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Abstract 

Motivation. The TOPological Sub–Structural MOlecular DEsign (TOPS–MODE) approach has been applied to 
the study of the permeability coefficient of various compounds through human skin. A model with good 
statistical parameters was developed (R2 = 0.938, S = 0.24, F = 151.06) with the use of the mentioned approach 
for the 37 organic compounds used in the training set. In contrast, none of nine different approaches, including 
the use of constitutional (R2 = 0.84, S = 0.38), topological (R2 = 0.85, S = 0.37), BCUT (R2 = 0.84, S = 0.38), 2D 
autocorrelations (R2 = 0.79, S = 0.44), geometrical (R2 = 0.87, S = 0.34), RDF (R2 = 0.81, S = 0.41), 3D Morse 
(R2 = 0.90, S = 0.29), GETAWAY (R2 = 0.87, S = 0.35) and WHIM (R2 = 0.70, S = 0.53) descriptors was able to 
obtain a correlation coefficient superior to 0.9 in the mentioned property with the same number of descriptors. 
On the other hand, the TOPS–MODE approach obtains the higher cross validation correlation coefficient of the 
all models (q2 = 0.907). In addition the TOPS MODE allows a simple interpretation of the model in comparison 
with others methodologies. 
Method. Briefly, this method codifies the molecular structure by means of the edge adjacency matrix E. The E
matrix is a square table of order m. The elements of such a matrix (eij) are equal to 1 if the bonds i and j are 
adjacent or 0 otherwise. To codify information related to heteroatoms, the TOPS–MODE approach use B(wij)
weighted matrices instead of E. The weights (wij) are chemically meaningful numbers such as bond distances, 
bond dipole, bond polarizabilities, or even mathematical expressions involving atomic weights such as 
hydrophobicity. 
Results. We have shown that the TOPS–MODE approach is able to describe the permeability of different 
compounds through human skin. 
Conclusions. We have developed a model for predicting the permeability coefficient which is both statistically 
and chemically sound. This model explains more than 93% of the variance in the experimental permeability 
coefficients and shows good predictive ability in cross–validation. These features are significantly better than 
those obtained for other nine different methodologies used to predict this property. 
Keywords. Molecular descriptors; permeability coefficients; QSPR; TOPS–MODE. 
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1 INTRODUCTION 

The barrier function of human skin is important both to the transdermal administration of drugs 
and to the uptake of toxic chemicals following dermal exposure. As a result, several models to 
predict molecular transport through human skin have been developed [1–3]. Various synthetic 
membranes have been employed in drug release studies. The most commonly used artificial 
membranes are polydimethylsiloxane (PDMS) and cellulose acetate [4–10]. PDMS (for example, 
Silastic) is an isotropic polymer widely employed as an alternative model barrier for in vitro
percutaneous penetration. It behaves according to Fick’s first law of diffusion and possesses lipid–
like properties, making it a good model for the stratum corneum [11]. Cellulose acetate membranes 
have similarly found use in such experiments and also in the characterization of ionophoretic 
delivery [12–16]. However, these membranes have often been shown to overestimate significantly 
the flux across skin and their use is significantly limited. Further, Cronin et al. [17], in a 
mechanistic study of penetration across a PDMS membrane, indicated that penetration is related 
primarily to the ability of the penetrants to form hydrogen bonds and not to their lipophilicity, as 
suggested by similar studies on skin ex vivo.

Early quantitative structure–activity relationship (QSAR) studies to predict skin permeation of 
chemicals revealed that hydrophobicity was correlated linearly with increasing permeability 
[18,19]. Patel et al. [20] demonstrated in an excellent paper as the hydrophobicity, molecular size 
and the hydrogen bonding capability of a molecule affect its ability to permeate skin. In the context 
of in silico methods for modeling physicochemical and biological properties of chemicals the 
topological sub–structural molecular design (TOPS–MODE) approach has been introduced [21–25]. 
The successful applications of this theoretical approach for the modeling of physical and physical–
chemical properties [26,27] have inspired us to perform a more exhaustive study in order to test 
and/or to validate the TOPS MODE applicability in this area. Therefore, the aim of this study was 
to investigate the role that TOPS–MODE and other molecular descriptors calculated from the 
molecular structure plays on the explanation of such property using a data set of 37 organic 
compounds. 

2 MATERIALS AND METHODS 

2.1 The TOPS–MODE Approach 
TOPS–MODE is based on the computation of the spectral moments of the bond matrix, the 

mathematical basis of which has been described previously [21–24]. The TOPS–MODE approach 
has been recently reviewed in the literature [28], and both the methodology and its software 
implementation have been described [29]. According to the authors, the application of the TOPS–
MODE approach to the study of quantitative structure–permeability relationships (QSPR) can be 



M. P. González, A. M. Helguera, and Y. M. Rodríguez 
Internet Electronic Journal of Molecular Design 2004, 3, 750–758 

752 
BioChem Press http://www.biochempress.com

summarized in the following steps: 

(1) Draw the hydrogen–depleted molecular graphs for each molecule of the data set. 

(2) Use appropriate bond weights in order to differentiate the molecular bonds, e.g., bond 
distance, bond dipoles, bond polarizabilities. 

(3) Compute the spectral moments of the bond matrix with the appropriate weights for each 
molecule in the data set, generating a table in which rows correspond to the compounds and 
columns correspond to the spectral moments of the bond matrix. Spectral moments are defined as 
the trace of the different powers of the bond matrix [30]. 

(4) Find QSPR by using a suitable linear or non–linear multivariate statistical technique, such as 
multi–linear regression analysis (MRA), etc. to obtain an equation of the form: 

P = a0µ0 + a1µ1 + a2µ2 + a3µ3 ………… akµk + b (1)

where P is the property measurement, µk is the kth spectral moment, and ak’s are the coefficients 
obtained by the MRA. 

(5) Test the predictive capability of the QSPR model by using cross–validation techniques. 

2.2 Data Sets and Computational Strategies 

A data set of 37 compounds for which the permeability coefficients are reported in the literature 

was selected [31]. The parameter studied is log(per) where per is the permeability coefficient through 

human epidermis. The names of the compounds, as well as the calculated and experimental values 

of log(per) are shown in Table 1. 

TOPS–MODE [29] and DRAGON [32] computer software were employed to calculate the 

molecular descriptors. In the case of TOPS–MODE software, the polar surface, dipole moment, 

Gasteiger–Marsilli charges and hydrophobicity were used to weigh the bond adjacency matrix. The 

selection of only these four types of descriptors from the whole pool of ten types included in 

TOPS–MODE methodology was carried out by the sake of simplicity and on the belief that steric 

and polarity parameters influence the permeability of compounds through skin layers [11,14]. The 

total number of descriptors used for obtaining this model was 64 spectral moments. 

On the other hand, nine other models were developed using the kind of descriptors in the 

computer software Dragon [32]. In this sense, we carry out geometry optimization calculations for 

each compound of this study using the semi–empirical method AM1 [33] included in MOPAC 6.0 

[34] and calculating the Constitutional, Topological, BCUT, 2D autocorrelations, Geometrical, 

RDF, 3D–MORSE, GETAWAY and WHIM descriptors [35]. The statistical processing to obtain 

the QSAR models was carried out by using the forward stepwise regression methods. 
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Table 1. Observed, predicted, and residual values of logarithm of the permeability coefficients (cm2/s) through human 
skin for the 37 compounds used to derive the QSPR [31]. 

Number Compounds Observed Predicted Residuals Deleted Residuals 
1 water –6.130 –5.871 –0.259 –0.356 
2 methanol –6.680 –7.165 0.485 0.603 
3 methanoic acid –7.080 –7.402 0.322 0.405 
4 ethanol –6.660 –6.635 –0.025 –0.029 
5 ethanoic acid –7.010 –6.946 –0.064 –0.073 
6 n–propanol –6.410 –6.362 –0.048 –0.052 
7 n–propanoic acid –7.010 –6.633 –0.377 –0.442 
8 butane–2–one –5.900 –5.590 –0.310 –0.402 
9 benzene –4.510 –4.336 –0.174 –0.200 

10 diethyl ether –5.350 –5.003 –0.347 –0.381 
11 n–butanol –6.160 –6.090 –0.070 –0.075 
12 n–butanoic acid –6.360 –6.340 –0.020 –0.024 
13 phenol –5.640 –5.518 –0.122 –0.128 
14 toluene –3.560 –3.918 0.358 0.451 
15 styrene –3.750 –3.860 0.110 0.130 
16 n–pentanol –5.780 –5.817 0.037 0.040 
17 phenylmethanol –5.780 –5.776 –0.004 –0.005 
18 n–pentanoic acid –6.010 –6.064 0.054 0.063 
19 2–chlorophenol –5.040 –4.719 –0.321 –0.338 
20 4–chlorophenol –5.000 –4.954 –0.046 –0.049 
21 m–cresol –5.380 –5.245 –0.135 –0.141 
22 o–cresol –5.360 –5.068 –0.292 –0.304 
23 p–cresol –5.290 –5.271 –0.019 –0.020 
24 4–bromophenol –5.000 –4.823 –0.177 –0.190 
25 4–nitrophenol –5.810 –5.728 –0.082 –0.098 
26 3–nitrophenol –5.810 –5.624 –0.186 –0.228 
27 2–nitrophenol –4.560 –4.796 0.236 0.580 
28 ethylbenzene –3.480 –3.886 0.406 0.481 
29 n–hexanol –5.450 –5.545 0.095 0.101 
30 n–hexanoic acid –5.440 –5.791 0.351 0.413 
31 –naphthol –3.700 –3.714 0.014 0.017 
32 n–heptanol –5.050 –5.273 0.223 0.239 
33 n–heptanoic acid –5.280 –5.518 0.238 0.286 
34 n–octanol –4.840 –5.000 0.160 0.176 
35 n–octanoic acid –5.210 –5.246 0.036 0.045 
36 n–nonanol –4.770 –4.728 –0.042 –0.048 
37 n–decanol –4.660 –4.456 –0.204 –0.242 

The statistical significance of the models was determined by examining the regression 
coefficient, the standard deviation, the number of variables, the cross validation leave–one–out 
statistics and the proportion between the cases and variables in the equation. 

3 RESULTS AND DISCUSSION 

3.1 Quantitative Structure Permeation Relations 
The best QSPR model obtained with the TOPS–MODE descriptors is given below together with 

the statistical parameters of the regression. 
PSHGMD

erp 1115
7

15
9 02.076.01011.11012.187.5)log(

N = 37 S = 0.24 R2 = 0.938 F = 151.06 p < 0.001 q2 = 0.907 Scv = 0.351 
(2)
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where N is the number of compounds included in the model, R2 is the correlation coefficient, S the 
standard deviation of the regression, F the Fisher ratio, q2 the correlation coefficient of the cross–
validation, p is the significance of the variables in the model and Scv is the standard deviation of the 
cross–validation.

The variables included in the model are designated as follows: the sub–index represents the order 
of the spectral moment and the super–index the type of bond weight used, i.e., D for dipole 
moment, PS for polar surface and H for hydrophobicity. 

Consideration of the outliers removed from a QSAR is essential. An outlier to a QSAR is 
identified normally by having a large standard residual and can indicate the limits of applicability of 
a QSAR models. In the current work, any compounds posses a large residual. For this reason, here 
any compound was considered as outlier. From the statistical point of view this model is a robust 
one as can be seen from the statistical parameters of the cross–validation. 

As we previously mentioned, one of the objectives of the current work deal with to compare the 
reliability of the TOPS–MODE approach to describe the property under study and to as compare 
them other with different descriptors and methods. Consequently, nine other models were 
developed using the same data set and the same number of variables that was included in the 
TOPS–MODE QSPR model. The results obtained with the use of Constitutional, Topological, 
BCUT, 2D autocorrelations, Geometrical, RDF, 3D Morse, GETAWAY and WHIM descriptors are 
given in Table 2. 

Table 2. Statistics of regressions models obtained for the ten types of descriptors (see [35] for variable definition) 
Descriptors Variables S R2 F p q2

Spectral moments µ15
D, µ15

GM, µ1
H, µ1

PS 0.240 0.938 151.06 < 0.001 0.907 
Constitutional  nC, nN, nO, nX 0.378 0.843 43.22 < 0.001 0.741 
Topological SPI, Jhete, PW4, SEigv 0.370 0.851 45.75 < 0.001 0.801 
BCUT BELe3, BELe4, BELp6, BELp5 0.381 0.841 42.415 < 0.001 0.791 
2D autocorrelations ATS1e, ATS4e, ATS4p, GATS1p  0.440 0.789 29.908 < 0.001 0.701 
Geometrical MAXDP, G2, SPAM, G(N..O) 0.340 0.873 55.291 < 0.001 0.824 
RDF RDF010u, RDF020e, RDF010p, RDF020p 0.415 0.812 34.577 < 0.001 0.742 
3D–MORSE Mor28v, Mor26u, Mor32m, Mor31u 0.293 0.906 77.628 < 0.001 0.861 
GETAWAY H2u, H1e, R1e, R1p 0.349 0.867 52.147 < 0.001 0.817 
WHIM G2p, Ts, Au, Ap 0.527 0.702 18.873 < 0.001 0.632 
Mixed Model Mor32m, Mor28v, R1e, G2, nO 0.274 0.911 89.546 < 0.001 0.852 
Potts and Guy MV, Hd, Ha, log(Do/ ) – 0.940 165.00 – – 

3.2 Comparison with Other Approaches 
Although, the number of compounds is small to reach a definite conclusion can be seen there are 

remarkable differences concerning the explanation of the experimental variance given by these 
models compared to the TOPS–MODE one. While the TOPS–MODE QSPR model explains more 
than 93% of the experimental permeability the rest of the models are unable to explain beyond 90% 
of such variance: constitutional (R2 = 0.84, S = 0.38), topological (R2 = 0.85, S = 0.37), BCUT (R2 = 
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0.84, S = 0.38), 2D autocorrelations (R2 = 0.79, S = 0.44), geometrical (R2 = 0.87, S = 0.34), RDF 
(R2 = 0.81, S = 0.41), 3D Morse (R2 = 0.90, S = 0.29), GETAWAY (R2 = 0. 87, S = 0.35) and 
WHIM (R2 = 0.70, S = 0.53). 

The TOPS–MODE model is superior to the other nine models not only in the statistical 
parameters of the regression but also, and more importantly, in its stability upon inclusion/exclusion 
of compounds as measured by the correlation coefficient and standard deviation of the cross–
validation. Because of the structural variability of the compounds in the data set these statistics of 
the leave–one–out cross validation might be considered as a good measurement of the predictive 
ability of the models. As can be seen in Table 2, the value of the determination coefficient of leave–
one–out cross–validation for the model obtained with the spectral moments (q2 = 0.907) was the 
highest of all. In addition, a leave–10%–out and leave–20%–out as cross–validation method was 
carried out for demonstrate the stability of the find model. The correlation coefficient obtained for 
these procedures were q2 = 0.872 and q2 = 0.863, demonstrating the stability of the model using the 
spectral moments. 

However, in all previous studies we only consider models with a specified family of molecular 
descriptors. Thence, in order to complete the demonstration of the potentialities of TOPS–MODE 
over the remnant ones mixed model considering all the molecular descriptors at the same time must 
be developed. The result of this model appears in Table 2. This result has shown that the TOPS–
MODE approach not only explains the experimental data, but seems to be the best one in doing so. 

On the other hand, the model reported by Potts and Guy [31] present a correlation coefficient of 
0.94, when we compare this model with the obtained with the spectral moments, represented by Eq. 
(2), it is possible to observe that both show similar R2 (0.940 vs. 0.938). However, the model 
presented by Potts and Guy included four physical–chemical properties as variables in their 
equation. These variables were obtained from the literature for the authors [36–37]. As Randi  [38] 
states there are some parameters which QSAR models must fulfill, one of them is not to include 
measures of experimental properties such as molecular volume (MV), log P, boiling points, among 
others, because for the determination of these properties it is necessary the synthesis of molecules 
that are under study. So if we include chemical–physical variables in our model what do we wear 
away in making experimental approximations to predict a property of a molecule that has not been 
synthesized with the aim of reducing costs for? On the other hand, if we value this physico–
chemical property with any of the software available, for using this property subsequently which 
has already been valued with a series of approximations in a new approximation we would be 
deserving in a greater error which would eliminate the possibilities of a prediction of the nearest 
possible to the reality of the studied property. 
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3.3 Interpretation of the QSPR Model 
One of the most important advantages that TOPS–MODE brings to the study of QSPR and 

QSAR is concerned with the structural interpretability of the models. This interpretability comes 
from the fact that the spectral moments can be expressed as linear combinations of structural 
fragments. 

According to the Eq. (2), the permeation coefficient decreases as the polar surface increases in 
the molecule and an increase of the hydrophobicity increase the permeability. The polarity of the 
atoms produces a higher interaction of the permeant with the polymer and therefore an increase of 
the hydrophobicity leads to a higher flux across the human skin. This behavior was reported by 
Moss et al. in an excellent review [39] where the main role of hydrophobicity in accounting for this 
property was explained. However, the contributions of the heteroatom are also dependent on its 
volume [39]. The atomic volume of sulfur is larger than that of nitrogen, but the polarity of the 
latter atom is higher than that of the former and thence the result of this effect is a delay in the 
permeation process [40]. 

Finally, this decrease of the permeability when increase the polarity of the molecule also should 
be due to the oxygen and nitrogen present the possibility to form a hydrogen bond with the polar 
compounds in the human skin. Potts and Guy [31] and Patel et al. [20] pointed out that the 
hydrogen bonding capability of a molecule affects its ability to permeate the skin. Similar results 
were obtained by Lipinski et al. [41] where the hydrogen bond acceptors sites could potentially 
hamper skin permeation. This study demonstrated that the diffusion chemicals throughout a human 
skin in this set of compounds are controlled by the hydrophobicity and the polarity. In addition we 
demonstrated that the TOPS MODE is an excellent tools for the prediction of the skin permeability. 

4 CONCLUSIONS 

We have shown that the TOPS–MODE approach is able to describe the permeability of different 
compounds through human skin. In fact, we have developed a model for predicting the permeability 
coefficient of a data set of 37 permeants, which is both statistically and chemically sound. This 
model explains more than 93% of the variance in the experimental permeability coefficients and 
shows good predictive ability in cross–validation. These features are significantly better than those 
obtained for other nine different methodologies used to predict this property. Therefore, the spectral 
moments show a better performance than other kind of descriptors, which suggests that they can be 
used in new QSPR applications. 

Finally, the present results were compared to others obtained in previous works and evidence 
was obtained on the similarity of the properties that explain the phenomenon. 
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