Internet EGEFONIG Journal of Molecular Design

August 2002, Volume 1, Number 8, Pages 401–409

Editor: Ovidiu Ivanciuc

Special issue dedicated to Professor Milan Randić on the occasion of the 70th birthday Part 4

Guest Editor: Mircea V. Diudea

A Modified Distance Matrix to Distinguish *Cis/Trans* Isomers of Cycloalkanes

Chenzhong Cao and Hua Yuan

Department of Chemistry, Xiangtan Normal University, Xiangtan 411201, People's Republic of China

Received: May 20, 2002; Revised: July 10, 2002; Accepted: July 15, 2002; Published: August 31, 2002

Citation of the article:

C. Cao and H. Yuan, A Modified Distance Matrix to Distinguish *Cis/Trans* Isomers of Cycloalkanes, *Internet Electron. J. Mol. Des.* **2002**, *1*, 401–409, http://www.biochempress.com.

Inter*net* BBGHOME Journal of Molecular Design BIOCHEM Press http://www.biochempress.com

A Modified Distance Matrix to Distinguish *Cis/Trans* Isomers of Cycloalkanes[#]

Chenzhong Cao* and Hua Yuan

Department of Chemistry, Xiangtan Normal University, Xiangtan 411201, People's Republic of China

Received: May 20, 2002; Revised: July 10, 2002; Accepted: July 15, 2002; Published: August 31, 2002

Internet Electron. J. Mol. Des. 2002, 1 (8), 401–409

Abstract

The general distance matrix **D** was modified to distinguish *cis/trans* isomers of cycloalkanes. A new topological index, $VDI_{(\pm 1)}$, was derived from the modified distance matrix (**D**_{mod}) according to the calculation of *VDI* proposed in a previous paper. This new structural descriptor discriminates all compounds studied in this paper. The regression analysis against the boiling temperatures (t_b) for 53 *cis/trans* isomers of cycloalkanes with $VDI_{(\pm 1)}$ and other topological indices gives a high correlation coefficient (r = 0.9961) and low standard deviation (s = 3.31 °C), which is much better than that obtained with $VDI_{(0)}$.

Keywords. Topological index; boiling temperature; quantitative structure–property relationships; QSPR; molecular graph; structural descriptor; distance matrix.

1 INTRODUCTION

Isomerism in organic chemistry can be classified into three types: constitutional, geometrical and conformational isomerism. *Cis/trans* isomersim belongs to the second type, in which the atoms connect with each other in the same sequence but distribute differently in space. Cycloalkanes bearing several substituents, generally, have *cis/trans* isomers and the different spatial distribution of the substituents on the carbon cycle will result in different physical, chemical properties and biological activities. As we know, molecular graph theory is a powerful tool to encode into numbers the constitutional features of the molecular structure, and many useful topological indices have been recently proposed [1–13]. Since the molecular graphs are planar images of molecules, molecular topological indices are often referred to as two–dimensional (2D) descriptors [14]. Despite many successful applications in QSPR/QSAR with 2D topological descriptors [15,16], they fail to consider the stereospecific properties (or 3D information) of molecules, such as *cis/trans* isomerism, and atomic chirality. Recently, more and more chemists have shown interest in the study

[#] Dedicated to Professor Milan Randić on the occasion of the 70th birthday.

^{*} Correspondence author; E-mail: czcao@xtnu.edu.cn.

of stereostructural features and some good descriptors have been reported [17–21]. This paper developed a new topological index $VDI_{(\pm 1)}$ to distinguish the *cis/trans* isomers of cycloalkanes on the basis of Vertex degree–Distance Index (*VDI*) proposed in our previous paper [22]. The calculated $VDI_{(\pm 1)}$ for 53 *cis/trans* isomers of cycloalkanes are are not degenerated and the regression analysis with $VDI_{(\pm 1)}$ against the boiling temperatures of 53 compounds [23] gives better QSPR models than with $VDI_{(0)}$.

2 MATERIALS AND METHODS

The traditional graph theoretical approach neglects the spatial features of molecules [24] and treat a *cis*-isomer in the same way as a *trans*-isomer, which leads to identical topological distance matrices. In order to explore a new graph distance matrix that discriminates *cis/trans* compounds, we proposed a modified topological distance, $\mathbf{D}_{\text{mod }ij} = \mathbf{D}_{ij} + a$, to quantify the distance between *cis* and *trans* substituents on cycle, where \mathbf{D}_{ij} is the topological length of the shortest path between vertex *i* and *j* [22], and *a* is a parameter that depends on the substituted position and relative spatial direction of the substituents. In order to identify a suitable value for *a*, we explore the relationship between the boiling temperatures [23] and the substituents position for some cycloalkanes (see Table 1).

compound	t _b (°C)	compound	t _b (°C)
	37.0		90.8
$\overset{\textstyle{\checkmark}}{\rightharpoonup}$	28.2		91.7
	124.4		120.1
\bigcup	119.4	\bigcup	124.5

Table 1. Boiling temperatures (t_b) for some *cis/trans* isomers of cycloalkanes

From Table 1, we can see that the boiling temperatures of *cis*-isomers are higher than that of *trans*- isomers for 1,2- and 1,4-substitution, as contrary to 1,3-substitution. This suggests that not only the substituted position but also the relative spatial direction (*cis*- or *trans*-) of groups have effect on the boiling temperatures. Therefore, we define the parameter *a* as follows: if the distance between two substituted sites (carbon atoms) on a ring is odd (such as 1,2-, 1,4-substitution), then *a* = +1 for *cis*-substitution and *a* = -1 for *trans*-substitution; otherwise (for example, 1,3-substitution), *a* = +1 and -1 for *trans*- and *cis*-substitutions, respectively. That is:

 $a = \begin{cases} +1 & \text{odd distance, } cis\text{-substituted; even distance, } trans\text{-substituted} \\ -1 & \text{odd distance, } trans\text{-substituted; even distance, } cis\text{-substituted} \end{cases}$

For example, Figure 1 is the hydrogen-depleted molecular graph of *trans,cis*-1-methyl-3-ethyl-4-propylcyclopentane.

Figure 1. Structure of *trans,cis*-1-methyl-3-ethyl-4-propylcyclopentane.

Its modified distance matrix \mathbf{D}_{mod} is:

$$D_{\text{mod}} = \begin{bmatrix} D_{11} & D_{12} & D_{13} & D_{14} & D_{15} & D_{16} & D_{17} & D_{18} & D_{19} & D_{110} & D_{111} \\ D_{21} & D_{22} & D_{23} & D_{24} & D_{25} & D_{26} & D_{27} & D_{28} & D_{29} & D_{210} & D_{211} \\ D_{31} & D_{32} & D_{33} & D_{34} & D_{35} & D_{36} & D_{37} & D_{38} & D_{39} & D_{310} & D_{311} \\ D_{41} & D_{42} & D_{43} & D_{44} & D_{45} & D_{46} & D_{47} & D_{48} & D_{49} & D_{410} & D_{411} \\ D_{51} & D_{52} & D_{53} & D_{54} & D_{55} & D_{56} & D_{57} & D_{58} & D_{59} & D_{510} & D_{511} \\ D_{61} & D_{62} & D_{63} & D_{64} & D_{65} & D_{66} & D_{67} & D_{68} + a & D_{69} + a & D_{610} + a & D_{611} + a \\ D_{71} & D_{72} & D_{73} & D_{74} & D_{75} & D_{76} & D_{77} & D_{78} + a & D_{79} + a & D_{710} + a & D_{711} + a \\ D_{81} & D_{82} & D_{83} & D_{84} & D_{85} & D_{86} + a & D_{87} + a & D_{88} & D_{89} + a & D_{810} + a & D_{811} + a \\ D_{91} & D_{92} & D_{93} & D_{94} & D_{95} & D_{96} + a & D_{107} + a & D_{108} + a & D_{101} & D_{101} \\ D_{101} & D_{102} & D_{103} & D_{104} & D_{105} & D_{106} + a & D_{107} + a & D_{108} + a & D_{109} & D_{1010} & D_{1011} \\ D_{111} & D_{112} & D_{113} & D_{114} & D_{115} & D_{116} + a & D_{117} + a & D_{118} + a & D_{119} & D_{1110} & D_{1111} \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 2 & 2 & 1 & 2 & 3 & 4 & 1 & 3 & 4 & 5 \\ 2 & 2 & 1 & 0 & 1 & 2 & 3 & 2 & 3 & 4 \\ 2 & 3 & 3 & 2 & 1 & 0 & 1 & 4 + 1 & 3 - 1 & 4 - 1 & 5 - 1 \\ 3 & 4 & 4 & 3 & 2 & 1 & 0 & 5 + 1 & 4 - 1 & 5 - 1 & 6 - 1 \\ 3 & 2 & 1 & 2 & 3 & 4 & 1 & 5 + 1 & 0 & 4 - 1 & 5 - 1 & 6 - 1 \\ 1 & 2 & 3 & 3 & 2 & 3 - 1 & 4 - 1 & 4 - 1 & 0 & 1 & 2 \\ 2 & 3 & 4 & 4 & 3 & 3 & 4 & 1 & 5 \\ 1 & 2 & 3 & 3 & 2 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 3 & 2 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 3 & 2 & 2 & 3 & 3 & 0 & 1 & 2 \\ 2 & 3 & 4 & 4 & 3 & 2 & 1 & 0 & 6 & 3 & 4 & 5 \\ 1 & 2 & 3 & 3 & 2 & 2 & 3 & 3 & 0 & 1 & 2 \\ 2 & 3 & 4 & 4 & 3 & 3 & 4 & 4 & 1 & 0 & 1 \\ 3 & 4 & 5 & 5 & 4 & 4 & 5 & 5 & 2 & 1 & 0 \end{bmatrix}$$

According to the calculation of Vertex degree–Distance Index (VDI) presented in the previous paper [22]:

$$VDI = \left(\prod_{i=1}^{N} f_i\right)^{\frac{1}{N}}$$
(1)

where f_i is the element of the vector VS obtained by vertex degree matrix (V)–multiply–derivative distance matrix (S):

$$VS = \left[f_1, f_2, \cdots, f_N\right] \tag{2}$$

In this paper, we substitute the matrix **S** with \mathbf{D}_{mod} to obtain the modified *VDI*. In order to distinguish the expressions of *VDI* derived from different kind of distance matrix **S** and \mathbf{D}_{mod} , we assigned *VDI* from **S** matrix as *VDI*₍₀₎, while *VDI* from \mathbf{D}_{mod} as *VDI*_(±1). Thus we calculated the *VDI*_(±1) of *trans,cis*-1-methyl-3-ethyl-4-propylcyclopentane, *i.e. VDI*_(±1) = 6.5101. In comparison, the values of *VDI*_(±1) for other three *cis/trans* isomers of 1-methyl-3-ethyl-4-propylcyclopentane were also calculated as follows:

cis,cis-1-methyl-3-ethyl-4-propylcyclopentane	$VDI_{(\pm 1)} = 6.3857$
<i>cis,trans</i> –1–methyl–3–ethyl–4–propylcyclopentane	$VDI_{(\pm 1)} = 6.5024$
trans,trans-1-methyl-3-ethyl-4-propylcyclopentane	$VDI_{(\pm 1)} = 6.3147$

Obviously, four *cis/trans* isomers of 1–methyl–3–ethyl–4–propylcyclopentane have different $VDI_{(\pm 1)}$, while their values of $VDI_{(0)}$ are all equal to 6.3862. The calculated $VDI_{(\pm 1)}$ for 53 *cis/trans* isomers of cycloalkanes (shown in Figure 2) are listed in Table 2.

3 REGRESSION ANALYSIS AND DISCUSSION

Computed with the above algorithm, $VDI_{(\pm 1)}$ has distinct values for all the studied *cis/trans* isomers, so it can be expected to reflect the diversity of properties resulted from the different geometric configuration. In this paper, we took the boiling temperatures (t_b, °C) of 53 *cis/trans* isomers of cycloalkanes as the testing property. First, a regression against t_b with two variables, $N^{2/3}$ (*N* is the number of carbon atoms in a cycloalkane molecule) and $VDI_{(0)}$ was carried out, giving the QSPR model:

$$t_{\rm b} = -159.53 + 90.5446 N^{2/3} - 13.4083 VDI_{(0)}$$

$$r = 0.9909, s = 4.96 \,^{\circ}\text{C}, F = 1348.82, n = 53$$
(3)

Taking normal cycloalkanes (*n*-cycloalkanes) as reference compounds, the $VDI_{(0)}$ of each cycloalkane minus that (VDI_{norm}) of the corresponding *n*-cycloalkane bearing the same number of carbon atoms gives a new variable: $\Delta VDI_{(0)} = VDI_{(0)} - VDI_{norm}$ (the values of VDI_{norm} for *n*-cyclopentane to *n*-cyclodecane are 5.0000, 5.2222, 5.4444, 5.5694, 5.6944 and 5.7744, respectively). For example, for *trans*-1-ethyl-2-methylcyclopropane, $\Delta VDI_{(0)} = 5.5058 - 5.2222 = 0.2836$; for *cis*,*trans*-1,3,5-trimethylcyclohexane, $\Delta VDI_{(0)} = 6.4600 - 5.6944 = 0.7656$. Then in combination with $N^{2/3}$, $VDI_{(0)}$ and $\Delta VDI_{(0)}$ we obtained another regression equation:

$$t_{b} = -358.40 + 69.2552 N^{2/3} + 35.2249 VDI_{(0)} - 37.8404 (\Delta VDI_{(0)})^{2}$$

$$r = 0.9937, s = 4.17 \text{ °C}, F = 1280.84, n = 53$$
(4)

Figure 2. The molecular structures for 53 cis/trans isomers of cycloalkanes.

From Eq (4), it can be seen that $\Delta VDI_{(0)}$ improves the regression result and the standard deviation *s* is lower by 0.8 °C in Eq (4) than that in Eq (3). In comparison, the similar regression analyses with $VDI_{(\pm 1)}$ instead of $VDI_{(0)}$ are performed and the following corresponding equations are obtained:

$$t_{\rm b} = -153.79 + 91.3113 N^{2/3} - 14.7964 VDI_{(\pm 1)}$$

$$r = 0.9917, s = 4.73 \,^{\circ}\text{C}, F = 1484.32, n = 53$$
(5)

$$t_{\rm b} = -356.40 + 69.1019 N^{2/3} + 35.0158 VDI_{(0)} - 35.9089 (\Delta VDI_{(\pm 1)})^2$$

r = 0.9952, s = 3.63 °C, F = 1695.85, n = 53 (6)

where $\Delta VDI_{(\pm 1)} = VDI_{(\pm 1)} - VDI_{norm}$. From the above four Eqs (3), (4), (5) and (6), we can see that $VDI_{(\pm 1)}$ and $\Delta VDI_{(\pm 1)}$ have better correlation with t_b than $VDI_{(0)}$ and $\Delta VDI_{(0)}$. The reason perhaps is that $VDI_{(\pm 1)}$ and $\Delta VDI_{(\pm 1)}$ contain more details about the molecular geometrical configuration. The different geometrical configuration leads to the various $VDI_{(\pm 1)}$ and $\Delta VDI_{(\pm 1)}$ which are responsible for the diversity of t_b.

A Modified Distance Matrix to Distinguish *Cis/Trans* Isomers of Cycloalkanes Internet Electronic Journal of Molecular Design **2002**, *1*, 401–409

Table 2 . Values of N, $VDI_{(0)}$, $VDI_{(\pm 1)}$, $\Delta VDI_{(\pm 1)}$, $OEI_{(0)}$, t _b (°C), and n _D for 53 Cycloalkanes										
No	M	VDI			OFI	t _b (t _b (°C)		n _D	
INO	11	$VDI_{(0)}$	$VDI_{(\pm 1)}$	$\Delta V DI_{(\pm 1)}$	$OLI_{(0)}$	$t_{b exp}^{a}$	$t_{b calc}^{b}$	$n_{D exp}^{c}$	$n_{D calc}^{d}$	
1	5	5.4547	5.4303	0.4303	8.2222	37.0	30.21	1.3829	1.3781	
2	5	5.4547	5.5236	0.5236	8.2222	28.2	26.91	1.3713	1.3742	
3	6	5,5058	5.4669	0.2447	10.0417	58.7	62.90	1.3846	1.3917	
4	6	5 5058	5 6071	0 3849	10 0417	59.0	59.63	1 3953	1 3879	
5	6	5 9512	5 8896	0.6674	9 6667	66.0	65 70	1 3970	1 4007	
6	6	5 9512	6.0462	0.8240	9.6667	59.7	57.04	1 3873	1 3906	
7	6	5 7394	5 7968	0.5746	9.6667	58.0	61.29	1 3950	1 3930	
8	6	5 6499	5.6706	0.3740	9 3 1 9 4	60.5	61.32	1 3 9 3 3	1 3922	
0	6	5 6400	5.6402	0.4180	0 3 1 0 4	57.5	62.20	1 3 8 0 6	1 2022	
10	7	6 0600	6.0522	0.4180	10 6111	00.5	02.29	1.3890	1.3733	
10	7	6.0600	6 1 1 0 5	0.6751	10.0111	99.5	93.30	1.4222	1.4138	
11	7	6.0099	0.1195	0.0731	10.0111	91.9	92.30	1.4120	1.4101	
12	/	6.0090	6.0270	0.5826	10.2639	90.8	95.05	1.4089	1.4104	
13	/	6.0090	6.0006	0.5562	10.2639	91./	94.15	1.410/	1.411/	
14	8	6.4688	6.5/1/	1.0023	12.1528	110.4	111.40	1.4138	1.414/	
15	8	6.4688	6.4534	0.8840	12.1528	123.0	119.68	1.4262	1.4243	
16	8	6.4688	6.4899	0.9205	12.1528	117.5	117.23	1.4218	1.4215	
17	8	6.4124	6.4651	0.8957	11.8056	109.3	115.50	1.4106	1.4191	
18	8	6.4124	6.4285	0.8591	11.8056	116.8	117.89	1.4186	1.4218	
19	8	6.4124	6.3819	0.8125	11.8056	116.7	120.77	1.4186	1.4252	
20	8	6.0880	6.0584	0.4890	12.1806	128.0	124.25	1.4293	1.4250	
21	8	6.0880	6.1649	0.5955	12.1806	121.2	119.97	1.4219	1.4200	
22	8	6.0265	6.0567	0.4873	12.0383	121.0	121.34	1.4203	1.4210	
23	8	6.0265	6.0117	0.4423	12.0383	121.0	122.89	1.4186	1.4228	
24	8	6.1701	6.1548	0.5854	12.5278	129.8	124.86	1.4360	1.4264	
25	8	6.1701	6.2131	0.6437	12.5278	123.5	122.21	1.4270	1.4234	
26	8	6.1234	6.1391	0.5697	12.1806	120.1	122.53	1.4229	1.4235	
27	8	6.1234	6.1162	0.5468	12.1806	124.5	123.48	1.4284*	1.4245	
28	8	6.1117	6.1077	0.5383	12.3856	124.4	123.99	1.4230	1.4248	
29	8	6.1117	6.1191	0.5497	12.3856	119.4	123.53	1.4185^{*}	1.4243	
30	9	6.1199	6.0716	0.3772	13.83	153.6	151.82	1.4355	1.4358	
31	9	6.1199	6.2364	0.5420	13.83	147.5	146.21	1.4295	1.4293	
32	9	6.5491	6.6394	0.9450	13.9444	144.0	141.95	1.4300	1.4295	
33	9	6 5491	6 5356	0.8412	13 9444	151.7	148.83	1 4405	1 4375	
34	9	6 5491	6 5676	0.8732	13 9444	151.2	146 79	1 4399	1 4351	
35	9	6 4935	6 4902	0 7958	13 8022	146.6	148.86	1 4340	1 4369	
36	9	6 4935	6 5226	0.8282	11 8056	142.9	140.66	1 4266	1 4289	
37	9	6 4935	6 4797	0.7853	11.8056	146.7	143.23	1 4345	1 4319	
38	9	6 4935	6 5531	0.8587	11.8056	142.9	138.76	1 4341	1 4267	
39	9	6 4600	6 5023	0.8079	13 25	138.5	145.04	1 4269	1 4325	
40	9	6 4600	6 4610	0.7666	13.25	140.5	147.45	1 4307	1 4353	
40	9	6.0757	6 0445	0.3501	13 8928	152.6	150.94	1 4343	1 4342	
41 12	9	6.0757	6 1518	0.3501	13 8928	146.4	147 73	1 4274	1.4305	
13	0	6.0184	6 0502	0.3558	13.615	148.0	147.75	1.4260	1 / 208	
43	9	6.0184	6.0021	0.3338	13.015	148.0	147.37	1.4260	1.4290	
44	9	6 1020	6 1668	0.3077	14 1772	146.0	140.75	1.4200	1.4312	
43 16	2	6 1020	6 7600	0.4/24	14.1772	151.7	132.71	1.4430	1.43//	
40	9 0	6 11/0	6 1714	0.3004	14.1//2	151./	147.27	1.4001	1.4333	
4/	9	0.1449	0.1/10	0.4//2	14.033	150.0	150.52	1.4432	1.4342	
48	9	0.1449	0.1318	0.43/4	14.035	150.0	151.0/	1.4382	1.4338	
49 50	9	0.1284	0.1210	0.4200	14.1044	152.0	151.50	1.43/4	1.4354	
5U 51	9	0.1284	0.1410	0.44/2	14.1044	149.0	150.89	1.4304	1.4346	
51	10	0.4//2	0.40/1	0.6927	15.3233	1/2.0	1/5.52	1.4431	1.4469	
52	10	6.4/72	6.4950	0.7206	15.3233	1/0.6	1/4.05	1.4366	1.4452	
53	10	6.9988	7.0251	1.2507	13.8194	152.5	152.00	1.4319	1.4271	

^{*a*} from ref. 23; ^{*b*} calculated by Eq (8); ^{*c*} from ref. 23, values of n_D were obtained at 20°C except No 27 and 29 (marked with *) which were measured at 25°C; ^{*d*} calculated by Eq (12) in Table 3.

Our previous paper [22] has proved that OEI, the odd–even index, is a useful variable to obtain QSPR models for t_b , so in this paper we will use it to correlate the boiling temperatures. The expression of OEI is as follows:

$$OEI = \sum_{i=1}^{N} \sum_{j \neq i}^{N} \left[\left(-1 \right)^{\mathbf{D}_{ij} - 1} \mathbf{S} \right]$$

$$\tag{7}$$

where **S** is the derivative distance matrix as same as that in Eq (2). With the addition of $OEI_{(0)}$ to Eq (6), we obtain the following regression equation:

$$t_{b} = -369.15 + 53.6110 N^{2/3} + 41.0194 VDI_{(0)} - 37.0755 (\Delta VDI_{(\pm 1)})^{2} + 3.1275 OEI_{(0)}$$

$$r = 0.9961, s = 3.31 \text{ °C}, F = 1536.32, n = 53$$
(8)

Here, $OEI_{(0)}$ is calculated on the basis of the derivative distance matrix **S** (other than the modified distance matrix **D**_{mod}) according to Eq (7). As expected, Eq (8) improves the correlation coefficient and lowers the standard deviation further. The calculated boiling temperatures (t_{b calc}) with Eq (8) are listed in Table 2.

Eq (8) shows that t_b increases with the increase of $N^{2/3}$, $VDI_{(0)}$ and $OEI_{(0)}$, but decreases with the augmentation of $\Delta VDI_{(\pm 1)}$. Because *cis/trans* isomers have the same values of $N^{2/3}$, $VDI_{(0)}$ and $OEI_{(0)}$, only the difference for $\Delta VDI_{(\pm 1)}$ results in the discrimination of boiling temperatures. Therefore, the larger the value of $\Delta VDI_{(\pm 1)}$ or $VDI_{(\pm 1)}$ is, the lower is the boiling temperature for *cis/trans* isomers, which can be seen in Table 2. Figure 3 shows the plot of t_{b calc} *vs* t_{b exp}.

Figue 3. Plot of $t_{b calc}$ vs $t_{b exp}$ for 53 *cis/trans* isomers of cycloalkanes.

In addition, the refractive index of cycloalkanes is also a property relating with the molecular structure. This paper further takes refractive index n_D [23] as another testing property to investigate the QSPR ability of $VDI_{(\pm 1)}$. The regression results between n_D (see Table 2) of 53 *cis/trans* isomers of cycloalkanes and the employed variables are shown in Table 3. The replacement of $\Delta VDI_{(0)}$ with $\Delta VDI_{(\pm 1)}$ also improved the correlations between n_D and structural descriptors, which gives weight to the rationality of the newly developed topological index $VDI_{(\pm 1)}$.

	$n_{\rm D} = a_0$	$+ a_1 V D I_0$	$a_{0} + a_2(\Delta V I)$	$(DI_{(0)})^2 + a_3$	$(\Delta VDI_{(\pm 1)})$	$a_4 OE$	$I_{(0)}$
Eq	a_0	a_1	a_2	a_3	a_4	r	S
(9)	0.9285	0.0843	-0.0652			0.9488	0.00564
(10)	0.9417	0.0820		-0.0596		0.9553	0.00528
(11)	1.0273	0.0615	-0.0467		0.0028	0.9561	0.00528
(12)	1.0360	0.0598		-0.0431	0.0029	0.9648	0.00474

 Table 3. Regression for the Refractive Index (n_D) of the 53 Cycloalkanes with Different Descriptors

4 CONCLUSIONS

The quantitative characterization of geometrical isomers is a challenging subject in QSAR/QSPR studies. When the molecular spatial features are considered, it is necessary to improve the preceding approach of constructing topological index. This paper tried to develop a new topological index $VDI_{(\pm 1)}$ to distinguish *cis/trans* isomers of cycloalkanes. The regression analysis against boiling temperatures gives high correlation coefficient and low standard deviation, which shows that $VDI_{(\pm 1)}$ is an interesting approach to discriminate geometrical isomers. Of course, it is worthy of further investigation the optimum value for *a*, which was considered ±1 in this study.

Acknowledgment

The project was supported by the National Natural Science Foundation of China (NSFC, No. 20172043) and Hunan Province Education Commission (HPEC).

5 REFERENCES

- [1] A. T. Balaban, Highly Discriminating Distance–Based Topological Index, Chem. Phys. Lett. 1982, 89, 399–404.
- [2] Z. Mihalić, Comparative Study of Molecular Descriptors Derived from the Distance Matrix, J. Chem. Inf. Comput. Sci. 1992, 32, 28–37.
- [3] A. R. Katritzky and E. V. Gordeeva, Traditional Topological Indices vs Electronic, Geometrical, and Combined Molecular Descriptors in QSAR/QSPR Research, J. Chem. Inf. Comput. Sci. 1993, 33, 835–857.
- [4] S. Liu, C. Cao, and Z. Li, Approach to Estimation and Prediction for Normal Boiling Points (NBP) of Alkanes Based on a Novel Molecular Distance–Edge (MDE) Vector, λ, J. Chem. Inf. Comput. Sci. 1998, 38, 387–394.
- [5] A. R. Katritzky, U. Maran, V. S. Lobanov, and M. Karelson, Structurally Diverse Quantitative Structure–Property Relationship Correlations of Technologically Relevant Physical Properties, *J. Chem. Inf. Comput. Sci.* 2000, 40, 1–18.
- [6] M. V. Diudea (Ed.), QSPR/QSAR Studies by Molecular Descriptors, Nova Science, Huntington, N.Y., 2001.
- [7] O. Ivanciuc, QSAR Comparative Study of Wiener Descriptors for Weighted Molecular Graphs, J. Chem. Inf. Comput. Sci. 2000, 40, 1412–1422.
- [8] O. Ivanciuc, T. Ivanciuc, D. Cabrol-Bass, and A. T. Balaban, Evaluation in Quantitative Structure- Property Relationship Models of Structural Descriptors Derived from Information-Theory Operators, J. Chem. Inf. Comput. Sci. 2000, 40, 631-643.
- [9] A. T. Balaban, D. Mills, O. Ivanciuc, and S. C. Basak, Reverse Wiener Indices, Croat. Chem. Acta. 2000, 73, 923–941.
- [10] O. Ivanciuc, T. Ivanciuc, D. J. Klein, W. A. Seitz, and A. T. Balaban, Wiener Index Extension by Counting Even/Odd Graph Distances, J. Chem. Inf. Comput. Sci. 2001, 41, 536–549.
- [11] O. Ivanciuc, T. Ivanciuc, and D. J. Klein, Quantitative Structure–Property Relationships Generated with Optimizable Even/Odd Wiener Polynomial Descriptors, *SAR QSAR Environ. Res.* **2001**, *12*, 1–16.
- [12] O. Ivanciuc, Building–Block Computation of the Ivanciuc–Balaban Indices for the Virtual Screening of Combinatorial Libraries, *Internet Electron. J. Mol. Des.* 2002, 1, 1–9, <u>http://www.biochempress.com</u>.
- [13] A. A. Toropov and A. P. Toropov, QSAR Modeling of Mutagenicity Based on Graphs of Atomic Orbitals, Internet Electron. J. Mol. Des. 2002, 1, 108–114, <u>http://www.biochempress.com</u>.

- [14] A. Golbraikh, D. Bonchev, and A. Tropsha, Novel ZE–Isomerism Descriptors Derived from Molecular Topology and Their Application to QSAR Analysis, J. Chem. Inf. Comput. Sci. 2002, 42, 769–787.
- [15] I. Rios-Santamarina, R. García-Domenech, J. Cortijo, P. Santamaria, E. J. Morcillo, and J. Gálvez, Natural Compounds with Bronchodilator Activity Selected by Molecular Topology, *Internet Electron. J. Mol. Des.* 2002, 1, 70–79, <u>http://www.biochempress.com</u>.
- [16] D. J. G. Marino, P. J. Peruzzo, E. A. Castro, and A. A. Toropov, QSAR Carcinogenic Study of Methylated Polycyclic Aromatic Hydrocarbons Based on Topological Descriptors Derived from Distance Matrices and Correlation Weights of Local Graph Invariants, *Internet Electron. J. Mol. Des.* 2002, *1*, 115–133, <u>http://www.biochempress.com</u>.
- [17] L. Xu, H.-Y. Wang, and Q. Su, A Newly Proposed Molecular Topological Index for the discrimination of *Cis/Trans* Isomers and for the Studies of QSAR/QSPR, *Comput. Chem.* 1992, 16, 187–194.
- [18] H. P. Schultz, E. B. Schultz, and T. P. Schultz, Topological Organic Chemistry. 9. Graph Theory and Molecular Topological Indices of Stereoisomeric Organic Compounds, J. Chem. Inf. Comput. Sci. 1995, 35, 864–870.
- [19] G. Lekishvili, On the Characterization of Molecular Stereostructure: 1. Cis-Trans Isomerism, J. Chem. Inf. Comput. Sci. 1997, 37, 924–928.
- [20] G. Moreau, Atomic Chirality, a Quantitative Measure of the Chirality of the Environment of an Atom, J. Chem. Inf. Comput. Sci. 1997, 37, 929–938.
- [21] A. Golbraikh, D. Bonchev, and A. Tropsha, Novel Chirality Descriptors Derived from Molecular Topology, J. Chem. Inf. Comput. Sci. 2001, 41, 147–158.
- [22] C. Cao and H. Yuan, Topological Indices Based on Vertex, Distance, and Ring: On the Boiling Points of Paraffins and Cycloalkanes. J. Chem. Inf. Comput. Sci. 2001, 41, 867–877.
- [23] R. L. David, Ed., CRC Handbook of Chemistry and Physics, 81st ed., CRC Press, 2000-2001.
- [24] O. Ivanciuc and A. T. Balaban, Graph Theory in Chemistry; in: *The Encyclopedia of Computational Chemistry*, Eds. P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer III, and P. R. Schreiner, John Wiley & Sons, Chichester, 1998, pp. 1169–1190.