Internet **Electronic** Journal of Molecular Design

September 2006, Volume 5, Number 9, Pages 488–502

Editor: Ovidiu Ivanciuc

Artificial Immune System Classification of Druginduced Torsade de Pointes with AIRS (Artificial Immune Recognition System)

Ovidiu Ivanciuc¹

¹ Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555–0857

Received: June 25, 2006; Revised: August 17, 2006; Accepted: September 3, 2006; Published: December 8, 2006

Citation of the article:

O. Ivanciuc, Artificial Immune System Classification of Drug-induced Torsade de Pointes with AIRS (Artificial Immune Recognition System), *Internet Electron. J. Mol. Des.* **2006**, *5*, 488–502, http://www.biochempress.com.

Inter*net* **Electronic** Journal of Molecular Design BIOCHEM Press http://www.biochempress.com

Artificial Immune System Classification of Druginduced Torsade de Pointes with AIRS (Artificial Immune Recognition System)

Ovidiu Ivanciuc^{1,*}

¹ Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555–0857

Received: June 25, 2006; Revised: August 17, 2006; Accepted: September 3, 2006; Published: December 8, 2006

Internet Electron. J. Mol. Des. 2006, 5 (9), 488–502

Abstract

Artificial immune systems (AIS) represent a family of machine learning algorithms that use immune system components and mechanisms as templates in modeling information processes, such as pattern recognition and classification. This paper demonstrates the first application of the artificial immune recognition system (AIRS) algorithm in modeling structure-activity relationships (SAR). A dataset of 349 drugs was used in the evaluation of the AIRS algorithm. The learning task was to classify these chemicals into a subset of 106 drugs that induce torsade de pointes (TdP) and a subset of 243 drugs that do not induce TdP. The chemical structure was described with five linear solvation energy relationships descriptors, namely the excess molar refraction, the combined dipolarity/polarizability, the overall solute hydrogen bond acidity, the overall solute hydrogen bond basicity, and the McGowan's characteristic volume. The classification performance of the AIRS algorithm depends on a large number of parameters: affinity threshold scalar, clonal rate, hypermutation rate, number of nearest neighbors, initial memory cell pool size, number of instances to compute the affinity threshold, stimulation threshold, and total resources. The cross-validation predictions were investigated over of a wide range of values for these eight AIRS parameters. The best leave-10%-out cross-validation predictions of the AIRS algorithm (selectivity 0.783, specificity 0.893, accuracy 0.860, and Matthews correlation coefficient 0.671) surpass those obtained with 11 other machine learning algorithms, namely logistic regression, Bayesian network, naïve Bayesian classifier, alternating decision tree, C4.5 decision tree, logistic model trees, decision tree with naïve Bayesian classifiers at the leaves, fast decision tree learner, random trees, random forests, and K* instance-based classifier. The results obtained suggest that classifiers based on artificial immune systems may be successful in structure-activity relationships, drug design, and virtual screening of chemical libraries.

Keywords. Artificial immune system; AIS; artificial immune recognition system; AIRS; torsade de pointes; TdP; quantitative structure–activity relationships; QSAR.

Abbreviations and notations	
AIRS, artificial immune recognition system	IMPS, initial memory cell pool size
ATS, affinity threshold scalar	NIAT, number of instances to compute the affinity threshold
CR, clonal rate	ST, stimulation threshold
HR, hypermutation rate	TR, total resources
kNN, number of nearest neighbors	TdP, torsade de pointes

* Correspondence author; E-mail: ivanciuc@gmail.com.

1 INTRODUCTION

Biology is a rich source of inspiration for developing algorithms that solve complex problems by emulating mechanisms and functions of biological systems. Well-known examples of biologically inspired algorithms are artificial neural networks, genetic algorithms, ant colony optimization, DNA computing, and particle swarm optimization. Artificial immune systems (AIS) are computational tools inspired by the processes from the biological immune system [1–6]. AIS use the learning and memory capabilities of the immune system to develop computational algorithms for pattern recognition, function optimization, classification, process control, and intrusion detection. The major AIS algorithms and the most important applications are presented in numerous books and conference proceedings: Artificial Immune Systems and Their Applications edited by Dasgupta [7]; Artificial Immune Systems: A New Computational Intelligence Approach by de Castro and Timmis [8]; Immunocomputing: Principles and Applications, by Tarakanov, Skormin, and Sokolova [9]; Immunity-Based Systems by Ishida [10]; Artificial Immune Systems: ICARIS 2004 edited by Nicosia, Cutello, Bentley, and Timmis [11]; Artificial Immune Systems: ICARIS 2005 edited by Jacob, Pilat, Bentley, and Timmis [12]. AIS models were successfully applied to biological and medical problems, such as classification of gene expression data [13-15], breast cancer identification [16,17], classification of liver disorders [16], detection of heart diseases [18], and diagnosis of thyroid diseases [19].

Watkins, Timmis, and Boggess developed an efficient machine learning algorithm, the artificial immune recognition system (AIRS), which encodes several principles and mechanisms of the immune system [20–22]. Brownlee used AIRS for a wide range of classification problems [23], confirming its utility as a supervised learning classifier.

In this study we demonstrate the first application of the AIRS algorithm in modeling structure– activity relationships for drug design. The learning task investigated here is the classification of chemical compounds into drugs that induce torsade de pointes (TdP+) and drugs that do not induce torsade de pointes (TdP–). Torsade de pointes (TdP) is a polymorphic ventricular arrhythmia that may be caused by drugs that induce the prolongation of the QT interval [24–26]. QT prolongation and TdP may be caused by a large number of drugs, such as antiarrhytmics, antihistamines, antimicrobials, antidepressants, and antipsychotics [27–30]. The human ether–à–go–go related gene (hERG) encodes the primary component of the K⁺ channel that is responsible for the repolarization of the ventricules [30,31]. Mutations in the hERG K⁺ channel gene may increase the binding affinity for certain chemical compounds that block the channel and induce lethal arrhythmias [30– 33]. The drug design and development costs may be significantly reduced if, along with other ADME/Tox filters, chemical compounds that have the potential to bind and inhibit the hERG K⁺ channel are eliminated as early as possible. The experimental determination of the hERG K⁺ channel inhibition by a certain chemical compound, which is performed with the voltage clamp technique, is time-consuming and expensive. To accelerate the drug development process, the inhibition of the hERG K⁺ channel is predicted with various quantitative structure-activity relationships (QSAR) [34–39]. In this study we investigated a dataset of 349 drugs [40] and the learning task was to classify these chemicals into a subset of 106 drugs that induce torsade de pointes and a subset of 243 drugs that do not induce torsade de pointes.

2 THE ARTIFICIAL IMMUNE RECOGNITION SYSTEM

The artificial immune system characteristics that are relevant to AIRS are briefly reviewed below [2,20,21]. The immune system protects an organism against infection by identifying and killing pathogens. Recognition cells known as B-cells and T-cells identify the pathogens that enter into the human body. Receptors situated on the surface of the B-cells and T-cells recognize and bind proteins and protein fragments from pathogens, thus forming high affinity antigen-antibody complexes. The recognition mechanism encoded into an antibody may be improved upon the presentation of several antigens with similar characteristics. In the AIRS classification algorithm, an antigen is represented as an *n*-dimensional vector $\mathbf{x} = \{x_1, x_2, \dots, x_n\}$, where each structural descriptor x_i is a real number ($x_i \in R$ for i = 1, 2, ..., n), and an associated class $y = \{+1, -1\}$. An identical encoding is used for antibodies. An artificial recognition ball (ARB) represents a B-cell, and consists of an antibody, a number of resources, and a stimulation value. The stimulation value measures the similarity between an ARB and an antigen. Each AIRS model has a limited number of resources, and ARBs compete for their allocation. Resources are removed from the least stimulated ARBs, and ARBs without resources are eliminated from the cell population. The ARB population is trained during several cycles of competition for limited resources. In each cycle of ARB training, the best ARB classifiers generate mutated clones that enhance the antigen recognition process, whereas the ARBs with insufficient resources are removed from the population. After training, the top ARB classifiers are selected as memory cells. Finally, the memory cells are used to classify novel antigens (patterns).

Detailed descriptions of the artificial immune recognition system may be found in the literature [20–23]. We present here only the most important characteristics of the AIRS procedure, in order to highlight the parameters that control its classification ability. The AIRS algorithm consists of the following steps:

(1) Initialization

- (2) Train for all Antigens
 - (2.1) Antigen Training
 - (2.2) Competition for Limited Resources
 - (2.3) Memory Cell Selection
- (3) Classification

The most important step is represented by the ARB competition for limited resources, which is an iterative process:

(2.2) Competition for Limited Resources
(2.2.1) Perform Competition for Resources
(2.2.1.1) Stimulate the ARB Pool with Antigen
(2.2.1.2) Normalize the ARB Stimulation Values
(2.2.1.3) Allocate Limited Resources Based on Stimulation
(2.2.1.4) Remove ARBs with Insufficient Resources
(2.2.2) Continue with (2.3) if the Stop Condition is Satisfied
(2.2.3) Generate Mutated Clones of Surviving ARBs
(2.2.4) Go to (2.2.1)

The steps of the AIRS algorithm are briefly described below:

(1) Initialization. The training data are normalized between 0 and 1. The Euclidean distance is computed for all pairs of antigens, and then the affinity is determined as the ratio between the distance and the maximum distance. The affinity threshold is computed as the average affinity for all antigens in the training set. The memory cell pool is populated with randomly selected antigens. At the end of the AIRS algorithm, the memory cell pool represents the recognition ARBs used as classifiers.

(2) Train for all Antigens

(2.1) Antigen Training. Each training antigen is exposed to the memory cell pool, and each memory cell receives a stimulation value, stimulation = 1 - affinity. The memory cells with the highest stimulation are selected, and a number of mutated clones are created and added to the ARB pool. The number of clones generated is computed with the formula:

$$NumberClones = Stimulation \times ClonalRate \times HypermutationRate$$
(1)

(2.2) Competition for Limited Resources. The scope of this process is to select those ARBs that have the best recognition capabilities, while optimally allocating the resources to the best ARBs. The number of clones generated in the step (2.2.3) is:

$$NumberClones = Stimulation \times ClonalRate$$
(2)

The amount of resources allocated to each ARB in the step (2.2.1.3) is:

 $Resources = NormalizedStimulation \times ClonalRate$ (3)

The total amount of resources is a user defined parameter. ARBs without resources are removed from the memory cell pool. The stop condition for the ARB refinement is met when the average normalized stimulation is higher than a user defined stimulation threshold.

(2.3) Memory Cell Selection. In this step, new ARB classifiers are evaluated for inclusion in the

memory cell pool. An ARB is inserted in the memory cell pool if its stimulation value is better than that of the existing best matching memory cell. The existing best matching memory cell is then removed if the affinity between the candidate ARB and the existing memory cell is less than a CutOff value:

$$CutOff = AffinityThreshold \times AffinityThresholdScalar$$
(4)

where the AffinityThreshold was computed during the Initialization phase, and the AffinityThresholdScalar is a user defined parameter.

(3) Classification. The memory cell pool represents the AIRS classifier. The classification is performed with a k-nearest neighbor method, in which the k best matches to a prediction pattern are identified and the predicted class is determined with a majority vote.

3 MATERIALS AND METHODS

The learning task investigated here is the classification of chemical compounds into drugs that induce torsade de pointes and drugs that do not induce torsade de pointes. The dataset was collected from the literature [40], and consists of 106 TdP+ drugs and 243 TdP– drugs. The chemical structure was described with five linear solvation energy relationships (LSER) descriptors [41–43], namely the overall solute hydrogen bond acidity A, the overall solute hydrogen bond basicity B, the combined dipolarity/polarizability S, the excess molar refraction E, and the McGowan's characteristic volume V. All computations were performed with the AIRS2 implementation of Brownlee [23] using Weka 3.5.4 (http://sourceforge.net/projects/weka).

4 RESULTS AND DISCUSSION

We investigated the classification performance of AIRS2 over a large range of the eight user defined parameters, namely affinity threshold scalar, clonal rate, hypermutation rate, number of nearest neighbors, initial memory cell pool size, number of instances to compute the affinity threshold, stimulation threshold, and total resources. The classification prediction was evaluated with leave–10%–out cross–validation. The statistical indices reported for each AIRS model are: TP_c, true positive in calibration (number of Td+ drugs classified as Td+); FN_c, false negative in calibration (number of Td+ drugs classified as Td–); TN_c, true negative in calibration (number of Td– drugs classified as Td–); Se_c, calibration selectivity; Sp_c, calibration specificity; Ac_c, calibration accuracy; MCC_c, calibration Matthews correlation coefficient; TP_p, false positive in prediction; Se_p, prediction selectivity; Sp_p, prediction specificity; Ac_p, prediction accuracy; MCC_p, prediction Matthews correlation coefficient.

Affinity Threshold Scalar (ATS). ATS takes values between 0 and 1, and it is used in Eq. (4) to compute a cut–off value for memory cell replacement. If the affinity between a candidate ARB and the best matching memory cell is lower that the threshold computed with Eq. (4), then the ARB replaces the memory cell. A low value for ATS results in a low replacement rate, whereas a high ATS value increases the replacement rate. In experiments 1-14 (Table 1) we varied the ATS value between 0.01 and 0.9 in order to identify the optimum replacement regimen. The initial values for the remaining parameters are: clonal rate = 10, hypermutation rate = 2, number of nearest neighbors = 3, initial memory cell pool size = 50, number of instances to compute the affinity threshold = all, stimulation threshold = 0.5, and total resources = 150. These parameters are optimized in the above order, and the optimum value is used in all subsequent experiments. The highest prediction MCC = 0.6323 is obtained for ATS = 0.05, indicating that for this classification problem a low memory cell replacement rate is beneficial.

			1 4110	ab turdeb (miney meesine	na Sealar)		
Exp	ATS	TP _c	FN _c	TN _c	FP _c	Se _c	Spc	Ac _c	MCC _c
1	0.01	91	15	220	23	0.8585	0.9053	0.8911	0.7490
2	0.04	84	22	226	17	0.7925	0.9300	0.8883	0.7327
3	0.05	87	19	223	20	0.8208	0.9177	0.8883	0.7365
4	0.06	87	19	217	26	0.8208	0.8930	0.8711	0.7015
5	0.07	85	21	216	27	0.8019	0.8889	0.8625	0.6805
6	0.10	83	23	219	24	0.7830	0.9012	0.8653	0.6825
7	0.20	72	34	217	26	0.6792	0.8930	0.8281	0.5856
8	0.30	68	38	213	30	0.6415	0.8765	0.8052	0.5301
9	0.40	53	53	214	29	0.5000	0.8807	0.7650	0.4129
10	0.50	59	47	203	40	0.5566	0.8354	0.7507	0.3999
11	0.60	59	47	204	39	0.5566	0.8395	0.7536	0.4053
12	0.70	60	46	213	30	0.5660	0.8765	0.7822	0.4652
13	0.80	53	53	204	39	0.5000	0.8395	0.7364	0.3544
14	0.90	65	41	200	43	0.6132	0.8230	0.7593	0.4340
Exp	ATS	TPp	FN_p	TNp	FPp	Sep	Sp_{p}	Ac _p	MCC _p
1	0.01	76	30	213	30	0.7170	0.8765	0.8281	0.5935
2	0.04	78	28	210	33	0.7358	0.8642	0.8252	0.5925
3	0.05	78	28	217	26	0.7358	0.8930	0.8453	0.6323
4	0.06	76	30	210	33	0.7170	0.8642	0.8195	0.5767
5	0.07	76	30	207	36	0.7170	0.8519	0.8109	0.5603
6	0.10	78	28	206	37	0.7358	0.8477	0.8138	0.5710
7	0.20	65	41	213	30	0.6132	0.8765	0.7966	0.5060
8	0.30	71	35	210	33	0.6698	0.8642	0.8052	0.5369
9	0.40	61	45	207	36	0.5755	0.8519	0.7679	0.4387
10	0.50	63	43	203	40	0.5943	0.8354	0.7622	0.4333
11	0.60	59	47	194	49	0.5566	0.7984	0.7249	0.3531
12	0.70	55	51	198	45	0.5189	0.8148	0.7249	0.3394
13	0.80	52	54	200	43	0.4906	0.8230	0.7221	0.3240
14	0.00	10	57	198	45	0 4623	0.8148	0 7077	0 2872

Table 1. Calibration and Prediction Statistics of AIRS Models Computed for

 Various Values of ATS (Affinity Threshold Scalar)

^{*a*} Notations: Exp, experiment number; TP_c , true positive in calibration; FN_c , false negative in calibration; TN_c , true negative in calibration; FP_c , false positive in calibration; Se_c , calibration selectivity; Sp_c , calibration specificity; Ac_c , calibration accuracy; MCC_c , calibration Matthews correlation coefficient; TP_p , true positive in prediction; FN_p , false negative in prediction; TN_p , true negative in prediction; FP_p , false positive in prediction; Se_p , prediction selectivity; Sp_p , prediction specificity; Ac_p , prediction accuracy; MCC_p , prediction Matthews correlation coefficient.

Clonal Rate (CR). CR takes integer values, and is used in ARB resource allocation and in controlling the clonal mutation for the memory cell population. In Eq (1), CR is used to determine the number of mutated clones generated from each memory cell and then added to the ARB pool. In Eq. (2), CR is involved in the computation of the number of clones generated from each ARB during the ARB refinement process. Therefore, the number of ARB clones generated is in the range [0, CR]. In Eq. (3), CR is multiplied with the normalized stimulation of an ARB to determine the number of resources allocated to that ARB. The number of resources allocated to each ARB is in the range [0, CR].

The clonal rate was varied between 3 and 17, as shown in experiments 15-23 (Table 2). A general trend for the prediction MCC is to increase from CR = 3 up to CR = 10, and then to decrease when CR increases up to 17. These results suggest that for CR = 10 the AIRS generates the optimum number of clones and allocates the optimum number of resources.

			v al le	Jus values (mai Kale), (A I	3 = 0.03		
Exp	CR	TP _c	FN _c	TN _c	FP _c	Se _c	Sp _c	Ac _c	MCC _c
15	3	75	31	216	27	0.7075	0.8889	0.8338	0.6031
16	5	81	25	215	28	0.7642	0.8848	0.8481	0.6439
17	8	87	19	223	20	0.8208	0.9177	0.8883	0.7365
18	9	86	20	221	22	0.8113	0.9095	0.8797	0.7170
19	10	87	19	223	20	0.8208	0.9177	0.8883	0.7365
20	11	81	25	222	21	0.7642	0.9136	0.8682	0.6853
21	12	91	15	225	18	0.8585	0.9259	0.9054	0.7784
22	15	87	19	220	23	0.8208	0.9053	0.8797	0.7187
23	17	83	23	217	26	0.7830	0.8930	0.8596	0.6708
Exp	CR	TPp	FNp	TNp	FPp	Se _p	Spp	Ac _p	MCC _p
Exp 15	CR 3	TP _p 68	FN _p 38	TN _p 211	FP _p 32	Se _p 0.6415	Sp _p 0.8683	Ac _p 0.7994	MCC _p 0.5185
Exp 15 16	CR 3 5	TP _p 68 71	FN _p 38 35	TN _p 211 210	FP _p 32 33	Se _p 0.6415 0.6698	Spp 0.8683 0.8642	Ac _p 0.7994 0.8052	MCC _p 0.5185 0.5369
Exp 15 16 17	CR 3 5 8	TP _p 68 71 77	FN _p 38 35 29	TN _p 211 210 218	FP _p 32 33 25	Sep 0.6415 0.6698 0.7264	Spp 0.8683 0.8642 0.8971	Acp 0.7994 0.8052 0.8453	MCC _p 0.5185 0.5369 0.6305
Exp 15 16 17 18	CR 3 5 8 9	TP _p 68 71 77 76	FN _p 38 35 29 30	TN _p 211 210 218 212	FP _p 32 33 25 31	Sep 0.6415 0.6698 0.7264 0.7170	Spp 0.8683 0.8642 0.8971 0.8724	Ac _p 0.7994 0.8052 0.8453 0.8252	MCC _p 0.5185 0.5369 0.6305 0.5879
Exp 15 16 17 18 19	CR 3 5 8 9 10	TP _p 68 71 77 76 78	FN _p 38 35 29 30 28	TN _p 211 210 218 212 217	FP _p 32 33 25 31 26	Sep 0.6415 0.6698 0.7264 0.7170 0.7358	Spp 0.8683 0.8642 0.8971 0.8724 0.8930	Acp 0.7994 0.8052 0.8453 0.8252 0.8453	MCC _p 0.5185 0.5369 0.6305 0.5879 0.6323
Exp 15 16 17 18 19 20	CR 3 5 8 9 10 11	TP _p 68 71 77 76 78 76	FN _p 38 35 29 30 28 30	TN _p 211 210 218 212 217 216	FP _p 32 33 25 31 26 27	Sep 0.6415 0.6698 0.7264 0.7170 0.7358 0.7170	Spp 0.8683 0.8642 0.8971 0.8724 0.8930 0.8889	Ac _p 0.7994 0.8052 0.8453 0.8252 0.8453 0.8367	MCC _p 0.5185 0.5369 0.6305 0.5879 0.6323 0.6109
Exp 15 16 17 18 19 20 21	CR 3 5 8 9 10 11 12	TP _p 68 71 77 76 78 76 78 76 77	FN _p 38 35 29 30 28 30 29	TN _p 211 210 218 212 217 216 210	FP _p 32 33 25 31 26 27 33	Sep 0.6415 0.6698 0.7264 0.7170 0.7358 0.7170 0.7264	Spp 0.8683 0.8642 0.8971 0.8724 0.8930 0.8889 0.8642	Acp 0.7994 0.8052 0.8453 0.8252 0.8453 0.8367 0.8223	MCC _p 0.5185 0.5369 0.6305 0.5879 0.6323 0.6109 0.5846
Exp 15 16 17 18 19 20 21 22	CR 3 5 8 9 10 11 12 15	TP _p 68 71 76 78 76 77 76 78 76 77 76 77 76	FN _p 38 35 29 30 28 30 29 30	TNp 211 210 218 212 217 216 210 213	FPp 32 33 25 31 26 27 33 30	Sep 0.6415 0.6698 0.7264 0.7170 0.7358 0.7170 0.7264 0.7170 0.7264	Spp 0.8683 0.8642 0.8971 0.8724 0.8930 0.8889 0.8642 0.8765	Acp 0.7994 0.8052 0.8453 0.8252 0.8453 0.8367 0.8223 0.8281	MCC _p 0.5185 0.5369 0.6305 0.5879 0.6323 0.6109 0.5846 0.5935

Table 2. Calibration and Prediction Statistics of AIRS Models Computed for Various Values of CP. (Classel Pate): (ATS = 0.05)

Hypermutation Rate (HR). The hypermutation rate takes integer values and is used in Eq. (1) to determine the number of clones for each memory cell, which is in the range [0, CR×HR]. We investigated the TdP classification for values of the hypermutation rate between 1 and 10, as shown in experiments 24–33 (Table 3). The best predictions are obtained with HR = 2, with the prediction MCC = 0.6323, whereas for other HR values the prediction statistics are slightly lower. The same HR value was used in the previous experiments, which explains the fact that the predictions are not improved in this set of experiments.

			, arroub	· urues or	in (in jpe	11110101101111000	<i>)</i> , (en 10)		
Exp	HR	TP _c	FN _c	TN _c	FP _c	Se _c	Sp _c	Ac _c	MCC _c
24	1	83	23	222	21	0.7830	0.9136	0.8739	0.7004
25	2	87	19	223	20	0.8208	0.9177	0.8883	0.7365
26	3	93	13	222	21	0.8774	0.9136	0.9026	0.7756
27	4	87	19	223	20	0.8208	0.9177	0.8883	0.7365
28	5	84	22	228	15	0.7925	0.9383	0.8940	0.7455
29	6	91	15	218	25	0.8585	0.8971	0.8854	0.7376
30	7	88	18	221	22	0.8302	0.9095	0.8854	0.7321
31	8	88	18	219	24	0.8302	0.9012	0.8797	0.7205
32	9	90	16	222	21	0.8491	0.9136	0.8940	0.7531
33	10	88	18	215	28	0.8302	0.8848	0.8682	0.6980
Exp	HR	TPp	FNp	TN _p	FPp	Se _p	Spp	Ac _p	MCC _p
Exp 24	HR 1	TP _p 74	FN _p 32	TN _p 215	FP _p 28	Se _p 0.6981	Sp _p 0.8848	Ac _p 0.8281	MCC _p 0.5894
Exp 24 25	HR 1 2	TP _p 74 78	FN _p 32 28	TN _p 215 217	FP _p 28 26	Se _p 0.6981 0.7358	Sp _p 0.8848 0.8930	Ac _p 0.8281 0.8453	MCC _p 0.5894 0.6323
Exp 24 25 26	HR 1 2 3	TP _p 74 78 77	FN _p 32 28 29	TN _p 215 217 204	FP _p 28 26 39	Sep 0.6981 0.7358 0.7264	Spp 0.8848 0.8930 0.8395	Acp 0.8281 0.8453 0.8052	MCC _p 0.5894 0.6323 0.5525
Exp 24 25 26 27	HR 1 2 3 4	TP _p 74 78 77 76	FN _p 32 28 29 30	TN _p 215 217 204 215	FP _p 28 26 39 28	Sep 0.6981 0.7358 0.7264 0.7170	Sp _p 0.8848 0.8930 0.8395 0.8848	Ac _p 0.8281 0.8453 0.8052 0.8338	MCC _p 0.5894 0.6323 0.5525 0.6050
Exp 24 25 26 27 28	HR 1 2 3 4 5	TP _p 74 78 77 76 76 76	FN _p 32 28 29 30 30	TN _p 215 217 204 215 218	FP _p 28 26 39 28 25	Sep 0.6981 0.7358 0.7264 0.7170 0.7170	Spp 0.8848 0.8930 0.8395 0.8848 0.8971	Acp 0.8281 0.8453 0.8052 0.8338 0.8424	MCC _p 0.5894 0.6323 0.5525 0.6050 0.6227
Exp 24 25 26 27 28 29	HR 1 2 3 4 5 6	TP _p 74 78 77 76 76 76 79	FN _p 32 28 29 30 30 27	TN _p 215 217 204 215 218 218 214	FP _p 28 26 39 28 25 29	Sep 0.6981 0.7358 0.7264 0.7170 0.7170 0.7453	Spp 0.8848 0.8930 0.8395 0.8848 0.8971 0.8807	Acp 0.8281 0.8453 0.8052 0.8338 0.8424 0.8395	MCC _p 0.5894 0.6323 0.5525 0.6050 0.6227 0.6227
Exp 24 25 26 27 28 29 30	HR 1 2 3 4 5 6 7	TP _p 74 78 77 76 76 76 79 72	FN _p 32 28 29 30 30 27 34	TNp 215 217 204 215 218 214 218	FP _p 28 26 39 28 25 29 25	Sep 0.6981 0.7358 0.7264 0.7170 0.7173 0.7453 0.6792	Spp 0.8848 0.8930 0.8395 0.8848 0.8971 0.8807 0.8971	Acp 0.8281 0.8453 0.8052 0.8338 0.8424 0.8395 0.8309	МСС _р 0.5894 0.6323 0.5525 0.6050 0.6227 0.6227 0.5917
Exp 24 25 26 27 28 29 30 31	HR 1 2 3 4 5 6 7 8	TP _p 74 78 77 76 76 76 79 72 79	FN _p 32 28 29 30 30 27 34 27	TNp 215 217 204 215 218 214 218 212	FP _p 28 26 39 28 25 29 25 31	Sep 0.6981 0.7358 0.7264 0.7170 0.7170 0.7453 0.6792 0.7453	Spp 0.8848 0.8930 0.8395 0.8848 0.8971 0.8807 0.8971 0.8971	Acp 0.8281 0.8453 0.8052 0.8338 0.8424 0.8395 0.8309 0.8338	МСС _р 0.5894 0.6323 0.5525 0.6050 0.6227 0.6227 0.6227 0.5917 0.6114
Exp 24 25 26 27 28 29 30 31 32	HR 1 2 3 4 5 6 7 8 9	TP _p 74 78 77 76 76 76 79 72 79 75	FN _p 32 28 29 30 30 27 34 27 31	TNp 215 217 204 215 218 214 218 212 213	FPp 28 26 39 28 25 29 25 31 30	Sep 0.6981 0.7358 0.7264 0.7170 0.7170 0.7453 0.6792 0.7453 0.7075	Spp 0.8848 0.8930 0.8395 0.8395 0.8848 0.8971 0.8807 0.8971 0.8724 0.8765	Acp 0.8281 0.8453 0.8052 0.8338 0.8424 0.8395 0.8309 0.8338 0.8252	МСС _р 0.5894 0.6323 0.5525 0.6050 0.6227 0.6227 0.5917 0.6114 0.5857

Table 3. Calibration and Prediction Statistics of AIRS Models Computed for Various Values of HR (Hypermutation Rate): (CR = 10)

Number of Nearest Neighbors (kNN). The number k of nearest neighbors is used in the classification process, in which the k most stimulated memory cells to a given antigen vote for the class (TdP+ or TdP-) of that antigen. The results obtained in the experiments 34-43 (Table 4) show identical prediction accuracy for k = 3 and k = 5. We selected k = 3 for further experiments because it is faster to compute.

Exp	kNN	TPc	FN _c	TN _c	FP _c	Sec	Sp _c	Ac _c	MCC _c
34	1	90	16	228	15	0.8491	0.9383	0.9112	0.7894
35	3	87	19	223	20	0.8208	0.9177	0.8883	0.7365
36	5	87	19	221	22	0.8208	0.9095	0.8825	0.7246
37	7	78	28	220	23	0.7358	0.9053	0.8539	0.6502
38	9	68	38	223	20	0.6415	0.9177	0.8338	0.5922
39	11	60	46	224	19	0.5660	0.9218	0.8138	0.5361
40	13	58	48	230	13	0.5472	0.9465	0.8252	0.5640
41	15	56	50	231	12	0.5283	0.9506	0.8223	0.5560
42	17	55	51	233	10	0.5189	0.9588	0.8252	0.5643
43	19	49	57	230	13	0.4623	0.9465	0.7994	0.4918
Exp	kNN	TP _n	FN _n	TN _n	FP _n	Sen	Sp _n	Acn	MCC _n
34	1	78	28	215	28	0.7358	0.8848	0.8395	0.6206
35	3	78	28	217	26	0.7358	0.8930	0.8453	0.6323
36	5	79	27	216	27	0.7453	0.8889	0.8453	0.6342
37	7	75	31	215	28	0.7075	0.8848	0.8309	0.5972
38	9	72	34	217	26	0.6792	0.8930	0.8281	0.5856
39	11	67	39	217	26	0.6321	0.8930	0.8138	0.5462
40	13	65	41	214	29	0.6132	0.8807	0.7994	0.5120
41	15	62	44	219	24	0.5849	0.9012	0.8052	0.5188
42	17	58	48	216	27	0.5472	0.8889	0.7851	0.4672
	10			<u> </u>			0.00.10	a a (

Table 4. Calibration and Prediction Statistics of AIRS Models Computed for Various Values of kNN (Number of Nearest Neighbors): (HR = 2)

Initial Memory Cell Pool Size (IMCPS). The number of initial memory cells was modified from 1 to 220 (experiments **44–59**, Table 5), and the classification results show only small variations, with better results for AIRS models that have IMCPS > 30. Compared with previous experiments, a minor prediction improvement is obtained for IMCPS = 80, with a prediction MCC = 0.6362. This IMCPS value was adopted for further experiments.

Fyn	IMCPS	ТР	FN	TN	FP	Se	Sn	Δ.	MCC
<u></u> <u></u>	1	80	17	217	26	0.8396	<u> </u>	0.8768	0.7168
44 15	10	8/	22	217	18	0.7925	0.0250	0.8854	0.7100
нз 46	20	01	15	223	22	0.8585	0.9235	0.80/0	0.7547
40	20	83	23	221	16	0.7830	0.9093	0.8940	0.7316
48	40	82	23	218	25	0.736	0.9971	0.8596	0.6689
40 /0	40 50	87	10	210	20	0.8208	0.0177	0.8883	0.7365
50	50 60	91	15	223	20	0.8208	0.9177	0.8825	0.7303
51	70	93	13	217	20	0.8774	0.8930	0.8825	0.7364
52	80	91	15	215	20	0.8585	0.8889	0.8797	0.7364
53	100	89	17	210	18	0.8396	0.0009	0.8997	0.7205
53 54	120	89	17	225	17	0.8396	0.9200	0.077	0.7697
55	140	0J 01	17	220	18	0.8585	0.9259	0.9020	0.7097
56	160	90	16	223	10	0.8383	0.9218	0.9094	0.77649
57	180	83	23	224	12	0.7830	0.9506	0.8997	0.7580
58	200	81	25	231	11	0.7642	0.9547	0.8968	0.7503
59	200	82	23	232	10	0.7736	0.9588	0.09026	0.7505
	220	02	21	200	10	0.1750	0.9000	0.9020	0.7010
Exp	IMCPS	TPp	FNp	TNp	FPp	Se _p	Spp	Ac _p	MCC _p
44	1	66	40	205	38	0.6226	0.8436	0.7765	0.4688
15									
-10	10	71	35	210	33	0.6698	0.8642	0.8052	0.5369
46	10 20	71 67	35 39	210 211	33 32	0.6698 0.6321	0.8642 0.8683	0.8052 0.7966	0.5369 0.5105
46 47	10 20 30	71 67 68	35 39 38	210 211 204	33 32 39	0.6698 0.6321 0.6415	0.8642 0.8683 0.8395	0.8052 0.7966 0.7794	0.5369 0.5105 0.4798
46 47 48	10 20 30 40	71 67 68 73	35 39 38 33	210 211 204 212	33 32 39 31	0.6698 0.6321 0.6415 0.6887	0.8642 0.8683 0.8395 0.8724	0.8052 0.7966 0.7794 0.8166	0.5369 0.5105 0.4798 0.5642
46 47 48 49	10 20 30 40 50	71 67 68 73 78	35 39 38 33 28	210 211 204 212 217	33 32 39 31 26	0.6698 0.6321 0.6415 0.6887 0.7358	0.8642 0.8683 0.8395 0.8724 0.8930	0.8052 0.7966 0.7794 0.8166 0.8453	0.5369 0.5105 0.4798 0.5642 0.6323
43 46 47 48 49 50	10 20 30 40 50 60	71 67 68 73 78 71	35 39 38 33 28 35	210 211 204 212 217 217	33 32 39 31 26 26	0.6698 0.6321 0.6415 0.6887 0.7358 0.6698	0.8642 0.8683 0.8395 0.8724 0.8930 0.8930	0.8052 0.7966 0.7794 0.8166 0.8453 0.8252	0.5369 0.5105 0.4798 0.5642 0.6323 0.5777
46 47 48 49 50 51	10 20 30 40 50 60 70	71 67 68 73 78 71 75	35 39 38 33 28 35 31	210 211 204 212 217 217 206	33 32 39 31 26 26 37	0.6698 0.6321 0.6415 0.6887 0.7358 0.6698 0.7075	0.8642 0.8683 0.8395 0.8724 0.8930 0.8930 0.8930 0.8477	0.8052 0.7966 0.7794 0.8166 0.8453 0.8252 0.8052	0.5369 0.5105 0.4798 0.5642 0.6323 0.5777 0.5470
46 47 48 49 50 51 52	10 20 30 40 50 60 70 80	71 67 68 73 78 71 75 80	35 39 38 33 28 35 31 26	210 211 204 212 217 217 206 215	33 32 39 31 26 26 37 28	0.6698 0.6321 0.6415 0.6887 0.7358 0.6698 0.7075 0.7547	0.8642 0.8683 0.8395 0.8724 0.8930 0.8930 0.8477 0.8848	0.8052 0.7966 0.7794 0.8166 0.8453 0.8252 0.8052 0.8453	0.5369 0.5105 0.4798 0.5642 0.6323 0.5777 0.5470 0.6362
46 47 48 49 50 51 52 53	10 20 30 40 50 60 70 80 100	71 67 68 73 78 71 75 80 72	35 39 38 33 28 35 31 26 34	210 211 204 212 217 217 206 215 206	33 32 39 31 26 26 37 28 37	0.6698 0.6321 0.6415 0.6887 0.7358 0.6698 0.7075 0.7547 0.6792	0.8642 0.8683 0.8395 0.8724 0.8930 0.8930 0.8477 0.8848 0.8477	0.8052 0.7966 0.7794 0.8166 0.8453 0.8252 0.8052 0.8052 0.8453 0.7966	0.5369 0.5105 0.4798 0.5642 0.6323 0.5777 0.5470 0.6362 0.5229
46 47 48 49 50 51 52 53 54	10 20 30 40 50 60 70 80 100 120	71 67 68 73 78 71 75 80 72 76	35 39 38 33 28 35 31 26 34 30	210 211 204 212 217 217 206 215 206 205	33 32 39 31 26 26 37 28 37 38	0.6698 0.6321 0.6415 0.6887 0.7358 0.6698 0.7075 0.7547 0.6792 0.7170	0.8642 0.8683 0.8395 0.8724 0.8930 0.8477 0.8848 0.8477 0.8436	$\begin{array}{c} 0.8052\\ 0.7966\\ 0.7794\\ 0.8166\\ 0.8453\\ 0.8252\\ 0.8052\\ 0.8453\\ 0.7966\\ 0.8052\\ \end{array}$	0.5369 0.5105 0.4798 0.5642 0.6323 0.5777 0.5470 0.6362 0.5229 0.5497
46 47 48 49 50 51 52 53 54 55	10 20 30 40 50 60 70 80 100 120 140	71 67 68 73 78 71 75 80 72 76 76	35 39 38 33 28 35 31 26 34 30 30	210 211 204 212 217 217 206 215 206 205 213	33 32 39 31 26 26 37 28 37 38 30	0.6698 0.6321 0.6415 0.6887 0.7358 0.6698 0.7075 0.7547 0.6792 0.7170 0.7170	0.8642 0.8683 0.8395 0.8724 0.8930 0.8930 0.8477 0.8848 0.8477 0.8436 0.8765	$\begin{array}{c} 0.8052\\ 0.7966\\ 0.7794\\ 0.8166\\ 0.8453\\ 0.8252\\ 0.8052\\ 0.8453\\ 0.7966\\ 0.8052\\ 0.8281\\ \end{array}$	0.5369 0.5105 0.4798 0.5642 0.6323 0.5777 0.5470 0.6362 0.5229 0.5497 0.5935
46 47 48 49 50 51 52 53 54 55 56	10 20 30 40 50 60 70 80 100 120 140 160	71 67 68 73 78 71 75 80 72 76 76 76 74	35 39 38 33 28 35 31 26 34 30 30 32	210 211 204 212 217 217 206 215 206 205 213 215	33 32 39 31 26 26 37 28 37 38 30 28	0.6698 0.6321 0.6415 0.6887 0.7358 0.6698 0.7075 0.7547 0.6792 0.7170 0.7170 0.6981	0.8642 0.8683 0.8395 0.8724 0.8930 0.8930 0.8477 0.8848 0.8477 0.8436 0.8765 0.8848	$\begin{array}{c} 0.8052\\ 0.7966\\ 0.7794\\ 0.8166\\ 0.8453\\ 0.8252\\ 0.8052\\ 0.8453\\ 0.7966\\ 0.8052\\ 0.8281\\ 0.8281 \end{array}$	0.5369 0.5105 0.4798 0.5642 0.6323 0.5777 0.5470 0.6362 0.5229 0.5497 0.5935 0.5894
46 47 48 49 50 51 52 53 54 55 56 57	10 20 30 40 50 60 70 80 100 120 140 160 180	71 67 68 73 78 71 75 80 72 76 76 76 74 76	35 39 38 33 28 35 31 26 34 30 30 32 30	210 211 204 212 217 217 206 215 206 205 213 215 201	33 32 39 31 26 26 37 28 37 38 30 28 42	0.6698 0.6321 0.6415 0.6887 0.7358 0.6698 0.7075 0.7547 0.6792 0.7170 0.7170 0.6981 0.7170	0.8642 0.8683 0.8395 0.8724 0.8930 0.8930 0.8477 0.8848 0.8477 0.8436 0.8765 0.8848 0.8272	$\begin{array}{c} 0.8052\\ 0.7966\\ 0.7794\\ 0.8166\\ 0.8453\\ 0.8252\\ 0.8052\\ 0.8453\\ 0.7966\\ 0.8052\\ 0.8281\\ 0.8281\\ 0.8281\\ 0.7937 \end{array}$	$\begin{array}{c} 0.5369\\ 0.5105\\ 0.4798\\ 0.5642\\ 0.6323\\ 0.5777\\ 0.5470\\ 0.6362\\ 0.5229\\ 0.5497\\ 0.5935\\ 0.5894\\ 0.5290\end{array}$
46 47 48 49 50 51 52 53 54 55 56 57 58	$ \begin{array}{c} 10\\20\\30\\40\\50\\60\\70\\80\\100\\120\\140\\160\\180\\200\end{array} $	71 67 68 73 78 71 75 80 72 76 76 76 74 76 75	35 39 38 33 28 35 31 26 34 30 30 32 30 31	210 211 204 212 217 217 206 215 206 205 213 215 201 208	33 32 39 31 26 26 37 28 37 38 30 28 42 35	0.6698 0.6321 0.6415 0.6887 0.7358 0.6698 0.7075 0.7547 0.6792 0.7170 0.7170 0.6981 0.7170 0.7075	0.8642 0.8683 0.8395 0.8724 0.8930 0.8930 0.8477 0.8848 0.8477 0.8436 0.8765 0.8848 0.8272 0.8560	0.8052 0.7966 0.7794 0.8166 0.8453 0.8252 0.8052 0.8453 0.7966 0.8052 0.8281 0.8281 0.7937 0.8109	0.5369 0.5105 0.4798 0.5642 0.6323 0.5777 0.5470 0.6362 0.5229 0.5497 0.5935 0.5894 0.5290 0.5578

 Table 5. Calibration and Prediction Statistics of AIRS Models Computed for

 Various Values of IMCPS (Initial Memory Cell Pool Size): (kNN = 3)

Number of Instances to Compute the Affinity Threshold (NIAT). During the AIRS initialization process, the affinity threshold is computed as the average affinity for NIAT antigens from the training set. In experiments 60-71 (Table 6) we tried to identify an optimum value for NIAT (in previous experiments the entire training set was used to compute the affinity threshold). An improvement is obtained for NIAT = 100, with a prediction MCC = 0.6708, whereas NIAT values between 25 and the entire dataset all give good predictions.

	01	NIAT (Nu	mber of Ir	istances to	Compute	the Aminity I	nresnold); (INI	CPS = 80)	
Exp	NIAT	TP _c	FN _c	TN _c	FP _c	Se _c	Sp _c	Ac _c	MCC _c
60	25	94	12	219	24	0.8868	0.9012	0.8968	0.7660
61	50	90	16	217	26	0.8491	0.8930	0.8797	0.7244
62	75	90	16	217	26	0.8491	0.8930	0.8797	0.7244
63	100	95	11	225	18	0.8962	0.9259	0.9169	0.8080
64	125	96	10	223	20	0.9057	0.9177	0.9140	0.8038
65	150	92	14	224	19	0.8679	0.9218	0.9054	0.7798
66	175	91	15	228	15	0.8585	0.9383	0.9140	0.7968
67	200	93	13	222	21	0.8774	0.9136	0.9026	0.7756
68	225	92	14	225	18	0.8679	0.9259	0.9083	0.7858
69	250	92	14	225	18	0.8679	0.9259	0.9083	0.7858
70	275	92	14	225	18	0.8679	0.9259	0.9083	0.7858
71	all	91	15	216	27	0.8585	0.8889	0.8797	0.7265
Exp	NIAT	TPp	FNp	TNp	FPp	Sep	Spp	Ac _p	MCC _p
60	25	83	23	213	30	0.7830	0.8765	0.8481	0.6482
61	50	81	25	213	30	0.7642	0.8765	0.8424	0.6326
62	75	78	28	213	30	0.7358	0.8765	0.8338	0.6092
63	100	83	23	217	26	0.7830	0.8930	0.8596	0.6708
64	125	85	21	209	34	0.8019	0.8601	0.8424	0.6422
65	150	84	22	210	33	0.7925	0.8642	0.8424	0.6397
66	175	80	26	207	36	0.7547	0.8519	0.8223	0.5921
67	200	82	24	209	34	0.7736	0.8601	0.8338	0.6186
68	225	83	23	206	37	0.7830	0.8477	0.8281	0.6107
69	250	78	28	209	34	0.7358	0.8601	0.8223	0.5870
70	275	83	23	214	29	0.7830	0.8807	0.8510	0.6538
71	all	80	26	215	28	0.7547	0.8848	0.8453	0.6362

Table 6. Calibration and Prediction Statistics of AIRS Models Computed for Various Values of NIAT (Number of Instances to Compute the Affinity Threshold): (IMCPS = 80)

Stimulation Threshold (ST). The stimulation threshold is a parameter in the range [0, 1] and is used to determine the stop condition for the process of refining the ARB pool for a specific antigen. The ARB refinement stops when the average normalized ARB stimulation is higher than ST. The stimulation threshold was modified from 0.1 to 0.9 (experiments 72–86, Table 7), and the best predictions were obtained for ST = 0.5. The same ST value was used in all previous experiments, and thus no improvement is obtained for the prediction statistics.

Table 7. Calibration and Prediction Statistics of AIRS Models Computed fo
Various Values of ST (Stimulation Threshold); (NIAT = 100)

					(Summara)		, (1,111 100)		
Exp	ST	TP _c	FN _c	TN _c	FP _c	Se _c	Sp _c	Ac _c	MCC _c
72	0.10	92	14	218	25	0.8679	0.8971	0.8883	0.7453
73	0.20	92	14	218	25	0.8679	0.8971	0.8883	0.7453
74	0.30	91	15	212	31	0.8585	0.8724	0.8682	0.7049
75	0.40	92	14	215	28	0.8679	0.8848	0.8797	0.7287
76	0.45	91	15	216	27	0.8585	0.8889	0.8797	0.7265
77	0.47	98	8	216	27	0.9245	0.8889	0.8997	0.7802
78	0.49	92	14	219	24	0.8679	0.9012	0.8911	0.7509
79	0.50	95	11	225	18	0.8962	0.9259	0.9169	0.8080
80	0.51	88	18	217	26	0.8302	0.8930	0.8739	0.7091
81	0.53	93	13	223	20	0.8774	0.9177	0.9054	0.7814
82	0.55	87	19	226	17	0.8208	0.9300	0.8968	0.7549
83	0.60	90	16	223	20	0.8491	0.9177	0.8968	0.7590
84	0.70	90	16	227	16	0.8491	0.9342	0.9083	0.7832
85	0.80	90	16	229	14	0.8491	0.9424	0.9140	0.7957
86	0.90	93	13	226	17	0.8774	0.9300	0.9140	0.7992

O. Ivanciuc	
Internet Electronic Journal of Molecular Design 2006, 5, 4	88-502

	Table 7. (Continued)										
Exp	ST	TPp	FNp	TN_p	FPp	Sep	Spp	Ac _p	MCC _p		
72	0.10	73	33	205	38	0.6887	0.8436	0.7966	0.5256		
73	0.20	73	33	205	38	0.6887	0.8436	0.7966	0.5256		
74	0.30	75	31	203	40	0.7075	0.8354	0.7966	0.5312		
75	0.40	76	30	202	41	0.7170	0.8313	0.7966	0.5341		
76	0.45	72	34	210	33	0.6792	0.8642	0.8080	0.5449		
77	0.47	77	29	208	35	0.7264	0.8560	0.8166	0.5737		
78	0.49	83	23	206	37	0.7830	0.8477	0.8281	0.6107		
79	0.50	83	23	217	26	0.7830	0.8930	0.8596	0.6708		
80	0.51	83	23	216	27	0.7830	0.8889	0.8567	0.6651		
81	0.53	76	30	214	29	0.7170	0.8807	0.8309	0.5992		
82	0.55	80	26	205	38	0.7547	0.8436	0.8166	0.5816		
83	0.60	82	24	209	34	0.7736	0.8601	0.8338	0.6186		
84	0.70	73	33	213	30	0.6887	0.8765	0.8195	0.5699		
85	0.80	77	29	210	33	0.7264	0.8642	0.8223	0.5846		
86	0.90	73	33	214	29	0.6887	0.8807	0.8223	0.5757		

Total Resources (TR). The number of total resources limits the number of ARBs from the ARB pool. The amount of resources assigned to an ARB is calculated with Eq. (3) as a number in the range [0, CR]. Resources are allocated to the ARBs with high stimulation values, and taken from those with small stimulation values. ARBs without resources are removed from the cell population.

In experiments 87–92 (Table 8) the total amount of resources was increased from 25 to 150, showing a steady increase of the prediction MCC. The best prediction MCC is obtained for TR = 125 and TR = 150, but with no improvement over the previous group of experiments.

			Vario	us Values	of TR (Tot	tal Resources);	(ST = 0.5)		
Exp	TR	TP _c	FN _c	TN _c	FP _c	Se _c	Sp _c	Ac _c	MCC _c
87	25	92	14	218	25	0.8679	0.8971	0.8883	0.7453
88	50	88	18	210	33	0.8302	0.8642	0.8539	0.6710
89	75	89	17	221	22	0.8396	0.9095	0.8883	0.7397
90	100	92	14	222	21	0.8679	0.9136	0.8997	0.7681
91	125	95	11	225	18	0.8962	0.9259	0.9169	0.8080
92	150	95	11	225	18	0.8962	0.9259	0.9169	0.8080
Exp	TR	TPp	FNp	TNp	FPp	Sep	Spp	Ac _p	MCC _p
87	25	73	33	205	38	0.6887	0.8436	0.7966	0.5256
88	50	71	35	209	34	0.6698	0.8601	0.8023	0.5313
89	75	73	33	208	35	0.6887	0.8560	0.8052	0.5418
90	100	72	34	215	28	0.6792	0.8848	0.8223	0.5737
91	125	83	23	217	26	0.7830	0.8930	0.8596	0.6708
92	150	83	23	217	26	0.7830	0.8930	0.8596	0.6708

Table 8. Calibration and Prediction Statistics of AIRS Models Computed for

After performing a large number of experiments, we can conclude that the AIRS procedure is stable, and offers good predictions for a wide range of the user defined parameters. The largest variation of the prediction MCC was observed in the optimization of the affinity threshold scalar ATS. For the remaining groups of experiments, MCC_p improved slightly or at all, because the default values for these parameters were (near) optimal.

Comparison with other Machine Learning Algorithms. The same TdP+/TdP– classification problem was solved with 11 other machine learning algorithms namely logistic regression LogisticReg, Bayesian network BayesNet, naïve Bayesian classifier NaiveBayes, alternating decision tree ADTree, C4.5 decision tree J48, logistic model trees LMT, decision tree with naïve Bayesian classifiers at the leaves NBTree, fast decision tree learner REPTree, random trees RandomTree, random forests RandomForest, and K* instance–based classifier KStar. All calculations were performed with Weka.

							5	
Model	TP _c	FN _c	TN _c	FP _c	Se _c	Sp _c	Ac _c	MCC _c
LogisticReg	42	64	222	21	0.3962	0.9136	0.7564	0.3704
BayesNet	31	75	232	11	0.2925	0.9547	0.7536	0.3494
NaiveBayes	4	102	240	3	0.0377	0.9877	0.6991	0.0833
ADTree	87	19	203	40	0.8208	0.8354	0.8309	0.6272
J48	92	14	240	3	0.8679	0.9877	0.9513	0.8840
LMT	83	23	233	10	0.7830	0.9588	0.9054	0.7717
NBTree	77	29	232	11	0.7264	0.9547	0.8854	0.7213
REPTree	85	21	226	17	0.8019	0.9300	0.8911	0.7401
RandomTree	106	0	243	0	1.0000	1.0000	1.0000	1.0000
RandomForest	106	0	242	1	1.0000	0.9959	0.9971	0.9933
KStar	106	0	243	0	1.0000	1.0000	1.0000	1.0000
Model	TPp	FNp	TNp	FPp	Sep	Spp	Ac _p	MCC _p
LogisticReg	42	64	221	22	0.3962	0.9095	0.7536	0.3633
BayesNet	35	71	218	25	0.3302	0.8971	0.7249	0.2770
NaiveBayes	11	95	222	21	0.1038	0.9136	0.6676	0.0277
ADTree	52	54	215	28	0.4906	0.8848	0.7650	0.4106
J48	52	54	216	27	0.4906	0.8889	0.7679	0.4170
LMT	59	47	225	18	0.5566	0.9259	0.8138	0.5351
NBTree	52	54	213	30	0.4906	0.8765	0.7593	0.3982
REPTree	58	48	214	29	0.5472	0.8807	0.7794	0.4548
RandomTree	69	37	198	45	0.6509	0.8148	0.7650	0.4567
RandomForest	78	28	212	31	0.7358	0.8724	0.8309	0.6036
KStar	81	25	211	32	0.7642	0.8683	0.8367	0.6216

Table 9. Calibration and Prediction Statistics of Several Machine Learning Models

The results reported in Table 9 show that the best predictions are obtained with logistic model trees ($MCC_p = 0.5351$), random forests ($MCC_p = 0.6036$), and K* instance–based classifier ($MCC_p = 0.6216$). The predictions obtained with the AIRS2 algorithm ($MCC_p = 0.6708$) are higher than those obtained with these 11 machine learning procedures, indicating that the artificial immune recognition system is a powerful classification method, that may be applied with success in structure–activity studies.

5 CONCLUSIONS

Artificial immune systems use procedures inspired from biological immune systems for pattern recognition and classification. In this report we demonstrated the first application of the artificial immune recognition system algorithm [20–22] in modeling structure–activity relationships. The

learning task was to classify a dataset of 349 chemicals [40] into a subset of 106 drugs that induce torsade de pointes and a subset of 243 drugs that do not induce torsade de pointes. The AIRS2 procedure [23] as implemented in Weka was used for all machine learning experiments. As structural descriptors we used linear solvation energy relationships descriptors [41–43], namely the excess molar refraction, the combined dipolarity/polarizability, the overall solute hydrogen bond basicity, and the McGowan's characteristic volume [40].

The classification performance of the AIRS2 algorithm was investigated 92 experiments and for a wide range of values for the user defined parameters: affinity threshold scalar, clonal rate, hypermutation rate, number of nearest neighbors, initial memory cell pool size, number of instances to compute the affinity threshold, stimulation threshold, and total resources. The largest variation of the prediction statistics was observed for ATS, whereas small or no improvement was observed during the optimization of the remaining parameters. The best value for the affinity threshold scalar was ATS = 0.05, indicating that for the TdP drug classification problem a low memory cell replacement rate is beneficial.

The best leave–10%–out cross–validation predictions of the AIRS algorithm (selectivity 0.783, specificity 0.893, accuracy 0.860, and Matthews correlation coefficient 0.671) surpass those obtained with 11 other machine learning algorithms, namely logistic regression, Bayesian network, naïve Bayesian classifier, alternating decision tree, C4.5 decision tree, logistic model trees, decision tree with naïve Bayesian classifiers at the leaves, fast decision tree learner, random trees, random forests, and K* instance–based classifier. The results obtained suggest that classifiers based on artificial immune systems may be successful in structure–activity relationships, drug design, and virtual screening of chemical libraries.

6 REFERENCES

- [1] J. E. Hunt and D. E. Cooke, Learning using an artificial immune system, J. Netw. Comput. Appl. 1996, 19, 189–212.
- [2] L. N. de Castro and F. J. Von Zuben, Artificial immune systems: Part I Basic theory and applications. FEEC/UNICAMP, Brazil, 1999.
- [3] L. N. de Castro and F. J. Von Zuben, Artificial immune systems: Part II A survey of applications. FEEC/UNICAMP, Brazil, 2000.
- [4] J. Timmis, M. Neal, and J. Hunt, An artificial immune system for data analysis, *BioSystems* 2000, 55, 143–150.
- [5] L. N. de Castro and J. I. Timmis, Artificial immune systems as a novel soft computing paradigm, *Soft Comput.* **2003**, *7*, 526–544.
- [6] L. N. De Castro, Dynamics of an artificial immune network, J. Exp. Theor. Artif. Intell. 2004, 16, 19–39.
- [7] D. Dasgupta (Ed.), Artificial Immune Systems and Their Applications, Springer–Verlag, Berlin, 1999.
- [8] L. N. de Castro and J. Timmis, Artificial Immune Systems: A New Computational Intelligence Approach, Springer-Verlag, Berlin, 2002.
- [9] A. O. Tarakanov, V. A. Skormin, and S. P. Sokolova, *Immunocomputing: Principles and Applications*, Springer–Verlag, Berlin, 2003.
- [10] Y. Ishida, Immunity-Based Systems, Springer-Verlag, Berlin, 2004.
- [11] G. Nicosia, V. Cutello, P. J. Bentley, and J. I. Timmis (Eds.), Artificial Immune Systems: Third International Conference, ICARIS 2004, Catania, Sicily, Italy, September 13–16, 2004, Lecture Notes in Computer Science, Vol. 3239, Springer–Verlag, Berlin, 2004.

- [12] C. Jacob, M. L. Pilat, P. J. Bentley, and J. Timmis (Eds.), Artificial Immune Systems: 4th International Conference, ICARIS 2005, Banff, Alberta, Canada, August 14–17, 2005, Lecture Notes in Computer Science, Vol. 3627, Springer–Verlag, Berlin, 2005.
- [13] S. Ando and H. Iba, Classification of gene expression profile using combinatory method of evolutionary computation and machine learning, *Genet. Programm. Evolv. Mach.* 2004, *5*, 145–156.
- [14] G. B. Bezerra, G. M. A. Cançado, M. Menossi, L. N. de Castro, and F. J. Von Zuben, Recent advances in gene expression data clustering: A case study with comparative results, *Genet. Mol. Res.* 2005, 4, 514–524.
- [15] D. Tsankova, V. Georgieva, and N. Kasabov, Artificial immune networks as a paradigm for classification and profiling of gene expression data, J. Comput. Theor. Nanosci. 2005, 2, 543–550.
- [16] K. Polat, S. Şahan, H. Kodaz, and S. Güneş, Breast cancer and liver disorders classification using artificial immune recognition system (AIRS) with performance evaluation by fuzzy resource allocation mechanism, *Expert Syst. Appl.* 2007, *32*, 172–183.
- [17] S. Şahan, K. Polat, H. Kodaz, and S. Güneş, A new hybrid method based on fuzzy–artificial immune system and *k*–nn algorithm for breast cancer diagnosis, *Comput. Biol. Med.* **2007**, *37*, 415–423.
- [18] K. Polat, S. Şahan, and S. Güneş, Automatic detection of heart disease using an artificial immune recognition system (AIRS) with fuzzy resource allocation mechanism and *k*-nn (nearest neighbour) based weighting preprocessing, *Expert Syst. Appl.* **2007**, *32*, 625–631.
- [19] K. Polat, S. Şahan, and S. Güneş, A novel hybrid method based on artificial immune recognition system (AIRS) with fuzzy weighted pre-processing for thyroid disease diagnosis, *Expert Syst. Appl.* **2007**, *32*, 1141–1147.
- [20] A. Watkins, J. Timmis, and L. Boggess, Artificial immune recognition system (AIRS): An immune-inspired supervised learning algorithm, *Genet. Programm. Evolv. Mach.* 2004, 5, 291–317.
- [21] A. B. Watkins, AIRS: A resource limited artificial immune classifier. Department of Computer Science, MS Thesis, Mississippi State University, 2001, pp. 81.
- [22] A. B. Watkins, Exploiting immunological metaphors in the development of serial, parallel and distributed learning algorithms. PhD Thesis, University of Kent, Canterbury, UK, 2005, pp. 314.
- [23] J. Brownlee, Artificial immune recognition system (AIRS). A review and analysis. Centre for Intelligent Systems and Complex Processes (CISCP), Faculty of Information and Communication Technologies (ICT), Swinburne University of Technology (SUT), Victoria, Australia, 2005.
- [24] Y. G. Yap and A. J. Camm, Drug induced QT prolongation and torsades de pointes, *Heart* 2003, 89, 1363–1372.
- [25] L. Belardinelli, C. Antzelevitch, and M. A. Vos, Assessing predictors of drug-induced torsade de pointes, *Trends Pharmacol. Sci.* 2003, *24*, 619–625.
- [26] R. R. Fenichel, M. Malik, C. Antzelevitch, M. Sanguinetti, D. M. Roden, S. G. Priori, J. N. Ruskin, R. J. Lipicky, and L. R. Cantilena, Drug-induced torsades de pointes and implications for drug development, J. Cardiovasc. Electrophysiol. 2004, 15, 475–495.
- [27] B. Darpö, Spectrum of drugs prolonging QT interval and the incidence of torsades de pointes, *Eur. Heart J. Suppl.* 2001, *3*, K70–K80.
- [28] W. S. Redfern, L. Carlsson, A. S. Davis, W. G. Lynch, I. MacKenzie, S. Palethorpe, P. K. S. Siegl, I. Strang, A. T. Sullivan, R. Wallis, A. J. Camm, and T. G. Hammond, Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: Evidence for a provisional safety margin in drug development, *Cardiovasc. Res.* 2003, 58, 32–45.
- [29] D. M. Roden, Drug-induced prolongation of the QT interval, N. Engl. J. Med. 2004, 350, 1013–1022.
- [30] M. Jalaie and D. D. Holsworth, QT interval prolongation: And the beat goes on, *Mini-Rev. Med. Chem.* 2005, 5, 1083–1091.
- [31] J. S. Mitcheson, J. Chen, M. Lin, C. Culberson, and M. C. Sanguinetti, A structural basis for drug-induced long QT syndrome, *Proc. Natl. Acad. Sci. USA* **2000**, *97*, 12329–12333.
- [32] P. Hoffmann and B. Warner, Are hERG channel inhibition and QT interval prolongation all there is in druginduced torsadogenesis? A review of emerging trends, J. Pharmacol. Toxicol. Methods 2006, 53, 87–105.
- [33] K. Kamiya, R. Niwa, J. S. Mitcheson, and M. C. Sanguinetti, Molecular determinants of hERG channel block, *Mol. Pharmacol.* 2006, 69, 1709–1716.
- [34] S. Ekins, W. J. Crumb, R. D. Sarazan, J. H. Wikel, and S. A. Wrighton, Three-dimensional quantitative structureactivity relationship for inhibition of human ether-a-go-go-related gene potassium channel, *J. Pharmacol. Exp. Ther.* **2002**, *301*, 427–434.
- [35] D. Fernandez, A. Ghanta, G. W. Kauffman, and M. C. Sanguinetti, Physicochemical features of the hERG channel drug binding site, J. Biol. Chem. 2004, 279, 10120–10127.
- [36] M. C. Sanguinetti and J. S. Mitcheson, Predicting drug-hERG channel interactions that cause acquired long QT syndrome, *Trends Pharmacol. Sci.* 2005, 26, 119–124.
- [37] O. Roche, G. Trube, J. Zuegge, P. Pflimlin, A. Alanine, and G. Schneider, A virtual screening method for prediction of the hERG potassium channel liability of compound libraries, *ChemBioChem* 2002, 3, 455–459.
- [38] H. Sun, An accurate and interpretable Bayesian classification model for prediction of hERG liability,

ChemMedChem 2006, 1, 315–322.

- [39] M. Seierstad and D. K. Agrafiotis, A QSAR model of hERG binding using a large, diverse, and internally consistent training set, *Chem. Biol. Drug Des.* **2006**, *67*, 284–296.
- [40] C. W. Yap, C. Z. Cai, Y. Xue, and Y. Z. Chen, Prediction of torsade-causing potential of drugs by support vector machine approach, *Toxicol. Sci.* 2004, 79, 170–177.
- [41] M. H. Abraham, Scales of solute hydrogen–bonding: Their construction and application to physicochemical and biochemical processes, *Chem. Soc. Rev.* **1993**, *22*, 73–83.
- [42] M. H. Abraham, A. Ibrahim, A. M. Zissimos, Y. H. Zhao, J. Comer, and D. P. Reynolds, Application of hydrogen bonding calculations in property based drug design, *Drug Discov. Today* 2002, 7, 1056–1063.
- [43] J. A. Platts, D. Butina, M. H. Abraham, and A. Hersey, Estimation of molecular linear free energy relation descriptors using a group contribution approach, J. Chem. Inf. Comput. Sci. 1999, 39, 835–845.