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Abstract

Motivation. Koopmans’ theorem not only provides a numerical method to calculate approximate ionization
potential energies but also has another variational meaning. We have shown that an extension of the variational
meaning of the theorem to many–electron ionization processes leads naturally to the SCF equation for hole
orbitals.
Results. In this paper the Hartree–Fock equation for hole states is derived using the variational method.
Conclusions. The variational meaning of Koopmans’ theorem has been extended to many–electron ionization
processes. The obtained equation corresponds to the Hartree–Fock equation for hole states. Koopmans’ theorem
has been recognized as one of the expressions of the general variational duality between the electronic and the
hole states. 
Keywords. Koopmans’ theorem; Hartree–Fock; hole orbitals; variational duality.

Abbreviations and notations
H–F, Hartree–Fock SCF, self–consistent field 

1 INTRODUCTION

In quantum chemistry calculations, Koopmans’ theorem [1] has often been applied to calculate 
ionization potential energies based on the frozen–orbital approximation [2,3]. It is well known, 
however, that the theorem has another variational meaning that one–electron ionized states are 
already optimized energetically within the occupied orbitals of Hartree–Fock (H–F) wave functions 
of parent atoms or molecules [1,4]. In this work, we show that an extension of the variational 
meaning of the theorem to many–electron ionization processes leads naturally to the SCF (self–
consistent field) equation for hole orbitals. By introducing a virtual hole–state wave function, the 
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variational duality between the electronic and the hole states is shown explicitly. The variational 
meaning of Koopmans’ theorem is recognized as one of the expressions of this variational duality. 

2 EXTENSION OF KOOPMANS’ THEOREM TO MANY–ELECTRON
IONIZATION

We first consider an Ne–electron system which is generated by Nh–electron ionization from an 
N–electron system: Ne = N – Nh. The H–F wave function for the parent N–electron system is 
expressed with a normalized Slater determinant of spin orbitals ,0
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We assume that the spin orbitals of the Ne–electron system, a , are obtained variationally within 

the submanifold of N spin orbitals of the parent system using the unitary transformation as the 
variational freedom,
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Here, as indexes of orbitals, a or b is used for the Ne–electron system, r or s for the ionizing Nh–
electron system, and i or j runs over the all orbitals of the parent N–electron system. The electronic 
energy of the Ne–electron system is calculated as
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where HNe and HN are usual electronic Hamiltonian operators for Ne– and N–electron systems,
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respectively. The operator  is the Fock operator for the N–electron system and Nf

ijjijijijiji |||| . The following unitary invariance 

NNNN ffEE 00 , , (6)

for the transformations (3) and (4), is also used. 

The Nh–electron ionization potential energy, , is calculated asNh
PI

Nh
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In Eq. (7),  is constant for the unitary transformation and the extremum condition for NE0
NeE  is 

equivalent to that for .Nh
PI

Koopmans’ theorem corresponds to the case of 1Nh . In Eq. (7), srsr ||  terms will 
not appear and the extremum condition for NeE  results in the eigenvalue problem for . So the
H–F canonical orbitals, , of N–electron systems satisfy the extremum condition for 

Nf 0
Ne0

i E . This is

the variational meaning of Koopmans' theorem. Ionization potential energies become the orbital 
energies of the parent N–electron systems in the opposite sign. 

In the case of , the two–electron terms should be considered in the variational process. In 
the next section, this leads newly to the SCF equation for the Nh orbitals which correspond to the 
hole orbitals of the Ne–electron system. 

2Nh

3 SCF EQUATION

By extending the variational meaning of Koopmans' theorem to many–electron ionization 
processes, we derive the SCF equation for Nh hole orbitals. Here we consider the extremum
condition for  in Eq. (7) with the orthogonality condition of )( Nh

PI r  orbitals. The functional for 

the variation is defined by 
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and the extremum condition is written as 
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with . For arbitrary variation , we obtain *
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If we define the Fock operator for the hole orbitals as 
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the SCF Eq. (10) is rewritten as
Nh

s
ssrr
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holeF || . (12)

The SCF Eq. (12), constructed with only hole orbitals r , may be efficient numerically when the

convergence of the occupied orbitals of the Ne–electron system is slower. 

4 H–F EQUATION FOR VIRTUAL HOLE–STATE WAVE FUNCTION

As shown in Figure 1, next we introduce a virtual hole–state wave function, , which will 

lead to the SCF Eq. (12) as the H–F equation for the hole state.

hole
Nh

Figure 1. The duality between the electronic state Ne  and the hole state .hole
Nh

The Nh–hole–state wave function is constructed with only the hole orbitals r
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Nh . (13)

By using the Fock operator  as a “core–Hamiltonian”, the hole–state Hamiltonian is defined as Nf0
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Formally, the coulombic interaction has the negative sign as well as in Eq. (11). The total energy
of the Nh–hole–state is calculated as 
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From this equality of  and ( , the SCF equation (12) will be obtained immediately by
adopting the variational method for the Nh–hole–state wave function  in Eq. (13). The SCF 

equation (12) is now identified as the H–F equation for the hole state (13). Moreover, from Eqs. (7) 
and (15), we have: 
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holeE )Nh

PI
hole
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Nh
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So the sum of the electronic energy NeE  and the hole–state energy  is constant and the 

minimum condition for one is the maximum for the other. This is the variational duality between
the electronic–state wave function  and the hole–state wave function  as shown in Figure 

1. Koopmans’ theorem, Nh = 1 in Eq. (7), can be recognized as one of the expressions of this 
variational duality between the electronic and the hole states.

Nh
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As a numerical example, H–F energies are calculated for H2O with STO–3G minimal basis set at
its optimized geometry. There are two hole space–orbitals in the spin–restricted approximation. The
neutral molecule H2O is calculated by ionizing four electrons from H2O4–. The obtained energies
are and  where 

nuclear repulsion energy 8  is not included.

,078246.784
2
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au906688.
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hole 794343.5

5 CONCLUSIONS 

The variational meaning of Koopmans’ theorem has been extended to many–electron ionization 
processes. The obtained variational equation is the SCF equation for hole orbitals. By introducing
the wave function and the Hamiltonian operator for the virtual hole–state, the SCF equation is 
identified as the hole–state H–F equation. Although the equations of the hole states may not be so 
useful for practical calculations, they show explicitly the variational duality between the electronic
and the hole states. Koopmans’ theorem is recognized as one of the expressions of this general 
variational duality. 
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