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Abstract 

Motivation. Narcotic pollutants, that act by nonspecifically disrupting the functioning of cell membranes, are 
categorized as polar and nonpolar compounds. The toxicity prediction of narcotic pollutants with QSAR 
(quantitative structure-activity relationships) depends on the reliable determination of the mechanism of toxic 
action. The classification of the chemical compounds as polar and nonpolar narcotic pollutants based on 
structural characteristics is of utmost importance in predicting the aquatic toxicity for new chemicals. 
Method. Support vector machine (SVM) is a new machine learning algorithm that proved to be reliable in the 
classification of organic and bioorganic compounds. In this study we have investigated the application of SVM 
for the classification of 190 narcotic pollutants (76 polar and 114 nonpolar). Using an efficient descriptor 
selection algorithm, the energy of the highest occupied molecular orbital, the energy of the lowest unoccupied 
molecular orbital, and the most negative partial charge on any non–hydrogen atom in the molecule, all computed 
with the AM1 method, were found to be necessary for the discrimination of the polar and nonpolar compounds. 
The prediction power of each SVM model was evaluated with a leave–20%–out cross–validation procedure. 
Results. The classification performances of SVM models generated with the dot, polynomial, radial basis 
function, neural, and anova kernels, show that the statistical performances of SVM depend strongly on the kernel 
type and various parameters that control the kernel shape. An SVM model obtained with the anova kernel 
offered the best results, with three errors in calibration and four errors in prediction, all for nonpolar chemicals. 
Conclusions. SVM is a powerful and flexible classification algorithm, with many potential applications in 
molecular design, optimization of chemical libraries, and QSAR. In the present study we have demonstrated 
such an application for the identification of the aquatic toxicity mechanism. 
Keywords. Support vector machines; structure–toxicity relationships; aquatic toxicity; mechanism of action. 

1 INTRODUCTION 

Because numerous organic chemicals can be environmental pollutants, considerable efforts were 
directed towards the study of the relationships between a compound’s structure and its toxicity [1–
16]. Significant progress has been made to classify chemical compounds according to their 
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mechanism of toxicity and to screen them for their environmental risk assessment. The prediction of 
the mechanism of action using structural descriptors has major applications in selecting the 
appropriate quantitative structure–activity relationships (QSAR) model, to identify chemicals with 
similar toxicity mechanism, and in extrapolating toxic effects between different species and 
exposure regimes [7–16]. 

Organic compounds that act as narcotic pollutants are considered to disrupt the functioning of 
cell membranes. Narcotic pollutants are represented by two classes of compounds, namely nonpolar 
(class 1) and polar (class 2) compounds. The toxicity of both polar and nonpolar narcotic pollutants 
depends on the octanol-water partition coefficient, but the toxicity of polar compounds depends also 
on the propensity of forming hydrogen bonds. Recently, Ren [15] developed nonlinear discriminant 
functions to separate polar and nonpolar narcotic pollutants based on their octanol-water partition 
coefficients and hydrogen bonding quantum descriptors computed with the AM1 method. Support 
vector machines (SVM) represent a new class of machine learning algorithms that found numerous 
applications in various classification and regression models. In this study we present the application 
of SVM for the classification of polar and nonpolar narcotic pollutants using the dataset explored in 
Ref. [15]. The influence of the kernel type on the SVM performances was extensively explored 
using various kernels, namely the dot, polynomial, radial basis function, neural, and anova kernels. 
A new algorithm for selecting relevant structural descriptors in SVM models was tested with good 
results in reducing the input space. 

2 MATERIALS AND METHODS 

2.1 Chemical Data 
Ren [15] used five structural descriptors to discriminate between 76 polar and 114 nonpolar 

pollutants, namely the octanol–water partition coefficient log Kow, the energy of the highest 
occupied molecular orbital EHOMO, the energy of the lowest unoccupied molecular orbital ELUMO,
the most negative partial charge on any non–hydrogen atom in the molecule Q–, and the most 
positive partial charge on a hydrogen atom Q+. All quantum descriptors were computed with the 
AM1 method. The 190 compounds investigated in the present study, together with their 
classification into polar/nonpolar pollutants, were taken from two recent studies [14,15] and are 
presented in Table 1 together with the three quantum descriptors used in the best SVM model to 
discriminate between their toxicity mechanism (EHOMO, ELUMO, and Q–) and the experimental, 
calibration and prediction classification (nonpolar, +1; polar, –1). 

Among the 190 compounds, 114 are nonpolar and 76 are polar pollutants. The nonlinear 
discriminant analysis [15] was tested in a leave-one-out cross-validation test that gave eight 
classification errors, namely 2–phenoxyethanol, 2,3,4–trimethoxyacetophenone, acetophenone, 
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benzophenone, 2,4–dichloroacetophenone, 2–hydroxy–4–methoxyacetophenone, 1,4–
dichlorobenzene (all nonpolar compounds predicted as polar), and pyridine (polar compound 
predicted as nonpolar). 

Table 1. Structure of the chemical compounds, theoretical descriptors (EHOMO, ELUMO and Q–) and mechanism 
of toxic action (nonpolar, class +1; polar, class –1; experimental, Exp; calibration, Cal; prediction, Pre) 

No Compound EHOMO ELUMO Q– SVM Class 
     Exp Cal Pre 
1 methanol –11.135 3.7775 –0.5353 +1 +1 +1 
2 ethanol –11.050 3.6513 –0.5360 +1 +1 +1 
3 1–propanol –10.940 3.6324 –0.5317 +1 +1 +1 
4 2–propanol –10.895 3.4925 –0.5469 +1 +1 +1 
5 1–butanol –10.940 3.5041 –0.5422 +1 +1 +1 
6 2–butanol –10.952 3.5536 –0.5456 +1 +1 +1 
7 isobutanol –10.858 3.5052 –0.5476 +1 +1 +1 
8 tert–butyl alcohol –10.991 3.4384 –0.5517 +1 +1 +1 
9 1–pentanol –10.940 3.5041 –0.5422 +1 +1 +1 

10 3–pentanol –10.805 3.4884 –0.5394 +1 +1 +1 
11 1–hexanol –10.930 3.4642 –0.5506 +1 +1 +1 
12 1–heptanol –10.924 3.4300 –0.5517 +1 +1 +1 
13 1–octanol –10.917 3.4174 –0.5526 +1 +1 +1 
14 1–nonanol –10.912 3.4031 –0.5539 +1 +1 +1 
15 1–decanol –10.907 3.3928 –0.5539 +1 +1 +1 
16 1–undecanol –10.903 3.3851 –0.5524 +1 +1 +1 
17 1–dodecanol –10.900 3.3793 –0.5506 +1 +1 +1 
18 1,2–ethanediol –10.946 3.2671 –0.5293 +1 +1 +1 
19 1,3–propenediol –9.493 1.0283 –0.5567 +1 +1 +1 
20 2–methyl–2,4–pentanediol –10.677 3.1360 –0.5777 +1 +1 +1 
21 3–furanmethanol –9.176 0.7497 –0.5465 +1 –1 –1 
22 cyclohexanol –10.304 0.9217 –0.4832 +1 +1 +1 
23 2,2,2–trichloroethanol –11.578 –0.4003 –0.5113 +1 +1 –1 
24 butyldigol –10.523 2.4765 –0.5258 +1 +1 +1 
25 diethyleneglycol –10.982 2.4265 –0.5148 +1 +1 +1 
26 triethyleneglycol –10.281 2.3815 –0.5460 +1 +1 +1 
27 2–methoxyethanol –10.807 2.8028 –0.5114 +1 +1 +1 
28 2–ethoxyethanol –10.687 2.6958 –0.5150 +1 +1 +1 
29 2–isopropoxyethanol –10.670 2.6498 –0.5233 +1 +1 +1 
30 2–butoxyethanol –10.650 2.6755 –0.5209 +1 +1 +1 
31 2–(2–ethoxyethoxy)ethanol –10.584 2.3600 –0.5514 +1 +1 +1 
32 2–phenoxyethanol –8.973 0.5669 –0.5669 +1 –1 –1 
33 acetone –10.668 0.8443 –0.4700 +1 +1 +1 
34 2–propanone –10.646 0.8489 –0.4779 +1 +1 +1 
35 2–butanone –10.541 0.8772 –0.4659 +1 +1 +1 
36 3–pentanone –10.420 0.9096 –0.4578 +1 +1 +1 
37 2–octanone –10.512 0.8723 –0.4751 +1 +1 +1 
38 5–nonanone –10.392 0.9090 –0.4763 +1 +1 +1 
39 2–decanone –10.509 0.8715 –0.4726 +1 +1 +1 
40 3–methyl–2–butanone –10.409 0.9131 –0.4635 +1 +1 +1 
41 6–methyl–5–hepten–2–one –9.445 0.8556 –0.4760 +1 +1 +1 
42 2,3,4–trimethoxyacetophenone –9.581 –0.4590 –0.4887 +1 +1 +1 
43 acetophenone –9.936 –0.3606 –0.4591 +1 +1 +1 
44 3,3–dimethyl–2–butanone –10.337 0.9430 –0.4722 +1 +1 +1 
45 4–methyl–2–pentanone –10.493 0.8962 –0.4713 +1 +1 +1 
46 benzophenone –9.875 –0.4759 –0.4512 +1 +1 +1 
47 2,4–dichloroacetophenone –9.890 –0.5146 –0.4423 +1 +1 +1 
48 cyclohexanone –10.616 3.3960 –0.5584 +1 +1 +1 
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Table 1. (Continued) 
No Compound EHOMO ELUMO Q– SVM Class 
     Exp Cal Pre 
49 ethyl acetate –11.006 1.1370 –0.5045 +1 +1 +1 
50 diethyl ether –10.393 2.9807 –0.4057 +1 +1 +1 
51 diiso–propyl ether –10.383 2.8648 –0.5014 +1 +1 +1 
52 dibutyl ether –10.388 2.8852 –0.4487 +1 +1 +1 
53 dipentyl ether –10.389 2.8700 –0.4523 +1 +1 +1 
54 diphenyl ether –8.955 0.1708 –0.4029 +1 +1 +1 
55 tert–butylmethyl ether –10.431 2.9892 –0.4234 +1 +1 +1 
56 furan –9.317 0.7228 –0.2135 +1 +1 +1 
57 tetrahydrofuran –10.180 3.1103 –0.3943 +1 +1 +1 
58 2,6–dimethoxytoluene –9.424 0.2306 –0.3773 +1 +1 +1 
59 1,4–dimethoxybenzene –8.568 0.3924 –0.3696 +1 +1 +1 
60 2–hydroxy–4–methoxyacetophenone –9.119 –0.0249 –0.4636 +1 –1 –1 
61 dichloromethane –11.390 0.5946 –0.1854 +1 +1 +1 
62 chloroform –11.771 –0.3035 –0.2708 +1 +1 +1 
63 tetrachloromethane –12.379 –1.1170 –0.2974 +1 +1 +1 
64 1,1–dichloroethane –11.422 0.5822 –0.1724 +1 +1 +1 
65 1,2–dichloroethane –11.417 0.6838 –0.1151 +1 +1 +1 
66 1,1,1–trichloroethane –11.992 –0.2658 –0.1807 +1 +1 +1 
67 1,1,2–trichloroethane –11.513 0.3239 –0.1659 +1 +1 +1 
68 1,1,2,2–tetrachloroethane –11.655 –0.0738 –0.2785 +1 +1 +1 
69 pentachloroethane –11.870 –0.6817 –0.2966 +1 +1 +1 
70 hexachloroethane –12.182 –0.9677 –0.2913 +1 +1 +1 
71 1,2–dichloropropane –11.290 1.1169 –0.2122 +1 +1 +1 
72 1,3–dichloropropane –11.372 1.0193 –0.1625 +1 +1 +1 
73 1,2,3–trichloropropane –11.442 0.7594 –0.2074 +1 +1 +1 
74 1–chlorobutane –11.133 1.5109 –0.1880 +1 +1 +1 
75 trichloroethene –9.956 –0.0608 –0.0901 +1 +1 +1 
76 tetrachloroethene –9.902 –0.4367 –0.0372 +1 +1 +1 
77 hexachlorobutadiene –9.542 –1.3444 –0.1091 +1 +1 +1 
78 lindane –11.475 0.2284 –0.1923 +1 +1 +1 
79 chlorobenzene –9.561 0.1545 –0.1262 +1 +1 +1 
80 1,2–dichlorobenzene –9.602 –0.1425 –0.1028 +1 +1 +1 
81 1,3–dichlorobenzene –9.682 –0.1580 –0.1298 +1 +1 +1 
82 1,4–dichlorobenzene –9.523 –0.2162 –0.7993 +1 +1 +1 
83 1,2,3–trichlorobenzene –9.784 –0.3646 –0.1345 +1 +1 +1 
84 1,2,4–trichlorobenzene –9.623 –0.4691 –0.1004 +1 +1 +1 
85 1,3,5–trichlorobenzene –9.921 –0.4022 –0.1888 +1 +1 +1 
86 1,2,3,4–tetrachlorobenzene –9.735 –0.6518 –0.0587 +1 +1 +1 
87 1,2,3,5–tetrachlorobenzene –9.763 –0.6841 –0.1772 +1 +1 +1 
88 1,2,4,5–tetrachlorobenzene –9.655 –0.7308 –0.0512 +1 +1 +1 
89 3–chlorotoluene –9.444 0.1844 –0.2176 +1 +1 +1 
90 4–chlorotoluene –9.299 0.1351 –0.2161 +1 +1 +1 
91 2,4–dichlorotoluene –9.447 –0.1489 –0.2153 +1 +1 +1 
92 2,4,5–trichlorotoluene –9.475 –0.4355 –0.2593 +1 +1 +1 
93 3,4–dichlorotoluene –9.407 –0.1363 –0.2519 +1 +1 +1 
94 pentachlorobenzene –9.786 –0.8904 –0.0571 +1 +1 +1 
95 2–chloronaphthalene –8.868 –0.5063 –0.1939 +1 +1 +1 
96 hexane –11.084 3.7357 –0.1641 +1 +1 +1 
97 octane –11.066 3.6386 –0.1330 +1 +1 +1 
98 decane –11.063 3.5774 –0.1293 +1 +1 +1 
99 benzene –9.653 0.5551 –0.0921 +1 +1 +1 
100 toluene –9.330 0.5204 –0.1922 +1 +1 +1 
101 o–xylene –9.183 0.5231 –0.1838 +1 +1 +1 
102 m–xylene –9.186 0.5250 –0.1782 +1 +1 +1 
103 p–xylene –9.062 0.4871 –0.1846 +1 +1 +1 
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Table 1. (Continued) 
No Compound EHOMO ELUMO Q– SVM Class 
    Exp Cal Pre 
104 1,2,4–trimethylbenzene –8.972 0.5030 –0.2105 +1 +1 +1 
105 1,3,5–trimethylbenzene –9.165 0.5756 –0.2229 +1 +1 +1 
106 1,2,4,5–tetramethylbenzene –8.832 0.4947 –0.2022 +1 +1 +1 
107 ethylbenzene –9.381 0.5281 –0.1464 +1 +1 +1 
108 cumene –9.383 0.5417 –0.1710 +1 +1 +1 
109 1–methylnaphthalene –8.584 –0.2668 –0.1574 +1 +1 +1 
110 2–methylnaphthalene –8.620 –0.2459 –0.1959 +1 +1 +1 
111 biphenyl –8.952 –0.0680 –0.1264 +1 +1 +1 
112 cyclopentane –10.970 3.6228 –0.1258 +1 +1 +1 
113 cyclohexane –10.937 3.6562 –0.0753 +1 +1 +1 
114 methylcyclohexane –10.822 3.6095 –0.2031 +1 +1 +1 
115 nitrobenzene –10.562 –1.0679 –0.4939 –1 –1 –1 
116 2–nitrotoluene –10.171 –1.0109 –0.5043 –1 –1 –1 
117 3–nitrotoluene –10.197 –1.0138 –0.4984 –1 –1 –1 
118 4–nitrotoluene –10.305 –1.0449 –0.5017 –1 –1 –1 
119 2,3–dimethylnitrobenzene –9.941 –0.9491 –0.5097 –1 –1 –1 
120 3,4–dimethylnitrobenzene –10.077 –0.9975 –0.5050 –1 –1 –1 
121 2–chloronitrobenzene –10.332 –1.0722 –0.4984 –1 –1 –1 
122 3–chloronitrobenzene –10.367 –1.2855 –0.4842 –1 –1 –1 
123 4–chloronitrobenzene –10.475 –1.3436 –0.4911 –1 –1 –1 
124 2,3–dichloronitrobenzene –10.283 –1.2297 –0.4900 –1 –1 –1 
125 2,4–dichloronitrobenzene –10.470 –1.3555 –0.4938 –1 –1 –1 
126 2,5–dichloronitrobenzene –10.218 –1.2921 –0.4879 –1 –1 –1 
127 3,5–dichloronitrobenzene –10.416 –1.4880 –0.4772 –1 –1 –1 
128 2–chloro–6–nitrotoluene –10.146 –0.8587 –0.4966 –1 –1 –1 
129 4–chloro–2–nitrotoluene –10.324 –1.2798 –0.4952 –1 –1 –1 
130 4–chloro–3–nitrotoluene –10.036 –1.0159 –0.5006 –1 –1 –1 
131 phenol –9.114 0.3976 –0.4958 –1 –1 –1 
132 2–methylphenol –8.960 0.4093 –0.4813 –1 –1 –1 
133 3–methylphenol –9.052 0.3732 –0.4963 –1 –1 –1 
134 4–methylphenol –8.880 0.4317 –0.4927 –1 –1 –1 
135 2,4–dimethylphenol –8.784 0.3979 –0.4980 –1 –1 –1 
136 2,6–dimethylphenol –8.885 0.3940 –0.4751 –1 –1 –1 
137 3,4–dimethylphenol –8.803 0.4360 –0.4982 –1 –1 –1 
138 2,3,6–trimethylphenol –8.833 0.3648 –0.4751 –1 –1 –1 
139 2,4,6–trimethylphenol –8.691 0.4322 –0.4750 –1 –1 –1 
140 4–ethylphenol –8.912 0.4334 –0.4931 –1 –1 –1 
141 4–propylphenol –8.903 0.4383 –0.4964 –1 –1 –1 
142 4–n–butylphenol –8.903 0.4362 –0.4930 –1 –1 –1 
143 4–tert–butylphenol –8.894 0.4709 –0.4990 –1 –1 –1 
144 2–tert–butyl–4–methylphenol –8.761 0.4780 –0.4381 –1 –1 –1 
145 4–n–pentylphenol –8.902 0.4370 –0.4951 –1 –1 –1 
146 4–tert–pentylphenol –8.885 0.4722 –0.4992 –1 –1 –1 
147 2–allylphenol –9.016 0.3597 –0.4818 –1 –1 –1 
148 2–phenylphenol –8.731 –0.0489 –0.4813 –1 –1 –1 
149 1–naphthol –8.455 –0.2472 –0.4810 –1 –1 –1 
150 4–chlorophenol –9.125 0.0946 –0.4928 –1 –1 –1 
151 4–chloro–3–methylphenol –9.051 0.0930 –0.4894 –1 –1 –1 
152 4–chloro–3,5–dimethylphenol –8.977 0.1466 –0.4982 –1 –1 –1 
153 3–methoxyphenol –8.941 0.4134 –0.4939 –1 –1 –1 
154 4–methoxyphenol –8.636 0.3034 –0.4790 –1 –1 –1 
155 4–phenoxyphenol –8.806 0.1133 –0.4904 –1 –1 –1 
156 pyridine –9.932 0.1385 –0.6610 –1 –1 –1 
157 quinoline –9.181 –0.4666 –0.6538 –1 –1 –1 
158 aniline –8.522 0.6392 –0.8545 –1 –1 –1 
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Table 1. (Continued) 
No Compound EHOMO ELUMO Q– SVM Class 
    Exp Cal Pre 
159 2–methylaniline –8.435 0.6007 –0.9317 –1 –1 –1 
160 3–methylaniline –8.478 0.6051 –0.9380 –1 –1 –1 
161 4–methylaniline –8.356 0.6156 –0.9429 –1 –1 –1 
162 2,3–dimethylaniline –8.399 0.5917 –0.9301 –1 –1 –1 
163 3,4–dimethylaniline –8.314 0.6089 –0.9480 –1 –1 –1 
164 N,N–dimethylaniline –9.332 0.4336 –0.6200 –1 –1 –1 
165 2–ethylaniline –8.431 0.6081 –0.9294 –1 –1 –1 
166 3–ethylaniline –8.482 0.6107 –0.9510 –1 –1 –1 
167 4–ethylaniline –8.379 0.6219 –0.9589 –1 –1 –1 
168 4–butylaniline –8.376 0.6182 –0.9518 –1 –1 –1 
169 2,6–diisopropylaniline –8.338 0.6459 –0.8995 –1 –1 –1 
170 2–chloroaniline –8.376 0.3928 –0.6743 –1 –1 –1 
171 3–chloroaniline –8.458 0.3781 –0.6965 –1 –1 –1 
172 4–chloroaniline –8.577 0.2920 –0.9487 –1 –1 –1 
173 2,4–dichloroaniline –8.466 0.1239 –0.6755 –1 –1 –1 
174 2,5–dichloroaniline –8.589 0.0302 –0.6638 –1 –1 –1 
175 3,4–dichloroaniline –8.499 0.1307 –0.6796 –1 –1 –1 
176 3,5–dichloroaniline –8.687 0.0543 –0.6550 –1 –1 –1 
177 2,3,4–trichloroaniline –8.607 –0.1427 –0.6808 –1 –1 –1 
178 2,3,6–trichloroaniline –8.702 –0.2406 –0.6761 –1 –1 –1 
179 2,4,5–trichloroaniline –8.630 –0.1974 –0.6849 –1 –1 –1 
180 4–bromoaniline –8.393 0.4109 –0.6621 –1 –1 –1 
181 , , ,4–tetrafluoro–3–methylaniline –8.759 –0.3958 –0.6372 –1 –1 –1 
182 , , ,4–tetrafluoro–2–methylaniline –8.934 –0.4233 –0.8982 –1 –1 –1 
183 pentafluoroaniline –9.272 –1.0127 –0.8360 –1 –1 –1 
184 3–benzyloxyaniline –8.540 0.3454 –0.9448 –1 –1 –1 
185 4–hexyloxyaniline –8.371 0.4853 –0.9489 –1 –1 –1 
186 2–nitroaniline –9.068 –0.7937 –0.6488 –1 –1 –1 
187 3–nitroaniline –9.254 –0.9503 –0.9468 –1 –1 –1 
188 4–nitroaniline –9.160 0.7050 –0.6493 –1 –1 –1 
189 2–chloro–4–nitroaniline –9.256 –0.9066 –0.6434 –1 –1 –1 
190 4–ethoxy–2–nitroaniline –8.994 –0.8747 –0.8070 –1 –1 –1 

2.2 Structure–Toxicity Models with Support Vector Machines 
Support vector machines were developed by Vapnik [17–19] as an effective algorithm for 

determining an optimal hyperplane to separate two classes of patterns [20–30]. In the first step, 
using various kernels that perform a nonlinear mapping, the input space is transformed into a higher 
dimensional feature space. Then, a maximal margin hyperplane (MMH) is computed in the feature 
space by maximizing the distance to the hyperplane of the closest patterns from the two classes. The 
patterns that determine the separating hyperplane are called support vectors. 

This powerful classification technique was applied with success in medicine, computational 
biology, bioinformatics, and structure–activity relationships, for the classification of: microarray 
gene expression data [31], translation initiation sites [32], genes [33], cancer type [34–37], 
pigmented skin lesions [38], HIV protease cleavage sites [39], GPCR type [40], protein class [41], 
membrane protein type [42], protein–protein interactions [43], protein subcellular localization [44–
46], protein fold [47], protein secondary structure [48], specificity of GalNAc–transferase [49], 
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DNA hairpins [50], organisms [51], aquatic toxicity mechanism of action [16], carcinogenic activity 
of polycyclic aromatic hydrocarbons [52], structure–odor relationships for pyrazines [53], cancer 
diagnosis from the blood concentration of Zn, Ba, Mg, Ca, Cu, and Se [54]. 

In this study we have investigated the application of SVM for the classification of polar and 
nonpolar pollutants using structural descriptors. The 190 compounds presented in Table 1 were 
taken from the literature [14,15], and consist of 114 nonpolar data compounds (SVM class +1) and 
76 polar compounds (SVM class –1). All SVM models from the present paper for the classification
of polar and nonpolar pollutants were obtained with mySVM [55], which is freely available for 
download. Links to Web resources related to SVM, namely tutorials, papers and software, can be 
found in BioChem Links [56] at http://www.biochempress.com. Before computing the SVM model, 
the input vectors were scaled to zero mean and unit variance. The prediction power of each SVM 
model was evaluated with a leave–20%–out (L20%O) cross–validation procedure, and the capacity 
parameter C took the values 10, 100, and 1000. We present below the kernels and their parameters 
used in this study. 

The dot kernel. The inner product of x and y defines the dot kernel: 

yxyxK ),( (1)

The polynomial kernel. The polynomial of degree d (values 2, 3, 4, and 5) in the variables x and 
y defines the polynomial kernel: 

dyxyxK )1(),( (2)

The radial kernel. The following exponential function in the variables x and y defines the radial 
basis function kernel, with the shape controlled by the parameter  (values 0.5, 1.0, and 2.0): 

)||||exp(),( 2yxyxK (3)

The neural kernel. The hyperbolic tangent function in the variables x and y defines the neural 
kernel, with the shape controlled by the parameters a (values 0.5, 1.0, and 2.0) and b (values 0, 1, 
and 2): 

)tanh(),( byaxyxK (4)

The anova kernel. The sum of exponential functions in x and y defines the anova kernel, with 
the shape controlled by the parameters  (values 0.5, 1.0, and 2.0) and d (values 1, 2, and 3): 

d

i
ii yxyxK ))(exp(),( (5)

2.3 Descriptor Selection in Support Vector Machines 
All studies that develop QSAR models from a large set of structural descriptors use a wide range 

of algorithms for selecting significant descriptors. Currently, there is no widely accepted algorithm 
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for selecting the best group of descriptors for an SVM model. Because an exhaustive test of all 
combinations of descriptors requires too large computational resources, we have used a heuristic 
method for descriptor selection. This heuristic algorithm starts from the set of 5 structural 
descriptors used by Ren [15] (namely, log Kow, EHOMO, ELUMO, Q–, and Q+) and develops SVM 
models by applying the following steps: 

(1) Starting from the complete group of N descriptors, all SVM models with one descriptor each 
are computed. For each descriptor or group of descriptors, 78 experiments were performed using the 
dot, polynomial, radial basis function, neural, and anova kernels, with various parameters (see Eqs. 
(1)–(5) and Table 2). The prediction performances of each SVM experiment are evaluated with the 
L20%O cross–validation procedure, and the accuracy index AC is computed for each experiment, 
namely AC = (TP + TN)/(TP + FP + TN + FN), where TP is the true positive number, FP is the 
false positive number, TN is the true negative number, and FN is the false negative number. The 
descriptor that gives the maximum prediction AC is selected for further experiments. 

(2) Using the descriptor selected in step (1) and each of the remaining N – 1 descriptors, pairs of 
descriptors are tested in SVM models. The pair of descriptors with the maximum prediction AC is 
selected for further experiments. 

(3) In each step, a new descriptor is selected, namely the one that, together with the descriptors 
selected in previous steps, gives the maximum prediction AC. The process stops when prediction 
AC does not increase by adding a new descriptor, or when a certain maximum number of 
descriptors are selected. 

3 RESULTS AND DISCUSSION 

The results of the descriptor selection algorithm show that SVM models obtained with EHOMO

(the energy of the highest occupied molecular orbital), ELUMO (the energy of the lowest unoccupied 
molecular orbital), and Q– (the most negative partial charge on any non–hydrogen atom in the 
molecule) give the maximum prediction ACp = 0.98. Because adding a fourth descriptor does not 
increase the prediction AC, we will discuss only SVM models obtained with these three quantum 
descriptors. The SVM results obtained with EHOMO, ELUMO, and Q– are presented in Table 2. The 
calibration of the SVM models was performed with the whole set of 190 compounds (114 nonpolar, 
SVM class +1; 76 polar, SVM class –1). The calibration results reported in Table 2 are: TPc, true 
positive in calibration, the number of +1 patterns (nonpolar compounds) computed in class +1; FNc,
false negative in calibration, the number of +1 patterns computed in class –1; TNc, true negative in 
calibration, the number of –1 patterns (polar compounds) computed in class –1; FPc, false positive 
in calibration, the number of –1 patterns computed in class +1; SVc, number of support vectors in 
calibration; BSVc, number of bounded support vectors in calibration; ACc, calibration accuracy. 
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Using sophisticated kernels, SVM can be calibrated to perfectly discriminate two populations of 
patterns, but only a cross–validation prediction test can demonstrate the potential utility of an SVM 
model. For each SVM model we present in Table 2 the following leave–20%–out cross-validation 
statistics: TPp, true positive in prediction; FNp, false negative in prediction; TNp, true negative in 
prediction; FPp, false positive in prediction; SVp, average number of support vectors in prediction; 
BSVp, average number of bounded support vectors in prediction; ACp, prediction accuracy. 

Table 2. Results for SVM classification of polar and nonpolar pollutants using EHOMO, ELUMO and Q–. a

Exp C K   TPc FNc TNc FPc SVc BSVc ACc TPp FNp TNp FPp SVp BSVp ACp
1 10 D   105 9 76 0 27 23 0.95 104 10 76 0 22.2 18.4 0.95
2 100    106 8 76 0 25 21 0.96 104 10 76 0 20.2 16.2 0.95
3 1000    106 8 76 0 25 21 0.96 108 6 76 0 19.6 15.6 0.97
   d                

4 10 P 2  109 5 75 1 21 12 0.97 108 6 75 1 18.0 9.2 0.96
5 100  2  109 5 76 0 20 10 0.97 108 6 74 2 15.2 6.0 0.96
6 1000  2  109 5 76 0 19 9 0.97 108 6 72 4 14.8 5.4 0.95
7 10  3  112 2 76 0 21 7 0.99 108 6 73 3 15.2 4.8 0.95
8 100  3  113 1 76 0 19 2 0.99 107 7 73 3 15.2 1.2 0.95
9 1000  3  114 0 76 0 18 0 1.00 106 8 73 3 14.4 0.0 0.94

10 10  4  112 2 76 0 22 5 0.99 106 8 73 3 17.0 2.4 0.94
11 100  4  114 0 76 0 20 0 1.00 106 8 72 4 15.8 0.0 0.94
12 1000  4  114 0 76 0 20 0 1.00 106 8 72 4 15.8 0.0 0.94
13 10  5  114 0 76 0 19 1 1.00 107 7 70 6 15.0 0.4 0.93
14 100  5  114 0 76 0 20 0 1.00 107 7 70 6 15.0 0.0 0.93
15 1000  5  114 0 76 0 20 0 1.00 107 7 70 6 15.0 0.0 0.93

                  
16 10 R 0.5  109 5 76 0 26 14 0.97 107 7 75 1 23.6 11.0 0.96
17 100  0.5  112 2 76 0 20 4 0.99 108 6 74 2 17.0 4.2 0.96
18 1000  0.5  113 1 76 0 19 2 0.99 108 6 74 2 15.8 0.6 0.96
19 10  1.0  112 2 76 0 35 7 0.99 109 5 75 1 34.0 5.4 0.97
20 100  1.0  113 1 76 0 28 2 0.99 109 5 75 1 26.4 1.4 0.97
21 1000  1.0  114 0 76 0 21 0 1.00 109 5 75 1 21.8 0.0 0.97
22 10  2.0  113 1 76 0 45 5 0.99 109 5 74 2 44.8 3.0 0.96
23 100  2.0  114 0 76 0 43 0 1.00 109 5 75 1 40.8 0.0 0.97
24 1000  2.0  114 0 76 0 43 0 1.00 109 5 75 1 40.8 0.0 0.97

   a b               
25 10 N 0.5 0.0 102 12 68 8 26 24 0.89 102 12 66 10 24.2 21.4 0.88
26 100  0.5 0.0 102 12 64 12 28 25 0.87 104 10 63 13 23.4 20.0 0.88
27 1000  0.5 0.0 102 12 64 12 28 24 0.87 103 11 62 14 22.0 18.6 0.87
28 10  1.0 0.0 98 16 60 16 34 32 0.83 95 19 61 15 30.6 28.0 0.82
29 100  1.0 0.0 98 16 60 16 34 32 0.83 100 14 56 20 31.4 29.0 0.82
30 1000  1.0 0.0 98 16 60 16 34 32 0.83 95 19 60 16 29.6 27.4 0.82
31 10  2.0 0.0 85 29 48 28 60 58 0.70 80 34 55 21 45.2 43.8 0.71
32 100  2.0 0.0 87 27 48 28 58 55 0.71 80 34 55 21 45.2 43.2 0.71
33 1000  2.0 0.0 85 29 47 29 60 58 0.69 86 28 48 28 47.6 45.0 0.71
34 10  0.5 1.0 95 19 53 23 53 50 0.78 92 22 52 24 41.4 38.6 0.76
35 100  0.5 1.0 92 22 53 23 49 46 0.76 89 25 51 25 39.4 36.4 0.74
36 1000  0.5 1.0 92 22 53 23 49 45 0.76 89 25 50 26 39.2 36.4 0.73
37 10  1.0 1.0 85 29 47 29 61 58 0.69 87 27 50 26 44.6 42.8 0.72
38 100  1.0 1.0 98 16 59 17 35 33 0.83 83 31 52 24 43.8 41.2 0.71
39 1000  1.0 1.0 98 16 59 17 35 33 0.83 84 30 46 30 48.0 45.4 0.68
40 10  2.0 1.0 86 28 43 33 64 64 0.68 86 28 50 26 35.6 34.0 0.72
41 100  2.0 1.0 86 28 43 33 64 64 0.68 94 20 55 21 26.6 24.8 0.78
42 1000  2.0 1.0 86 28 43 33 64 64 0.68 97 17 46 30 34.0 32.6 0.75
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Table 2. (Continued) 
Exp C K a b TPc FNc TNc FPc SVc BSVc ACc TPp FNp TNp FPp SVp BSVp ACp
43 10 N 0.5 2.0 87 27 46 30 67 65 0.70 90 24 44 32 54.2 52.0 0.71
44 100  0.5 2.0 84 30 46 30 63 60 0.68 85 29 44 32 51.0 48.4 0.68
45 1000  0.5 2.0 84 30 46 30 62 60 0.68 84 30 44 32 50.2 47.8 0.67
46 10  1.0 2.0 83 31 45 31 64 62 0.67 71 43 50 26 52.0 50.4 0.64
47 100  1.0 2.0 83 31 45 31 64 62 0.67 82 32 45 31 51.6 49.4 0.67
48 1000  1.0 2.0 83 31 45 31 64 62 0.67 82 32 45 31 51.6 49.4 0.67
49 10  2.0 2.0 85 29 46 30 63 60 0.69 75 39 65 11 46.0 44.6 0.74
50 100  2.0 2.0 97 17 58 18 37 35 0.82 79 35 68 8 42.0 40.0 0.77
51 1000  2.0 2.0 97 17 58 18 37 35 0.82 82 32 65 11 38.2 35.8 0.77

   d               
52 10 A 0.5 1 110 4 76 0 26 16 0.98 106 8 75 1 22.0 12.6 0.95
53 100  0.5 1 111 3 76 0 17 9 0.98 108 6 74 2 15.4 5.6 0.96
54 1000  0.5 1 112 2 76 0 14 4 0.99 109 5 73 3 13.2 2.8 0.96
55 10  1.0 1 111 3 76 0 26 11 0.98 109 5 75 1 20.4 8.6 0.97
56 100  1.0 1 111 3 76 0 18 5 0.98 110 4 74 2 16.0 3.6 0.97
57 1000  1.0 1 113 1 76 0 17 3 0.99 110 4 72 4 14.6 1.6 0.96
58 10  2.0 1 111 3 76 0 24 6 0.98 110 4 76 0 20.6 4.6 0.98
59 100  2.0 1 113 1 76 0 18 3 0.99 109 5 73 3 17.8 1.6 0.96
60 1000  2.0 1 114 0 76 0 14 0 1.00 109 5 70 6 15.2 0.0 0.94
61 10  0.5 2 112 2 76 0 24 7 0.99 107 7 75 1 18.4 4.8 0.96
62 100  0.5 2 112 2 76 0 20 3 0.99 108 6 74 2 16.8 1.6 0.96
63 1000  0.5 2 114 0 76 0 15 0 1.00 107 7 74 2 14.2 0.0 0.95
64 10  1.0 2 112 2 76 0 21 4 0.99 108 6 75 1 18.8 2.4 0.96
65 100  1.0 2 114 0 76 0 20 0 1.00 107 7 73 3 16.6 0.0 0.95
66 1000  1.0 2 114 0 76 0 20 0 1.00 107 7 73 3 16.6 0.0 0.95
67 10  2.0 2 114 0 76 0 24 2 1.00 108 6 73 3 24.6 1.0 0.95
68 100  2.0 2 114 0 76 0 22 0 1.00 108 6 73 3 23.0 0.0 0.95
69 1000  2.0 2 114 0 76 0 22 0 1.00 108 6 73 3 23.0 0.0 0.95
70 10  0.5 3 112 2 76 0 21 4 0.99 108 6 74 2 17.0 1.8 0.96
71 100  0.5 3 114 0 76 0 17 0 1.00 107 7 73 3 15.4 0.0 0.95
72 1000  0.5 3 114 0 76 0 17 0 1.00 107 7 73 3 15.4 0.0 0.95
73 10  1.0 3 114 0 76 0 20 0 1.00 107 7 74 2 20.4 0.0 0.95
74 100  1.0 3 114 0 76 0 20 0 1.00 107 7 74 2 20.4 0.0 0.95
75 1000  1.0 3 114 0 76 0 20 0 1.00 107 7 74 2 20.4 0.0 0.95
76 10  2.0 3 114 0 76 0 38 0 1.00 108 6 74 2 37.2 0.0 0.96
77 100  2.0 3 114 0 76 0 38 0 1.00 108 6 74 2 37.2 0.0 0.96
78 1000  2.0 3 114 0 76 0 38 0 1.00 108 6 74 2 37.2 0.0 0.96

a The table reports the experiment number Exp, capacity parameter C, kernel type K (dot D; polynomial P; radial basis 
function R; neural N; anova A) and corresponding parameters, calibration results (TPc, true positive in calibration; FNc,
false negative in calibration; TNc, true negative in calibration; FPc, false positive in calibration; SVc, number of support 
vectors in calibration; BSVc, number of bounded support vectors in calibration; ACc, calibration accuracy) and L20%O 
prediction results (TPp, true positive in prediction; FNp, false negative in prediction; TNp, true negative in prediction; 
FPp, false positive in prediction; SVp, average number of support vectors in prediction; BSVp, average number of 
bounded support vectors in prediction; ACp, prediction accuracy). 

The results from Table 2 show that the classification results depend on the kernel type and 
parameters: dot kernel, with ACc between 0.95 and 0.96 and ACp between 0.95 and 0.97; 
polynomial kernel, with ACc between 0.97 and 1 and with ACp between 0.93 and 0.96; radial basis 
function kernel, with ACc between 0.97 and 1 and with ACp between 0.96 and 0.97; neural kernel, 
with ACc between 0.68 and 0.89 and with ACp between 0.64 and 0.88; anova kernel, with ACc

between 0.98 and 1 and with ACp between 0.94 and 0.98. The overfitting of SVM models is clearly 
detected in several cases. For example, as the degree of the polynomial kernel increases from 2 to 5, 
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ACc increases from 0.97 to 1, while ACp decreases from 0.96 to 0.93. These results show that SVM 
models are capable of overfitting, and the only sound method to identify the optimum model is by 
comparing prediction statistics. 

The maximum prediction ACp = 0.98 was obtained in experiment 58, with the anova kernel, SVc

= 24, SVp = 20.6, and ACc = 0.98 (see Table 2). The SVM model from experiment 58 has three 
classification errors in calibration, all nonpolar compounds  (class +1)  situated on the polar  (class 
–1) region of the SVM hyperplane: 21, 3–furanmethanol; 32, 2–phenoxyethanol; 60, 2–hydroxy–4–
methoxyacetophenone. The leave-20%-out cross-validation has four errors in prediction, all 
nonpolar compounds predicted to be polar, i.e., the three compounds from calibration (21, 32, and 
60) and 23, 2,2,2–trichloroethanol. These results show that SVM models obtained with EHOMO,
ELUMO, and Q– are capable of discriminating between polar and nonpolar pollutants. Good 
prediction results are obtained also with a group of SVM models that have ACp = 0.97, namely 
experiments 3 (polynomial kernel); 19–24 (radial kernel); 55 and 56 (anova kernel). The results 
from Table 2 show that several experiments have ACc = 1: experiments 9 and 11–15 (polynomial 
kernel); 21, 23, and 24 (radial kernel); 60, 63, 65–69, and 71–78 (anova kernel). However, the 
corresponding prediction values for ACp are between 0.93 and 0.96 for the polynomial and anova 
kernels, and only the experiments with the radial kernel, having ACp = 0.97, can be regarded as 
interesting alternatives to experiment 58. 

4 CONCLUSIONS 

Narcotic pollutants, that act by nonspecifically disrupting the functioning of cell membranes, are 
categorized as polar and nonpolar compounds. The toxicity prediction of narcotic pollutants with 
QSAR (quantitative structure-activity relationships) depends on the reliable determination of the 
mechanism of toxic action. The classification of the chemical compounds as polar and nonpolar 
narcotic pollutants based on structural characteristics is of utmost importance in predicting the 
aquatic toxicity for new chemicals. Support vector machines represent an efficient machine learning 
algorithm that separate two classes of patterns by determining a unique hyperplane that maximizes 
the separation between the two classes. In this study we have investigated the application of SVM 
for the classification of 190 narcotic pollutants (76 polar and 114 nonpolar) using literature data 
[14,15]. Using an efficient descriptor selection algorithm, the energy of the highest occupied 
molecular orbital EHOMO, the energy of the lowest unoccupied molecular orbital ELUMO, and the 
most negative partial charge on any non–hydrogen atom in the molecule Q–, all computed with the 
AM1 method, were found to be necessary for the discrimination of the polar and nonpolar 
compounds. 

We have explored the influence of the kernel type on the SVM performances by testing various 
kernels, namely the dot, polynomial, radial basis function, neural, and anova kernels. The prediction 
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power of each SVM model was evaluated with a leave–20%–out cross–validation procedure. Our 
experiments with various kernels clearly demonstrate that the performance of the SVM classifier is 
strongly dependent on the kernel shape. The best prediction results were obtained with the anova 
kernel, followed by the radial basis function kernel. 

This study demonstrates that SVM models can be used with success to discriminate between 
polar and nonpolar pollutants, providing reliable predictions. The heuristic algorithm proposed here 
for the efficient selection of structural descriptors for SVM models was able of significantly 
reducing the dimensionality of the input space. Further studies regarding the use of SVM in 
structure–activity relationships should compare this heuristic algorithm with other descriptor 
selection methods, such as the genetic algorithm. Considerable effort should be directed also 
towards the investigation of various kernel functions, with the aim to develop reliable methods for 
selecting the best kernel for a particular classification problem. 

Supplementary Material 
The mySVM model files for experiment 58 is available as supplementary material. 
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