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Abstract 

Motivation. The problem of toxicity prediction is mainly related to the necessity of processing many data that 
most of the time come from different sources and have different biological meaning. Often, the real mechanism 
of action of a toxicant is unclear or difficult to reproduce; in addition, a chemical compound exercises its toxic 
action through many steps that depend both on its structure and on the specific environment where it is acting. In 
this perspective, the classification of compounds can be of great help because decreases the number of the 
alternatives to those specific of that class, allowing a more focused analysis. The classification of narcotic 
pollutants into polar and nonpolar sets is certainly an important aspect of this type of problems. 
Method. Object classification requires two principal components: the selection of the molecular descriptors and 
the choice of the classification algorithm. The calculation of the molecular descriptors is performed using our 
own approach that is based on empirical equations. We calculated three descriptors (Helc, HQ+, Elcdif) that are 
used in pairs (Helc and Elcdif, or HQ+ and Elcdif). Using two classification algorithms, a classical neural 
network and a tree neural network, we analyze two compound sets; the first contains 190 narcotic pollutants (114 
nonpolar and 76 polar), the second contains 30 pollutants (20 nonpolar, 5 polar, 5 acetylcholinesterase 
inhibitors). In a broad sense, the first set is used as training set and the second as test set. 
Results. The use of simple descriptors allows for a very good classification of narcotic pollutants demonstrating 
that it is not necessary to use high–level theories to make simple operations. On the contrary, much work is still 
required to obtain an acceptable theoretical prediction; part of it is definitely on the modelers’ side, but the rest 
concerns a better rationalization of the experimental data without which any model will have problems. 
Conclusions. Classification of narcotic pollutants into polar and nonpolar sets is required to ease the QSAR 
treatment of their toxic effects. However, there still remain many questions on the validation of theoretical 
models using only experimental data. 
Keywords. Aquatic toxicity; narcotic pollutants; compound classification; empirical descriptors; experimental 
classification.

Abbreviations and notations 
Elcdif, chemical potential difference between non hydrogen atoms HQ+, residual atomic charge on hydrogen atom 
Helc, residual chemical potential on hydrogen atom LUMO, Lowest unoccupied molecular orbital 
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1 INTRODUCTION 

The solution of the problems posed by environmental toxicity of chemicals requires many lines 
of reasoning; however, the first objective of any study in this field must be directed toward the 
determination of the toxicity level of the compounds. The first possibility is the experimental 
measure of the toxicity values, the second is their theoretical prediction. Aquatic toxicity is 
considered well–represented by the toxic effects of chemicals on fathead minnow [1–4], whose 
behaviour in the presence of chemical compounds has been studied and used to classify modes of 
action [2]. One of these last is the narcosis effect that is the consequence of the incorrect 
functioning of cell membranes. There are two different narcosis classes and three different 
behaviour syndromes; the class is assigned by joint toxic action bioassays with octanol (narcosis I 
or base–line narcosis) and phenol (narcosis II or polar narcosis); the syndromes are assigned by 
visual inspection and are: in the first mode the fish shows depressed locomotor activity with scarce 
response to outside stimuli (syndrome type I); in the second mode the fish is hyperactive and highly 
sensitive to outside stimuli (syndrome type II); in the third mode the fish shows a high incidence of 
convulsions, spasms, tetany, scoliosis, lordosis, and/or hemorraging in the vertebral column 
(syndrome type III). Two classes of compounds have been correlated to the two narcosis classes: 
non–polar and polar narcotic compounds, thus the classification of compounds in the correct class 
permits the more appropriate use of prediction models. However, no similar assignment to 
syndrome type has been done. Very recently, Ivanciuc [5] developed a highly efficient system for 
the classification of non–polar and polar narcotic pollutants, using two quantum descriptors (atomic 
charges on hydrogen atoms and the energies of the lowest unoccupied molecular orbital) and a new 
class of algorithms, Support Vector Machines (SVM) [6]. In this paper, we are going to use simpler 
descriptors and two diverse clustering methodologies: Classification Neural Network and 
Classification Tree [7]. In addition, the second method allows for the sub classification of objects 
giving further insights into the compound relation. Finally, we will use a second compound set to 
discuss the differences that are still present between theoretical and experimental models. 

2 MATERIALS AND METHODS 

2.1 Chemical Data 

2.1.1 Descriptors calculation. Charges and residual chemical potentials 

The choice of descriptors is the critical point when developing a model. Often, we have too 
many potential descriptors whose selection will affect the outcome of the model. Where it is 
possible to make a hypothesis on the mechanism of the biological action we can support our choice 
on that ground. However, in all other cases the choice is guided by our mere judgment. In the 
present case, we accept the choice made by other authors [5,8–9] that select charge and molecular 
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nucleophilicity (represented by LUMO energy) as good descriptors of molecule “polarity”. It is 
clear that this model is quite simple, but the literature results in the compound classification are 
impressive. Taken into consideration the model simplicity we would like to test if the use of the 
same descriptors calculated at lower theory level works similarly. 

We are going to use our own program [10–12] for atomic descriptor calculation to obtain: (a) the 
highest positive charge on a hydrogen atom, as used by Ivanciuc [5]; or, the highest residual 
chemical potential on a hydrogen atom, representing the same effect; (b) the highest difference in 
residual chemical potentials between non hydrogen atoms, as a substitute of LUMO energy, the 
descriptor of the molecule nucleophilicity. 

The method used to perform calculation is based on an original approach that uses chemical 
potential equalization as driving theory. At the end of the calculation each atom has two descriptors 
of its electronic state: the partial atomic charge and the residual chemical potential. These two data 
are correlated, but they have different resolution; atomic charge is defined at the 10–3 electron level, 
whilst the residual potential is defined at the 10–2 electric potential level. Often, it happens that two 
atoms with the same residual potential have different atomic charge; this is particularly visible for 
hydrogen atoms. The choice of the hydrogen atom and of the heavy atom pair to consider is 
straightforward: the hydrogen atom with the highest positive charge and the pair of connected atom 
with the highest difference in chemical potential are selected. 

2.2 Biological Data 
We are going to use two sets of biological data, both concerning narcosis effects. The first set is 

exactly the same set used by Ivanciuc [5]; it will be the training set of the analysis and its use should 
allow for a comparison to the Ivanciuc’s result. The second set is a smaller set (30 compounds) 
selected from the list of Russom et al. [2] showing different experimental toxic effects; it will be 
used to test the classification model and to discuss the differences between experimental and 
calculated toxicities. 

2.3 Classification Algorithms 
Object classification can be achieved using many different models. We chose two different 

approaches that are representative of two different techniques [7]. The first is a classical artificial 
neural network that partitions a set of objects into the assigned classes and validates the results; the 
second is a hierarchical method that grows a tree where each final leaf contains a subset resulting 
from successive splitting operations. The two models have been applied to two descriptor sets 
(HQ+/Elcdif; Helc/Elcdif), to two compound sets (training set (190), test set (30)). In all cases a 
further run has been performed using randomized class assignment in order to check the algorithms 
predictivity; the results show that the randomized sets do not give reliable classifications.
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2.3.1 Classification NN 
It is a very basic implementation of FeedForward – BackPropagation Neural Network, used for 

prediction and classification problems; the corresponding algorithm is freely available [7]. The 
network was tested using different combinations of the input parameters: input and output nodes 
fixed at 2 and 1, respectively; hidden layers 1; layer sizes 2, 3, 4; learning parameter between 0.1 
and 0.9; momentum between 0.01 and 0.1; epochs between 200 – 1000; validation set containing 10 
or 20 % of total cases, randomly selected; training mode chosen as “sequential”. The best results 
were obtained with the following settings. 

Helc
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80%
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0% 20% 40% 60% 80% 100%

training validation reference

Figure 1. ROC curve obtained with the Helc descriptor. 

HQ+
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Figure 2. ROC curve obtained with the HQ+ descriptor. 

Neural network classification using Helc: inputs number = 2, hidden layers = 1, layer size = 3, 
learning parameter = 0.9, momentum = 0.1, cycles = 500, training mode = sequential, validation = 
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20%–random, ROC (Receiver’s Operating Curve) is presented in Figure 1. Neural network 
classification using HQ+: inputs number =2, hidden layers = 1, layer size = 3, learning parameter = 
0.7, momentum = 0.1, cycles = 500, training mode = sequential, validation = 20%–random, ROC is 
presented in Figure 2. In all cases a randomized input, i.e. randomly assigning cases to classes, has 
been used to check chance classification; results show the expected complete unpredictability. 
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Figure 3. Compounds in the test set. 

It must be pointed that many other settings give results of the same quality, but the cited settings 
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are efficient and reliable. The networks arrived at convergence before reaching the maximum 
number of epochs (310 and 60 respectively). The wrong predictions are always the same when the 
wrong–predicted case is part of both the training and the validation set. This means that the wrong 
predictions depend on the variable values and not on the algorithm performance. 
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Figure 4. Compounds in the test set. 

2.3.2 Classification tree 

It is a classification model that (a) uses C4.5 (see Appendix 2) algorithm by Ross Quinlan [13]; 
(b) has a Node Splitting Criterion that uses Entropy based criterion to select the split. While 
growing the tree, at any point a predictor is chosen to split a node such that the Information Gain is 
maximized after the split. As specified in C4.5, it presently uses the Gain Ratio (Gain Ratio = 
Gain/ Split Info) to choose the split. (c) has a Stopping Criteria that stops splitting a node and 
declares it as a leaf node if any one of the following criterion is met: (1) number of records in the 
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node is less than some pre–specified limit; (2) purity of the node is more than some pre–specified 
limit p. This means that the proportion of records in the node with class equal to the majority class 
is p or more. (3) depth of the node is more than some pre–specified limit. (4) predictor values for all 
records are identical. (d) has a Tree Pruning based on the pessimistic error rate at the node. If the 
pessimistic error rate of a node is less than that of the subtree rooted at that node, the node is 
pruned. If we fail to prune a node – none of its predecessors is pruned. (e) has a Rule Generation 
according to the methods mentioned in C4.5. The corresponding algorithm is also freely available 
[7]. The adopted criterion for stopping the split of trees was 20% or less nodes minimum. The 
generated trees are reported in Figure 5 and 6. 

3 RESULTS AND DISCUSSION 

3.1 Polarity Prediction 
The training set is exactly that used by Ivanciuc [5], thus we are not explicitly reporting its 

components. The compounds in the test set are shown in Figures 3 and 4. They have been selected 
from Russom et al. [2], 23 molecules are reported to have narcosis I effect, 2 narcosis II effect (T14, 
T15), 5 are acetylcholinesterase inhibitors (T2–T6). 

Figure 5. Tree generated using Helc descriptor. 
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For all the 220 molecules we have calculated the atomic descriptors and selected those useful for 
the model, as reported in 2.1.1. In particular, we selected the greatest chemical potential difference 
between connected non–hydrogen atoms, the greatest chemical potential on a hydrogen atom, and 
the greatest residual charge on a hydrogen atom. The first descriptor is greater if the two connected 
atoms are electronically different; it can be interpreted as the force acting on an external positive 
charge, i.e. it represents the Q+ accepting power. The second descriptor has the same meaning 
concerning Q– accepting power by hydrogen atoms; it is thus related to hydrogen bond formation. 
The last descriptor is the same used by Ivanciuc [5], but calculated by our method. The reason 
behind the alternative use of the second and third descriptors is strictly related to the calculation 
method. In fact, depending on the molecular neighborhood the residual charge can be different on 
hydrogens that have the same residual chemical potential; thus, if we consider that the hydrogen 
bond power is only an electrostatic effect the third descriptor is the right one, but if the hydrogen 
bonding involves an electron movement the second descriptor must be used. 

3.2 Narcosis Classification 
This biological effect is experimentally measured by joint toxic action measurements after the 

treatment by the chemical at different concentrations and in different combinations. There is ample 
literature on this matter and we are not going to discuss the different data or protocols. 
Nevertheless, it must be emphasized that there exists some discrepancies between single laboratory 
results and their interpretation. This is important because the discussion on the models must 
consider the variability of the biological data. 

In principle, there are several narcosis classes that can be roughly divided into base–line 
narcosis, polar narcosis, and ester narcosis, this last can be merged with the second type. In 
addition, there are several confidence levels in the class allocation. We generally accept the 
Ivanciuc’s interpretation when studying the training set, whereas we are going to discuss the results 
of the test set considering the Russom et al. indications. 

3.2.1 Training set and test set 

In the following two Tables the results of the models are reported. 

Classical NN classification gives a result that is in overall agreement with Ivanciuc’s [5]. There 
are 5 misclassified objects using both Helc and HQ+ (54, 164, 181, 182, 183) with respect to 11 
objects in Ivanciuc (21, 23, 32, 47, 60, 62, 68, 69, 156, 157, 164). It is worth to note that, excluding 
compound 164, the misclassified objects are different. In our case, misclassification is related to 
Elcdif in all cases but for compound 164 (here the HQ+, or Helc, is responsible). The analyses have 
been performed at least five times randomly selecting a 10% or 20% validation set and the result 
has always been the same. The test set has been classified using the obtained models and the result 
showed slightly better for the HQ+ descriptor. Not all the test compounds are in the expected class, 
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but we have 8 or 5 misclassifications (T10, T12, T15, T19, T22, T26, T27, T30), or (T10, T15, T22, 
T26, T30). It is remarkable that many misclassifications present in HQ+ are also present in Helc. 

Figure 6. Tree generated using HQ+ descriptor. 

Table 1. Classical–NN representative results 
  Training a b Misclassified c d Validation e 20% f Misclassified g 20% h

Helc+Elcdif class 1 101 84 1 1 12 29 0 0 
 class 2 64 62 4 4 8 10 0 0 
Test i class 1 21  7      
 class 2 1  1      
Rand j class 1 0  84  0  10  
 class 2 86  0  10  0  
          
HQ+Elcdif class 1 96 92 1 1 17 21 0 0 
 class 2 69 55 4 3 3 17 0 1 
Test i class 1 24  4      
 class 2 1  1      
Rand j class 1 87  0  7  0  
 class 2 0  83  0  13  
a Number of cases correctly classified in the training set, with 10% of the cases in the validation set. b Number of cases 
correctly classified in the training set, with 20% of the cases in the validation set. c Number of cases misclassified in the 
training set, with 10% of the cases in the validation set. d Number of cases misclassified in the training set, with 20% of 
the cases in the validation set. e Number of cases correctly classified in the validation set, containing 10% of the cases. f

Number of cases correctly classified in the validation set, containing 20% of the cases. g Number of cases misclassified 
in the validation set, containing 10% of the cases. h Number of cases misclassified in the validation set, containing 20% 
of the cases. i Results for the test set (compounds T1–T30). j Results for the training set with random assignment of 
cases to the classes. 

Tree classification gives a result that is very similar to the previous one. Both Helc and HQ+

show a small number of misclassifications (5 and 6, respectively) of the same compounds (54, 164, 
181, 182, 183, 75) in very good agreement with the Classical NN. This demonstrates that the two 
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classification methods have very similar behaviour, as expected. This fact is confirmed by the test 
set that gives similar misclassifications (T10, T12, T14, T15, T19, T22, T26, T27, T30). In this case 
the class values have been calculated using the rules that the approach produces during the training. 
These rules are, in order of application: (1) Elcdif < 0.91; (2) Helc < 2.35; (3) Elcdif < 0.67; and (1) 
HQ+ < 39; (2) Elcdif< 0.91. 

Table 2. Tree classification results 
  Training a Misclassified b Nodes c Levels d

Helc+Elcdif class 1 110 4 4 4 
 class 2 75 1   
Test e class 1 22 6   
 class 2 1 1   
Rand f class 1 69 45 10 11 
 class 2 51 25   
      
HQ+Elcdif class 1 110 4 3 3 
 class 2 74 2   
Test e class 1 24 4   
 class 2 0 2   
Rand f class 1 70 44 10 8 
 class 2 46 30   
a Number of cases correctly classified in the training set. b Number of cases misclassified in the training set. c Number of 
nodes in the tree. d Number of levels in the tree. e Results for the test set (compounds T1–T30). f Results for the training 
set with random assignment of cases to the classes. 

Table 3. Statistical results of compound classification using NN and Tree algorithms 
 TP a FN a TN a FP a Accuracy a TP b FN b TN b FP b Accuracy b

Helc+Elcdif c 113 1 72 4 0.97 113 1 72 4 0.97 
HQ+Elcdif c 113 1 72 4 0.97 113 1 72 4 0.97 
Helc+Elcdif d 110 4 75 1 0.97      
HQ+Elcdif d 110 4 74 2 0.97      
a True Positive (TP), False Negative (FN), True Negative (TN), and False Positive (FP) for L10%O analyses. b True 
Positive (TP), False Negative (FN), True Negative (TN), and False Positive (FP) for L20%O analyses. c Neural network 
classification results. d Tree classification results 

Table 4. Chemical equivalent classes of the training set compounds 
Using Helc    
Cases Misclassified Chemical equivalent Misclassified chemical equivalent 
1–60 54 alcohols, ketones, esters, ethers diphenyl ether
61–114  halides, hydrocarbons  

115–130; 156–157  nitro compounds, pyridine and 
quinoline 

131–190 164 and 181–183 phenols, anilines N,N–dimethyl aniline and fluoro 
anilines

Using HQ+

Cases Misclassified Chemical equivalent Misclassified chemical equivalent 

1–32, 56, 60 alcohols, furan, 2–hydroxy–4–methoxy 
acetophenone

33–114 54 and 75 ketones, esters, ethers, halides, 
hydrocarbons diphenyl ether and trichloroethene

115–190 164 and 181–183 nitro compounds; pyridine and 
quinoline, phenols, anilines 

N,N–dimethyl aniline and fluoro
anilines 
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3.2.2 Subclassification 

Compound classification in non–polar and polar narcotics is definitely interesting because it 

should allow for the use of the appropriate QSAR. However, due to the extended diversity of 

compounds it could be also interesting to divide them in more classes with the objective of a better 

prediction. This can be done using the Tree clustering method. In the Helc case we have four 

terminal leaves, whereas in the HQ+ we have only three terminal leaves; as a consequence we 

obtain four or three compound subsets. They are sketched in Table 4. 

In Table 5 we have reported the misclassified compounds of the test set. Depending on the 

descriptors and on the considered class (main class or syndrome class) we have from 5 to 11 

misclassifications. In addition, even some of the constantly misclassified compounds (T10, T14, 

T15, T22, T26) i.e. T15, T22, and T26, have a hydrogen atom sufficiently polar to classify them in 

the right polarity class but in the wrong narcosis class. Thus, taking into consideration all these facts 

our method can be considered acceptable also in the classification of the test compounds. 

In order to compare our result to that by Ivanciuc’s method [5] it is interesting to note the 

variable ranges that are: 

 Present work  Ivanciuc’s data
HQ+ 0 – 244 HQ+ 0 – 397 
Elcdif 0 – 1.74 ELUMO –1.49 – 3.78 
Helc  0 – 2.57   

It is clear that using quantomechanical approaches the variability of the values is higher; 

however, this variability has an influence only in the case of ELUMO, because the HQ+ values are 

very similar. Nevertheless, the sensitivity of the molecular orbital methods to small variations in the 

molecular geometry is well known and, thus, the meaning of small variations of the ELUMO values 

are unimportant. 

The consequence is that it is seldom possible to predict and to understand the misclassifications; 

for example, in the case of 3–furanmethanol the ELUMO value is the cause of the wrong prediction 

when the power of hydrogen bond forming is probably due to the methanol part, only. Our values, 

on the contrary, allow for an immediate understanding of the misclassifications; for example, in the 

diphenyl ether case the Elcdif is the cause of the wrong prediction and it is related to the absence of 

sufficiently different atomic chemical potential (here the C–O bond is less polar than in alkyl 

compounds). 
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Table 5. Misclassified or partially misclassified compounds in the test set 
Compound MOA class Behaviour syndrome Predicted classa

T10   

S
O

Narcosis I Type I Polar 

T12   N Narcosis I Type I Polar/Non–polar 

T15   

OH

N
O O

F

F
F

Narcosis II Type II Non–polar 

T8   

O

O
P

O

O O

O

O

Narcosis I Type II Non–polar 

T9   

P
O

Narcosis I Type II Non–polar 

T14   
N

N
Narcosis II Type III Polar 

N      T19 Narcosis I Type n.d. Polar/
Non–polar 

T22   

N
H

Narcosis I Type n.d. Polar 

T25   

O
Narcosis I Type II Non–polar 

T26   

N N

OH

O

O Narcosis I Type I Polar 

T27   

O

N Narcosis I Type I Polar/
Non–polar 

T30   

N
Narcosis I Type I Polar 

a When two classes are reported the assignment depends on either the descriptor or the method. 
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Many other authors have used the same set, or even more extended sets, and prepared models for 

both classifications [9,14,15] and quantitative [8,16] correlations. These last are not directly 

comparable to the present work; however, some of the predictions are in good agreement with 

experimental data. Among classification approaches we must cite Ren and Schultz studies [9,14]; 

they classify compounds using logP, HOMO, LUMO, and soft electrophilicity, descriptors in 

different combinations. The obtained results are comparable to Ivanciuc’s and to the present ones. 

The main difference is the use of the water-octanol partition coefficient that intends to describe the 

transport mechanism. This last is a well-known important experimental characteristic affecting the 

activity of chemicals; nevertheless, it seems that the polarity description of compounds is sufficient 

for classification purpose. 

3.2.3 Experimental data and theoretical predictions 

The final part of this paper will be concerned with the differences between theoretical 

predictions and experimental fish behavior classifications. We can evidence two different 

classifications in experimental data: main classification that is related to the mode of action, 

secondary classification that is related to fish behavior (syndrome type). Thus, we have compounds 

that, even if members of the same main class, show different behavioral syndromes. In addition, the 

confidence level of the class assignments can greatly differ making quite difficult the interpretation 

of the data (four levels of confidence). In contrast, in the present classification model we are only 

separating non–polar and polar compounds in the assumption that these two classes are 

representative of narcosis I and II MOAs, respectively. In addition, in the test set we voluntarily 

introduced compounds (T2–T6) that cannot be properly classified as narcotics. The comparison 

between experimental and calculated data is therefore complicated. 

First, we are going to comment on the 190 compounds of the training set. Running through the 

table presented by Russom et al. [2] we can easily identify some compounds that are classified in 

behavioural classes different from those predicted by calculation. For example: (a) trichloroethene 

causes a narcosis I class II syndrome, classified as non–polar in ref. 5; (b) N,N–dimethylaniline 

causes a narcosis I class I syndrome, classified as polar in ref. 5; (c) 4–ethylaniline causes a narcosis 

I class I syndrome, classified as polar in ref. 5; (d) 4–chlorophenol, 4–methoxyphenol, and pyridine, 

cause a narcosis II class III syndrome, classified as polar in Ref. [5]. 
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It is evident that the fish reaction to chemicals is more complex than that predicted by models. 

Nevertheless, the majority of the compounds are inserted in the correct MOA class. In our 

approach, the misclassified compounds are: trichloroethene, diphenylether, N,N–dimethyl aniline, 

, , ,4–tetrafluoro–3–methylaniline, , , ,4–tetrafluoro–2–methylaniline, pentafluoroaniline. N,N–

dimethylaniline is, however, classified as non–polar narcotic in Ref. [2], thus its misclassification 

cannot be regarded as a true error. In contrast, the other compounds contain special atoms (fluorine 

and chlorine) that are strongly polar and that in particular position and amount affect the compound 

total polarity. Nevertheless, they represent a true limit of the model. 

The test set is even more complicated. We find ~11/30 misclassifications (in the worst case 

scenario), but we must take into consideration that here the class assignment is done following 

Russom et al. [2] In fact considering only main class membership the number of misclassifications 

decreases to 5 cases. In contrast, the classification of compounds T2–T6 demonstrates that the 

models cannot discriminate between different modes of action. In other words, we still need some 

experimental pre–elaboration (e.g. the assignment of the MOA) to be confident in the results. The 

insertion of compounds T2–T6 into the non–polar class can be interesting, but we must be careful in 

affirming that a non–polar fish toxicant automatically follows the narcosis I MOA. We have 

difficulties in estimating the relative value of experimental fish behavior and of calculated 

prediction. The experimental results have different levels of confidence, as mentioned, but they are 

real effects. The experimental assignment of the compounds to the different MOAs and syndrome 

types is performed using well–defined experimental protocols that use many different tests, from 

LC50 ratio to joint toxic action, to changes in behavior and morphology. On the other hand, 

calculated predictions only use a limited number of molecular descriptors that cannot describe all 

the experimental data but can only classify compounds by their polarity (or better by the polarity of 

single atoms or bonds). They are self consistent and have the same reliability, but they can represent 

an underestimation of the reality. Compound classification is only a first step toward the 

quantitative assessment of toxicity; we have therefore the chance of getting further corrections in 

the successive analysis. 

A similar conclusion can be reached for acetylcholinesterase inhibitors; in the models they are 

classified in class 1 (nonpolar toxicants). However, their mode of action is completely different and 

should follow a different classification scheme. This fact is fundamental because it indicates that the 
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polarity of a compound is not the only factor to consider when predicting its MOA and toxicity. 

4 CONCLUSIONS 

Classification of compounds can represent a highly effective way to separate chemicals into 

specific sets that can then be analyzed by specific models. The choice of the descriptors useful to 

perform the classification is a critical point that requires attention both on the correspondence with 

physical properties and on the needed theory level. The choice of the classification algorithms is 

less crucial if the method is robust enough; a special attention can be dedicated to the selection of 

clustering algorithms with the aim of automatically sub classifying the compounds. Finally, the 

numerous details of the experimental data must be accurately considered to prevent invalid 

evaluation of the model performance. 

Appendix 1 

Rule Generation in C4.5 
Unlike many algorithms that employ a separate-and-conquer approach to selecting a rule set that explains the 

training cases, C4.5 extracts rules from existing decision trees. 
The objective of the procedure is to end with an ordered set of if -then rules of the form: if LHS then RHS where 

LHS is a combination of attribute-value conditions and RHS is a class assignment. During classification of an instance, 
the first rule that meets with all instance conditions specified in the LHS “fires”', and the class label specified in the 
RHS is assigned to the instance. 

Because the hypothesis space is usually not completely included in the rule set, a default class is also present –– this 
is the class label assigned to any instances that are not covered by any rule in the rule set. The four steps in the process 
of rule generation are: 

(1) Pruning. First, an initial rule set is built by translating each path from the tree root to a leaf into a rule, where 
each condition in the LHS of the rule corresponds to an internal node of a path in the decision tree. All rules are 
examined, and conditions are removed from the LHS if they do not appear to contribute to the accuracy of the rule, 
giving a more general, “pruned”' rule that is added to the intermediate rule set if it is not already present. 

(2) Selection. The pruned rules built in the previous step are grouped into class rule sets, one for each of the k 
classes in the training set (i.e., the RHS of each rule in subset (i) is class Ci ). Each of these rule sets is examined again 
to select a subset of the rules that maximize the predictive accuracy. 

(3) Ordering. The k rule sets are ordered according to the frequency of false positive errors and a default class is 
chosen by assigning the most frequent class of uncovered cases. 

(4) Evaluation. The rule set is evaluated against the training set to determine any rules increasing classification error. 
The “worst” such rule is removed and evaluation is repeated until no further improvement is possible. 
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