectivity 
index 1 . For the group of QSRR models with five descriptors, presented in Table 3 Eqs. (31)–(35), 
the statistical indices continue to improve, with r between 0.991 and 0.990, and rcv between 0.989 
and 0.988. Besides the three descriptors 1 v, NoF, and G1, which are common for all these
equations, the fourth one is from the CPSA class (DPSA3e or WNSA3e, both computed with atomic
charges derived from electronegativity) and the fifth one is NoBr, RNoBr, or NoI. The QSRR
models that contain DPSA3e are derived from Eq. (26), while those that contain WNSA3e are 
derived from Eq. (27). 

For the ten QSRR models with six parameters presented in Table 3 Eqs. (36)–(45) the F index
and leave–one–out cross–validation correlation coefficient have a maximum, and the r and s
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statistical indices are improved when compared with those obtained for the MLR models with five
structural descriptors, presented in Table 3 Eqs. (31)–(35). This group of QSRR models is very
homogeneous from a statistical point of view, having r between 0.994 and 0.993, rcv between 0.992 
and 0.991, and standard deviation s between 36 and 38. This result clearly shows that starting with a 
large selection of structural descriptors it is possible to find several combinations of descriptors that 
provide models with similar good statistics. Moreover, owing to the errors in the experimental data, 
small statistical differences between QSRR equations are not significant, and it is almost impossible
to select a “best” modeling equation in such cases. We present below the detailed QSRR Eqs. (36)–
(45) containing each six theoretical descriptors:

RI = – 247.4( 10.2) + 115.7( 5.2)1 v – 105.5( 2.5)NoF + 0.06( 0.003)G1 + 
9.9( 0.7)DPSA3e + 83.0( 7.4)NoI + 58.5( 5.5)1

n = 207 r = 0.994 rcv = 0.992 s = 36   F = 2534   outliers: 36, 58
(36)

RI = – 243.7( 9.9) + 177.1( 2.7)1 v – 85.5( 1.6)NoF + 0.07( 0.003)G1 + 7.3( 0.5)DPSA3e

– 31.6( 2.9)NoBr + 62.7( 6.9) BO  max

n = 207 r = 0.993 rcv = 0.992 s = 36   F = 2467   outliers: 7, 21, 161
(37)

RI = – 176.9( 7.9) + 107.2( 5.2)1 v – 112.6( 2.6)NoF ++ 0.06( 0.003)G1 – 
30.7( 2.2)WNSA3e + 59.7( 5.7)1  + 76.6( 7.6)NoI

n = 207 r = 0.993 rcv = 0.992 s = 37   F = 2326   outliers: 36, 140
(38)

RI = – 504.2( 28.1) + 163.1( 2.5)1 v – 95.0( 2.0)NoF + 0.06( 0.003)G1 + 
11.2( 0.7)DPSA3e + 79.6( 7.7)NoI– 24.9( 2.7)MTCRE

n = 207 r = 0.993 rcv = 0.991 s = 37   F = 2311   outliers: 7, 58
(39)

RI = – 230.3( 10.5) + 169.8( 2.8)1 v – 86.1( 1.7)NoF + 0.07( 0.003)G1 + 7.3( 0.5)DPSA3e

–225.6( 23.4)RNoBr + 60.4( 7.2)BO  max
n = 207 r = 0.993 rcv = 0.991 s = 38   F = 2284   outlier: 7

(40)

RI = – 277.6( 12.9) + 120.8( 5.6)1 v – 108.3( 2.7)NoF + 0.06( 0.003)G1 + 78.6( 5.4)1  – 
2873.3( 214.4)FNSA3e + 84.4( 8.0)NoI

n = 207 r = 0.993 rcv = 0.991 s = 38   F = 2267   outlier: 36
(41)

RI = – 175.2( 8.0) + 108.5( 5.3)1 v – 111.7( 2.6)NoF + 0.06( 0.003)G1 – 
29.9( 2.2)WNSA3e + 59.1( 5.8)1  + 1457.5( 149.7)QI min

n = 207 r = 0.993 rcv = 0.991 s = 38   F = 2267   outliers: 36, 140
(42)

RI = – 191.4( 9.1) + 171.2( 2.9)1 v – 90.3( 1.9)NoF + 0.07( 0.003)G1 – 
23.1( 1.7)WNSA3e – 30.8( 3.1)NoBr + 61.1( 7.3)BO  max

n = 207 r = 0.993 rcv = 0.991 s = 38   F = 2246    outliers: 7, 21, 140
(43)

RI = – 173.4( 8.0) + 111.0( 5.3)1 v – 110.2( 2.6)NoF + 0.06( 0.003)G1 – 
28.0( 2.2)WNSA3e + 59.1( 5.8)1  + 416.2( 43.8)RNoI

n = 207 r = 0.993 rcv = 0.991 s = 38   F = 2232   outlier: 36
(44)

RI = – 266.9( 12.6) + 123.9( 5.7)1 v – 106.1( 2.7)NoF + 0.06( 0.003)G1 + 76.5( 5.4)1  – 
2648.1( 206.6)FNSA3e + 469.8( 45.6)RNoI

n = 207 r = 0.993 rcv = 0.991 s = 38   F = 2225   outlier: 36
(45)
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In the above MLR equations, after each coefficient of a QSRR model we have provided its 95% 
confidence range. For each QSRR model with six structural descriptors we have identified the
compounds that have absolute residuals greater than 3 standard deviations. Such compounds,
identified for each equation with the corresponding number from Table 1, are considered to be
outliers that cannot be modeled with the MLR model. In Table 4 we present the residual values for 
the entire group of outliers from Eqs. (36)–(45), namely compounds 7, 21, 36, 58, 140, and 161. A 
possible explanation for their large residuals is an error in the experimental RI or that the
appropriate descriptors were not included in the QSRR models. No specific reason could be 
determined to explain why these six compounds act as outliers. Halogens are particularly difficult to 
characterize with structural descriptors, and the presence in the best QSRR models of descriptors
related to halogen atoms (such as NoF, NoBr, RNoBr, NoI, RNoI, OI min) clearly shows that generic
descriptors are not suitable for this type of structure–property models. 

Table 4. The Residual (RIexp – RIcalc) for Compounds 7, 21, 36, 58,
140, and 161 Computed with the QSRR Equations (36)–(45)

Equation Residual
7 21 36 58 140 161

(36) 91 –30 144 113 –69 –90
(37) 170 –110 82 77 –73 –108
(38) 106 –53 153 68 –128 –59
(39) 126 –73 99 150 –109 –70
(40) 163 –109 81 83 –63 –101
(41) 108 –56 132 94 –73 –98
(42) 100 –52 153 70 –123 –56
(43) 171 –124 91 48 –115 –81
(44) 76 –51 153 75 –114 –50
(45) 71 –54 133 101 –64 –84

Since a large and diverse descriptor pool was computed with CODESSA and used in the 
heuristic MLR procedure for selecting significant structural descriptors, it is of interest to observe 
that only a small group of them were considered important in estimating the gas chromatographic
retention indices of the 207 halogenated compounds from Table 1. As a consequence of this fact, 
Eqs. (36)–(45) are highly similar and have the origin in Eq. (21) which was obtained with 1 v, NoF, 
and G1. The fourth descriptor comes from the class of charged–partial surface area indices, namely
DPSA3e, WNSA3e, FNSA3e, all three computed with atomic charges derived from
electronegativity. Similarly with the second descriptor NoF, which counts the F atoms in a 
compound, the fifth descriptor is related to the count of I or Br atoms (NoBr, RNoBr, NoI, RNoI) or 
the minimum atomic charge for a I atom, OI min. The last descriptor from Eqs. (36)–(45) is either the 
Randi  connectivity index 1 , the maximum –  bond order BO  max, or the total molecular two–
center resonance energy divided by the number of atoms MTCRE. It is interesting to remark the 
high relevance of simple structural descriptors in modeling the gas chromatographic retention 
indices, such as the halogen atom counts, Randi  connectivity index 1 , and the corresponding Kier 
and Hall connectivity index 1 v.
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4 CONCLUSIONS 

A successful application of the CODESSA software system was presented in this study for the 
prediction of the gas chromatographic retention indexes of 207 halogenated compounds using 
theoretical descriptors derived from the molecular structure. After a heuristic screening of relevant 
structural descriptors, we have selected a group of ten QSRR models representing multilinear
regression equations with six descriptors. For these QSRR equations the F statistics and leave–one–
out cross–validation correlation coefficient have a maximum, compared with those obtained for the 
MLR models with five and seven structural descriptors. The examination of the QSRR models
produced shows that the structural descriptors encode information related to the molecular structure
and the interactions that take place between the solute molecules and stationary phase during the
gas chromatographic separation process. Different aspects of the molecular structure are encoded
into the structural descriptors selected in the QSRR models. A close examination of the structural
descriptors selected in the group of MLR equations with six descriptors shows that halogens are 
difficult to characterize with theoretical descriptors, because the best QSRR models contain each 
two descriptors related to halogen atoms, namely NoF and one of the following five descriptors 
related to Br or I atoms: NoBr, RNoBr, NoI, RNoI, and OI min. This situation clearly shows that 
generic descriptors are not suitable for encoding the halogens effect in gas chromatographic
separation process, and considerable efforts should be made in this direction in order to develop 
better structural descriptors that encode into a proper form the heteroatoms effect. The Randi
connectivity index 1  is a topological descriptor derived from the molecular graph that encodes the 
size and degree of branching of the molecules, but do not discriminate between carbon atoms and 
halogens. The Kier and Hall connectivity index 1 v, derived from the Randi  connectivity index 1 ,
encodes the size and branching degree and the chemical nature of various chemical species that
appear in a hydrogen–depleted molecular graph. The charge–weighted surface area descriptors 
DPSA3e, WNSA3e, and FNSA3e, all three computed with atomic charges derived from
electronegativity, consistently appeared in several QSRR models. This was expected since 
molecular surface area has been shown to be an important descriptor in modeling the interactions
between a compound and the stationary phase during a gas chromatographic separation. 

Using the QSRR models proposed in this study, these simple theoretical descriptors can be 
used to estimate the gas chromatographic retention indices for new compounds in cases where 
standards are not available. Although the standard error of the estimations is large compared to the 
experimental uncertainty, the method is useful for investigating regularities in the retention indices 
and for not yet synthesized halogenated compounds. This is a general problem of QSRR models
developed with theoretical descriptors for diverse sets of organic compounds. A significant 
improvement was recently made by using orthogonal descriptors [8,49], but further investigation is 
needed to improve the prediction of gas chromatographic retention indices. 
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