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Abstract 

Motivation. In the past, molecular similarity spaces have been developed from arbitrary sets of molecular 
properties or theoretical descriptors and the results of property estimation based on these methods have always 
been inferior to SAR and QSAR models. Tailored QMSA methods attempt to create similarity spaces specific 
for a property of interest, rather than being purely arbitrary spaces characterizing the general aspects of all 
chemicals within the space or intuitively selected structure spaces whose elements are chosen subjectively. To 
this end, we have created three similarity spaces, two tailored and one non–tailored, for a set of 166 chemicals 
for which we have both log P and normal boiling point (BP) data. The tailored spaces were each tailored to one 
of the properties, while the other similarity space was developed using standard QMSA methods. 
Method. Ridge regression was used to determine which of the available molecular descriptors were most useful 
in modeling each of the available properties. Fifteen topological descriptors were selected for use as dimensions 
within each the tailored similarity spaces. The same number of principal components were developed using 
principal component analysis for the arbitrary similarity space. 
Results. The log P tailored similarity space was superior to both the arbitrary structure space and the BP tailored 
space for the estimation of log P. Also, the BP tailored similarity space was superior to the arbitrary structure 
space for the estimation of BP. Interestingly, the space tailored to model log P performed as well at modeling BP 
as did the BP tailored space. This unexpected result is explained by the degree of overlap between the indices 
used in both of the tailored spaces and in the presence of connectivity indices related to BP in the log P model. 
Conclusions. The tailored similarity method presents a promising approach to creating property specific 
similarity spaces derived from structural descriptors based on the results of this study and from a previous study. 
Further work is necessary to determine to true utility of this method with large, diverse data sets. 
Keywords. Quantitative molecular similarity analysis (QMSA); tailored QMSA; arbitrary QMSA; topological 
indices; lipophilicity; normal boiling point. 
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1 INTRODUCTION 

Quantitative molecular similarity analysis (QMSA) is an important computational tool both for 
the hazard assessment of environmental pollutants and pharmaceutical drug design. In the area of 
the hazard estimation of chemicals, QMSA methods are routinely used to assess the potential 
hazard of a chemical based on the toxicity profiles of analogous chemicals when little or no 
experimental toxicity data and toxicologically relevant property data are available for the chemical 
of interest [1–4]. This course of action is generally followed when the structure of the chemical is 
complex enough that it cannot be unambiguously classified into a particular structural category. If it 
could be categorized into a specific chemical class, class–specific quantitative structure–activity 
relationship (QSAR) models would instead be used for hazard assessment. In the area of drug 
discovery, QMSA techniques are useful for determining whether interesting lead compounds have 
structural analogs with similar pharmacological and toxicological profiles. The other side of 
similarity is dissimilarity. Dissimilarity–based clustering of large libraries of real or in silico (virtual 
libraries) of chemicals has been successfully used [5] and suggested [6] as possible methods in the 
management of combinatorial explosions in various drug design scenarios. 

QMSA methods are based on the basic assumption that similar molecular structures usually have 
similar properties [7]. Two chemicals, X1 and X2, are said to be similar if they resemble each other 
with respect to some user–defined set of properties or structural attributes, or both. Substructural 
descriptors [8–17], experimental properties [12,17–19], and theoretical structural invariants [6,7,11–
17,19–32] have been widely used in the formulation of QMSA methods and ranking of chemical 
databases via such techniques. 

Our research group has been involved in the development of novel QMSA techniques and their 
applications in analog selection and the k–nearest neighbor (KNN) based estimation of properties, 
as well as the use of similarity spaces in the clustering of chemical databases. Our experience has 
shown that increasing the intrinsic dimensionality of similarity spaces by the progressive use of 
more diverse and mutually uncorrelated (or minimally correlated) indices leads to better analog 
selection as is evident from both a visual inspection of their structures and the predictive power of 
the selected analogs in property estimation for query chemicals using the KNN method. 

The stepwise use of increasingly higher dimensional structure spaces, derived from collections of 
progressively more diverse and comprehensive indices, suffers from the fact that elements of the 
enhanced spaces do not have any intrinsic relationship to the property of interest that we are 
attempting to estimate from the chosen analogs. Rather, these spaces are simply a reflection of the 
chemical diversity within the selected data set. If there is an improvement in the usefulness of 
analogs selected, that is only by chance, not by design. This is why we have developed the idea of 
tailored QMSA methods where the structure space is constructed from parameters that are strongly 
associated with the property of interest [32]. The advantage of such directed spaces over blind or 
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arbitrary spaces is that analogs selected by the former will be relevant with respect to the property 
to which they are tailored. 

In a previous study, we reported for the first time the development of structure spaces tailored 
towards two properties, viz., log P (octanol/water) and Ames mutagenicity, based on calculated 
topological indices. We also showed that the analogs selected from the tailored similarity spaces 
gave much better results in KNN–based estimation for both of the properties studied, as compared 
to our previous results using arbitrary similarity spaces. In the current study, we have used a set of 
166 chemicals which represent a subset of the known constituents of jet propellant #8 (JP–8), a jet 
fuel currently in use by the United States Armed Forces. This set of chemicals was of interest for 
this study since we have data for two physicochemical properties, log P and normal boiling point, 
for this set of chemicals. Three similarity spaces have been constructed for this study. Two of the 
similarity spaces are tailored spaces, one tailored towards log P and the other towards normal 
boiling point (hereafter simply referred to as BP). The third similarity space is a standard, arbitrary 
similarity space developed from the set of available molecular descriptors. 

2 MATERIALS AND METHODS 

Physicochemical property data used in this study represent property values extracted from the 
ASTER [33] system of the USEPA. These data are predominantly calculated values, rather than 
experimental values, reflecting the difficulty of obtaining simple physicochemical experimental 
data for common compounds. 

2.1 Chemical Data 
The set of chemicals used in this study represents a subset of the known constituents of JP–8 

identified through GC/MS [34], a set of 166 hydrocarbons. This subset consisted of all of the 
chemicals in the full set of 228 chemicals for which log P and normal boiling point (BP) were both 
available from the ASTER database. However, even for the reduced set of 166 chemicals, most of 
the data values available from ASTER were calculated, not experimental values. This set of 
chemicals and the data obtained from ASTER are reported in Table 1. 

2.2 Calculation of Molecular Descriptors
The topological indices (TIs) used in this study were calculated using three main software 

programs: POLLY 2.3 [35], MolConn–Z 3.50 [36], and Triplet [37]. Included in the suite of more 
than 220 indices in this study are: Wiener number [38], molecular connectivity indices as calculated 
by Randi  [39] and Kier and Hall [40], frequency of path lengths of varying size, information 
theoretic indices defined on distance matrices of graphs using the methods of Bonchev and 
Trinajsti  [41] as well as those of Raychaudhury et al. [42], parameters defined on the 
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neighborhood complexity of vertices in hydrogen–filled molecular graphs [43–45], Balaban’s J
indices [46–48], local orthogonal vertex invariants [37], kappa shape descriptors [49,50], and the 
electrotopological indices of Kier and Hall [51]. More information on the topological indices 
calculated by POLLY has been reported in earlier studies [15,20,27,31]. 

Table 1. Chemicals and Their Physicochemical Property Data for the 166 Identified Components of JP–8 
No Name logP BP  No Name logP BP 
1 ISTD (d10–anthracene) 4.49 300  50 3,3–dimethylheptane 5.2 137 
2 2,2,3–trimethylbutane 4.01 81  51 2,4–dimethyl–3–ethylpentane 5.07 137 
3 2,3,3–trimethyl–1–butene 3.46 78  52 2,3,4–trimethylhexane 5.07 139 
4 3,3–dimethylpentane 4.14 86  53 2,2,3,3–tetramethylpentane 4.94 140 
5 Benzene 2.14 80  54 2,3,3,4–tetramethylpentane 4.94 142 
6 2–methylhexane 4.27 90  55 2,3–dimethylheptane 5.2 141 
7 3–ethylpentane 4.27 93.5  56 3,4–dimethylheptane 5.2 141 
8 t–1,3–dimethylcyclopentane 3.83 91  57 4–ethylheptane 5.33 141 
9 Iso–octane 4.54 99  58 Ethylbenzene 3.32 136 

10 1–heptene 3.85 94  59 4–methyloctane 5.33 141 
11 3–heptene 3.85 92.7  60 m–xylene 3.44 139 
12 n–heptane 4.4 98  61 3–methyloctane 5.33 143 
13 2,2–dimethylhexane 4.67 106  62 c–1,2,3–trimethylcyclohexane 4.91 144 
14 1,1,3–trimethylcyclopentane 4.35 105  63 3,3–diethylpentane 5.2 146 
15 2,3,3–trimethyl–1,4–pentadiene 3.45 125  64 1,2,4–trimethylcyclohexane 4.91 142 
16 2,4,4–trimethyl–2–pentene 3.99 105  65 c,c,t–1,3,5–trimethylcyclohexane 4.91 144 
17 2,5–dimethylhexane 4.67 109  66 1–nonene 4.91 147 
18 2,4–dimethylhexane 4.67 110  67 o–xylene 3.44 144 
19 3,3–dimethylhexane 4.67 112  68 4–nonene 4.91 145 
20 4–methylcyclohexene 3.33 103  69 n–nonane 5.46 151 
21 c,t,c–1,2,3–trimethylcyclopentane 4.35 123  70 c,c,t–1,2,3–trimethylcyclohexane 4.91 144 
22 2,3,4–trimethylpentane 4.54 114  71 3,3,5–trimethylheptane 5.59 156 
23 2,3,3–trimethylpentane 4.54 115  72 1–ethyl–1–methylcyclohexane 4.92 144 
24 t–3,4,4–trimethyl–2–pentene 3.99 119  73 1,3,5,5–tetramethyl–1,3–cyclohexadiene 4.52 173 
25 1,1,3,3–tetramethylcyclopentane 4.87 114  74 t–1,1,3,5–tetramethylcyclohexane 5.43 166 
26 2–methylheptane 4.8 118  75 Isopropylcyclohexane 4.8 155 
27 4–methylheptane 4.8 118  76 3,5–dimethyloctane 5.72 160 
28 Toluene 2.79 111  77 Isopropylbenzene 3.72 152 
29 3,4–dimethylhexane 4.67 118  78 2,7–dimethyloctane 5.72 160 
30 2,2,4,4–tetramethylpentane 4.94 122  79 n–propylcyclohexane 4.93 157 
31 3–methylheptane 4.8 119  80 2,6–dimethyloctane 5.72 155 
32 3–ethylhexane 4.8 119  81 3,4–diethylhexane 5.72 162 
33 t–1,1,3,4–tetramethylcyclopentane 4.87 144  82 3,6–dimethyloctane 5.72 160 
34 2–ethyl–1–hexene 4.25 120  83 3–ethyl–2–methylheptane 5.72 166 
35 2,2,4–trimethylhexane 5.07 127  84 3,4,5–trimethylheptane 5.59 164 
36 1–ethyl–1–methylcyclopentane 4.36 122  85 Propylbenzene 3.85 159 
37 n–octane 4.93 126  86 2,3–dimethyloctane 5.72 164 
38 2,4,4–trimethylhexane 5.07 131  87 4–ethyloctane 5.85 168 
39 2,4–dimethylheptane 5.2 134  88 5–methylnonane 5.85 165 
40 2,2,3–trimethylhexane 5.07 134  89 4–methylnonane 5.85 165 
41 4,4–dimethylheptane 5.2 135  90 1–ethyl–3–methylbenzene 3.97 161 
42 3,3,5–trimethylcyclohexene 4.37 145  91 1–ethyl–4–methylbenzene 3.97 162 
43 2,2,5,5–tetramethylhexane 5.46 137  92 3–ethyloctane 5.85 168 
44 2,6–dimethylheptane 5.2 135  93 1,3,5–trimethylbenzene 4.09 165 
45 c,c,c–1,3,5–trimethylcyclohexane 4.91 144  94 3–methylnonane 5.85 167 
46 Propylcyclopentane 4.37 131  95 1–isopropyl–4–methylcyclohexane 5.32 169 
47 1,3,5–trimethylcyclohexane 4.91 144  96 1–ethyl–2–methylbenzene 3.97 165 
48 3,5,5–trimethylcyclohexene 4.37 145  97 2,2,4,6,6–pentamethylheptane 6.39 205 
49 Ethylcyclohexane 4.4 132  98 t–butylbenzene 4.12 169 



B. D. Gute, S. C. Basak, D. Mills, and D. M. Hawkins 
Internet Electronic Journal of Molecular Design 2002, 1, 374–387 

378 
BioChem Press http://www.biochempress.com

Table 1. (Continued) 
No Name logP BP No Name logP BP 
99 1,2,4–trimethylbenzene 4.09 169  133 1,2–dimethyl–3–ethylbenzene 4.62 194 
100 n–decane 5.98 174  134 1,2,4,5–tetramethylbenzene 4.74 197 
101 Isobutylbenzene 4.25 173  135 (2–methylbutyl–)–benzene 4.78 205 
102 sec–butylbenzene 4.25 174  136 1,2,3,5–tetramethylbenzene 4.74 198 
103 3,7,7–trimethylbicyclo(4.1.0)–3–heptene 4.12 170  137 (3–methylbutyl–)–benzene 4.78 199 
104 1–isopropyl–3–methylbenzene 4.37 175  138 1,2–diisopropylbenzene 5.3 204 
105 1,2,3–trimethylbenzene 4.09 176  139 1,2,3,4–tetramethylbenzene 4.74 205 
106 1–ethyl–2,5–dimethylbenzene 4.62 187  140 n–pentylbenzene 4.91 205 
107 Dicyclopentadiene 3.44 175  141 1,4–diisopropylbenzene 5.3 203 
108 Butylcyclohexane 5.46 181  142 1–t–butyl–3,5–dimethylbenzene 5.42 204 
109 Indane (2,3–dihydro–1H–indene) 3.46 176  143 Naphthalene 3.32 218 
110 1–isopropyl–2–methylbenzene 4.37 178  144 1–dodecene 6.5 213 
111 1,3–diethylbenzene 4.5 181  145 1,3,5–triethylbenzene 5.68 215 
112 1–propyl–4–methylbenzene 4.5 183  146 n–hexylbenzene 5.44 226 
113 1,4–diethylbenzene 4.5 183  147 (1,1–diethylpropyl–)–benzene 5.71 243 
114 Butylbenzene 4.38 183  148 2–methylnaphthalene 3.97 241 
115 1–ethyl–3,5–dimethylbenzene 4.62 184  149 1–methylnaphthalene 3.97 245 
116 4–methyldecane 6.38 185  150 Cyclohexylbenzene 4.91 235 
117 1,2–diethylbenzene 4.5 183  151 1-t-butyl–3,4,5–trimethylbenzene 6.07 243 
118 2–methyldecane 6.38 185  152 1,1,6–trimethyltetralin 5.7 247 
119 Neopentylbenzene 4.65 186  153 n–heptylbenzene 5.97 245 
120 1–propyl–2–methylbenzene 4.5 185  154 1,1'–biphenyl 4.03 254 
121 3–methyldecane 6.38 185  155 2–ethylnaphthalene 4.49 258 
122 1–isopropyl–4–methylbenzene 4.37 177  156 1–ethylnaphthalene 4.49 259 
123 1–ethyl–2,4–dimethylbenzene 4.62 188  157 2,6–dimethylnaphthalene 4.61 262 
124 (1,2–dimethylpropyl–)–benzene 4.65 188  158 2,3–dimethylnaphthalene 4.61 268 
125 1–ethyl–3,4–dimethylbenzene 4.62 190  159 1,4–dimethylnaphthalene 4.61 268 
126 1–t–butyl–3–methylbenzene 4.77 189  160 1,5–dimethylnaphthalene 4.61 265 
127 (1–ethylpropyl–)–benzene 4.78 191  161 1,2–dimethylnaphthalene 4.61 266 
128 1–undecene 5.97 193  162 n–octylbenzene 6.49 262 
129 2–ethyl–1,3–dimethylbenzene 4.62 190  163 1,8–dimethylnaphthalene 4.61 270 
130 n–undecane 6.51 196  164 Fluorene 4.23 293 
131 1–ethyl–3–isopropylbenzene 4.9 192  165 2,5–dimethylheptane 5.2 136 
132 sec–pentylbenzene 4.78 193  166 p–xylene 3.44 138 

2.2.1 Data reduction

Initially, the TIs were transformed by the natural logarithm of the index plus one. Since the 
magnitude of some TIs is several orders greater than that of others, re–scaling is conducted to 
minimize the effect of scale. However, minimal values for some of the Molconn–Z parameters were 
much less than zero. These indices were logarithmically scaled on a case–by–case basis using the 
natural logarithm of the index plus x, where x was an integer large enough to make the minimal 
value of the index greater than zero. Next, correlation analysis was conducted on the indices. In all 
cases of a perfect correlation between several indices, only one of the indices was retained within 
the descriptor set. Additionally, a number of indices encoding features not present in the data set 
(having zero values for all compounds) were discarded. 
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2.2.2 Statistical analysis software 

Two statistical software packages were used for the construction of similarity spaces used in this 
study. For the development of the arbitrary similarity space, SAS [52] was used to conduct a 
principal component analysis (PCA) on the transformed indices to minimize the intercorrelation of 
indices. This was done using the SAS procedure PRINCOMP. For the tailored spaces, an in–house 
ridge regression (RR) [53] program was used to select a small set of descriptors for the development 
of each of the spaces. 

2.2.3 Construction of arbitrary similarity spaces

A traditional (arbitrary) molecular similarity space was constructed for the set of 166 JP–8 
constituents using the principal components created using the SAS PRINCOMP procedure. Only 
PCs with eigenvalues greater than or equal to one have been retained for this study. A more detailed 
explanation of this approach has been provided in a previous study by Basak et al. [20]. These PCs 
were subsequently used as independent variables (in place of the TIs) to determine similarity scores 
in the Euclidean distance method described later. After the PCA, a correlation analysis was 
conducted on the PCs to determine which TIs were most highly correlated with each of the PCs. 
This allows for the creation of similarity spaces based on a small set of TIs (as has been done 
previously), and also provides some insight into the general nature of the principal components, i.e.,
which aspects of molecular structure are explained by each of the PCs [6,54,55]. 

2.2.4 Construction of tailored similarity spaces

Two tailored similarity spaces were constructed for use in this study. One of the spaces was 
tailored specifically to log P and the other for BP. As was mentioned earlier, the RR method was 
used in the development of these spaces. RR is a method wherein modeling is conducted using the 
entire set of descriptors retained after the data reduction step as opposed to subset regression. This 
regression method is useful in cases where the descriptors are highly multicollinear and where the 
number of descriptors is substantially larger than the number of observations [56]. Conceptually, 
RR can be thought of as recasting the regression as one using the principal components of the 
predictor variables as new predictors. It differs in that in principal component regression the leading 
components are retained and used just as in ordinary least squares regression while the trailing 
components are dropped. RR retains all components, but weights each of them in accordance with 
the component’s eigenvalue and the ‘ridging constant’ k. More details on the RR method can be 
found in some of our previous papers [32,57–58]. 

One of the by–products of the RR is a ranking of the contribution of the indices. The absolute 
values of this ranking score were used to select the descriptors for use in the development of 
tailored similarity spaces. Separate RR studies were conducted for log P and BP, resulting in a 
selection of optimal descriptors for use in constructing the tailored similarity spaces. 
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Table 2. Summary of the First Fifteen Principal Components Derived from a set of 222 Topological Indices Calculated 
for a Set of 166 JP–8 Constituents 
PC Eigenvalue Proportion of Explained 

Variance 
Cumulative Explained 

Variance 
First Most Correlated 

TI
Second Most Correlated 

TI
1 93.38 0.421 0.421 DN2N4 0.99349 DN214 0.99136
2 45.84 0.206 0.627 Phia –0.97965 ASN2 0.96310
3 26.24 0.118 0.745 2 b 0.84243 2 v 0.83715
4 12.74 0.057 0.802 IC3 0.74736 IC4 0.73754
5 9.32 0.042 0.844 JB –0.64153 4 b 0.61874
6 6.31 0.029 0.873 10 0.55023 9 v 0.54724
7 4.75 0.021 0.894 SdsCH 0.53646 Shvin 0.52438
8 3.97 0.018 0.912 5 b

C 0.49541 5 v
C 0.49167

9 2.66 0.012 0.924 3
Ch –0.50749 GMAX 0.48248

10 2.36 0.011 0.935 9 v
Ch –0.64096 9

Ch –0.60901
11 1.91 0.009 0.944 JB 0.35572 8

Ch 0.28873
12 1.68 0.008 0.952 Shvin –0.39971 SdsCH –0.39780
13 1.38 0.006 0.958 OORB 0.36812 O 0.31193
14 1.15 0.005 0.963 10 v 0.40648 SdsCH 0.26160
15 1.07 0.005 0.968 6 b 0.31114 6 v 0.30726

Table 3. Fifteen TIs Selected by RR for the 166 JP–8 Chemicals. 
Indices Common to both RR Sets are Indicated in Bold 

PC TIs from RR for log P
(t–value) 

TIs from RR for BP
(t–value) 

1 0 b (16.47) ANN5 (16.77) 
2 0 v (16.42) ANN3 (16.10) 
3 Fw (14.77) AN13 (15.81) 
4 AZS1 (14.22) ANN1 (15.51) 
5 W (14.03) W (15.30) 
6 ANS3 (14.00) P0 (15.07) 
7 AZS3 (13.31) ANS3 (14.74) 
8 ANS1 (12.19) IW

D (14.58) 
9 0 (11.71) DN214 (14.10) 

10 ka1 (11.42) AZS3 (13.93) 
11 IW

D (11.31) AZN3 (13.88) 
12 ANN3 (11.31) AZN5 (13.13) 
13 DN2S3 (11.29) AZN1 (12.81) 
14 ANN5 (11.14) Fw (12.65) 
15 QV (11.08) DN2N3 (12.46) 

2.3 Quantification of Intermolecular Similarity
Once the similarity spaces were constructed, it was possible to calculate similarity scores based 

on the intermolecular distances within the arbitrary and tailored molecular similarity spaces. 
Intermolecular similarity was measured using Euclidean distance (ED) within an n–dimensional 
space derived from TIs or PCs. The ED between two molecules, i and j, is defined as: 

2/1

1

2)(
n

k
jkikij DDED (1)

where n is equal to the number dimensions (descriptors) used to define the similarity space, whether 



Tailored Similarity Spaces for the Prediction of Physicochemical Properties 
Internet Electronic Journal of Molecular Design 2002, 1, 374–387 

381 
BioChem Press http://www.biochempress.com

those dimensions are derived from TIs or PCs. Dik and Djk are the data values of the kth dimension 
for molecules i and j, respectively. 

Once distances between all molecules within the molecular similarity space have been 
calculated, these distance “scores” can then be used for analog selection or in KNN–based property 
estimation. This type of quantifiable analog selection can be a powerful tool for finding chemicals 
that are similar to a chemical of interest, replacing the need for subjective assessment of molecular 
similarity. More often than not, we are interested in predicting a property of interest. In this case, 
KNN–based similarity offers an alternative to standard linear regression approaches that works well 
for large, diverse data sets. 

KNN–based property estimation is carried out by selecting the k–nearest neighbors for each 
compound and using the average of the neighbor’s properties as an estimate of the property of our 
chemical of interest. A number of similar chemicals (k = 1–10, 15, 20, 25) are selected and the 
property of interest is estimated based on the values of these nearest neighbors. For instance, in 
estimating the log P of the probe compound, the mean log P for the k–nearest neighbors was used 
as the estimate. KNN estimation was carried out for all chemicals in all three of the similarity 
spaces, resulting in a full cross–validation. Thus the correlation coefficients reported are the cross–
validated correlation coefficients. 

3 RESULTS AND DISCUSSION 

The principal objective of this paper was to illustrate the utility of tailoring similarity spaces to a 
specific property as opposed to the standard method of constructing similarity spaces that are 
property independent. To this end, we used three spaces, viz., an arbitrary principal component 
space that would be used for the KNN–based estimation of both log P and BP, a topological index 
space based on the RR weighting of the indices for log P, and a topological index space based on 
the RR weighting of the indices for BP. 

From the initial set of 369 topological indices, 222 were retained for inclusion in the PCA and 
RR procedures after data reduction. From this set of 222 indices, 15 PCs were extracted with 
eigenvalues greater than or equal to one, resulting in the construction of a 15–dimensional arbitrary 
similarity space. Table 2 presents a summary of the two TIs most–highly correlated with each of the 
15 PCs. For the sake of consistency, it was determined that we would then use the fifteen TIs with 
the highest rankings from the RR procedure. Table 3 presents the TIs selected for use in developing 
the similarity spaces tailored for log P and BP. 

The t–values, indicated in Table 3, are model coefficients extracted from the RR procedure and 
used to rank the TIs from most to least influential based on the absolute value of the regression 
coefficient. On close examination of tables 2 and 3 we find that none of the TIs selected by RR are 
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well represented in the PCs. Only one of the indices chosen for the tailored BP model, DN214,
shows up as the second most–correlated TI in PC1. Otherwise, the tailored sets have little in 
common with the TIs selected by RR. Further analysis shows that, of the five TIs most correlated 
with each of the fifteen PCs, DN214, is still the only TI shared in common between the arbitrary 
similarity space and either of the tailored spaces. A much higher degree of overlap exists between 
the two tailored sets. These sets share a total of seven of the fifteen TIs in common (indicated in 
bold face in Table 3). 

Interestingly, beyond the seven shared indices, each of the tailored sets show a marked 
difference in the types of indices selected. The set developed for modeling log P is skewed towards 
zero–order chi indices, while the BP set shows a strong tendency towards the AZN triplets. While 
there is significant overlap between the two tailored sets of descriptors, it is encouraging to see that 
they show distinct differences as well. It is also encouraging to see the low–degree of overlap 
between the indices prevalent in the arbitrary set versus those present in the tailored sets. The 
arbitrary set should be a general characterization of the structural diversity within the data set and 
while this is useful for property estimation, there is no intrinsic link to any particular property. The 
tailored sets are geared towards the prediction of a specific property and, as such, should be geared 
more strongly towards defining the property of interest than simply characterizing the structural 
diversity of the structure space. 
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Figure 1. Plot of regression coefficient, R, for KNN-based estimation of log P in 
arbitrary and tailored similarity spaces at varying levels of K (k = 1–10, 15, 20 and 25). 

Three Euclidean distance–based molecular similarity spaces were constructed from the PCs and 
TIs indicated in Tables 2 and 3: (a) an arbitrary molecular structure space using the fifteen PCs 
indicated in Table 2, (b) a space tailored for log P estimation based on the fifteen TIs presented in 
the second column of Table 3, and (c) a space tailored for BP estimation based on the TIs presented 
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in the third column of Table 3. 
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Figure 2. Plot of standard error, s.e., for KNN-based estimation of log P in arbitrary 
and tailored similarity spaces at varying levels of K (k = 1–10, 15, 20 and 25). 
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Figure 3. Plot of regression coefficient, R, for KNN-based estimation of BP in arbitrary 
and tailored similarity spaces at varying levels of K (k = 1–10, 15, 20 and 25). 

Finally, KNN–based property estimation was carried out on the three similarity spaces. First we 
examined the ability of each of the three spaces to estimate log P. In part this was done to verify 
that the tailored spaces are indeed fitted to the property of interest rather than simply another 
nonspecific structure space. The results of this analysis are depicted in Figures 1 and 2. Figure 1 
presents the correlation coefficients for log P estimation in each of the similarity spaces for K = 1–
10, 15, 20 and 25. Likewise, Figure 2 presents the standard error of log P estimation for each of the 
similarity spaces. As can be seen from these figures, the space tailored to log P definitely out–
performs both of the other spaces for the purposes of estimating log P. As might be expected, the 
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arbitrary structure space outperforms the BP tailored space in estimating log P except for when 
using the one and two nearest neighbors. So, for the purposes of log P prediction, our tailored 
similarity space meets our expectations in its performance versus the performance of other spaces. 

The examination of these structure spaces for the estimation of BP was carried out in a manner 
identical to that for the estimation of log P. Each of the three similarity spaces was used in KNN–
based estimation of BP for the complete set of 166 chemicals. These results are summarized in 
Figures 3 and 4. Figure 3 presents the correlation coefficients for BP estimation in each of the 
similarity spaces for K = 1–10, 15, 20 and 25. Likewise, Figure 4 presents the standard error of BP 
estimation for each of the similarity spaces. As can be seen from these figures, the space tailored to 
BP definitely out–performs the arbitrary structure space, though, somewhat surprisingly, the space 
tailored to log P performs about as well as the BP tailored space. The BP tailored space just slightly 
outperforms the log P tailored space through K = 1–6. However, at higher values of K, the log P
space actually outperforms the BP tailored space for the estimation of BP. While this is interesting, 
not too much weight should be given to the model’s performance at higher values for K. As was 
shown in a recent study [30], loss of data variance is a real concern at the higher values of K. Thus 
we ideally want a model that has a high correlation, R, and low standard error, s.e., using a minimal 
number of neighbors. Taking this into consideration, the two tailored similarity spaces are still 
essentially identical with regards to the prediction of BP for this particular set of 166 JP–8 
components. 
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Figure 4. Plot of standard error, s.e., for KNN-based estimation of BP in arbitrary 
and tailored similarity spaces at varying levels of K (k = 1–10, 15, 20 and 25). 

It should be noted that while none of the molecular connectivity indices (chi indices) were 
selected by the RR method for modeling BP, they have been shown to be related to the modeling of 
normal boiling point in a number of studies [60–62]. Bearing this mind, we should not be terribly 
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surprised by the performance of the log P tailored space in the estimation of BP. After all, seven of 
the fifteen indices were shared in common between the two tailored sets, and then if we consider the 
chi indices as also related to BP, we now see that ten of the fifteen parameters in the log P set are 
also important for the prediction of BP. 

4 CONCLUSIONS 

As can be seen from the results presented in this study, tailored similarity spaces show definite 
promise in the development of property–specific similarity spaces, as opposed to standard 
structure–based similarity spaces. Further studies are needed to verify the general utility of this 
approach, specifically we need to examine the utility of spaces constructed from smaller “training 
sets” of chemicals when applied to large, diverse data sets. If these methods can be applied 
successfully to increase the predictive power of similarity measures for large, diverse data sets, this 
will become a powerful tool for both risk assessment and pharmaceutical design. 
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