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Abstract 

Motivation. Machine learning techniques, mainly artificial neural networks, clustering and classification 
algorithms, have recently received considerable attention as successful methods for modeling medical data. 
Using a wide variety of mathematical equations, machine learning algorithms are able to generate predictive 
models for different cancer types. 
Method. Support vector machines (SVM) are a new machine learning algorithm that found numerous 
applications in bioinformatics, cheminformatics, computational biology, and structure–activity relationships. In 
this study we have investigated the application of SVM for cancer diagnosis from the blood concentration of Zn, 
Ba, Mg, Ca, Cu, and Se. The SVM model with the best prediction power was identified by a leave–10%–out 
cross–validation procedure, using the dot, polynomial, radial basis function, neural, and anova kernels. 
Results. Extensive simulations demonstrate that the classification performances of SVM depend strongly on the 
kernel type and various parameters that control the kernel shape. The best prediction results were obtained with a 
dot kernel with seven support vectors. The anova kernel offered comparable predictions, but with 24 support 
vectors.
Conclusions. Support vector machines represent a powerful and flexible classification algorithm, with many 
potential applications in modeling medical data. The results reported in the present study demonstrate such an 
application in the cancer diagnosis. 
Keywords. Cancer diagnosis; support vector machines; machine learning; kernel algorithm; classification 
algorithm. 

1 INTRODUCTION 

Machine learning techniques, mainly artificial neural networks, clustering and classification 
algorithms, have recently received considerable attention as successful methods for modeling 
medical data [1–8]. Using a wide variety of mathematical equations, machine learning algorithms 
are able to generate predictive models for different cancer types. Support vector machines (SVM) 
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represent a new class of machine learning algorithms that found numerous applications in various 
classification and regression models. In this study we have investigated the application of SVM for 
the cancer diagnosis from the blood concentration of Zn, Ba, Mg, Ca, Cu, and Se, using a data set 
previously explored in Refs. [6] and [9]. The influence of the kernel type on the SVM performances 
was extensively explored using various kernels, namely the dot, polynomial, radial basis function, 
neural, and anova kernels. 

2 MATERIALS AND METHODS 

Support vector machines were developed by Vapnik [10–12] as an effective algorithm for 
determining an optimal hyperplane to separate two classes of patterns [13–23]. In the first step, 
using various kernels that perform a nonlinear mapping, the input space is transformed into a higher 
dimensional feature space. Then, a maximal margin hyperplane (MMH) is computed in the feature 
space by maximizing the distance to the hyperplane of the closest patterns from the two classes. The 
patterns that determine the separating hyperplane are called support vectors. 

This powerful classification technique was applied with success in medicine, computational 
biology, bioinformatics, and structure–activity relationships, for the classification of: microarray 
gene expression data [24], translation initiation sites [25], genes [26], cancer type [27–30], 
pigmented skin lesions [31], HIV protease cleavage sites [32], GPCR type [33], protein class [34], 
membrane protein type [35], protein–protein interactions [36], protein subcellular localization [37–
39], protein fold [40], protein secondary structure [41], specificity of GalNAc–transferase [42], 
DNA hairpins [43], organisms [44], aquatic toxicity mechanism of action [45], carcinogenic activity 
of polycyclic aromatic hydrocarbons [46], structure–odor relationships for pyrazines [47]. 

In this study we have investigated the application of SVM for cancer diagnosis from the blood 
concentration of Zn, Ba, Mg, Ca, Cu, and Se. The 74 experimental data reported in Table 1 were 
taken from the literature [6,9], and consist of 32 data from cancer patients (class +1) and 42 data 
from normal individuals (class –1). All SVM models from the present paper for the classification of 
pyrazines into three aroma classes were obtained with mySVM [48], which is freely available for 
download. Links to Web resources related to SVM, namely tutorials, papers and software, can be 
found in BioChem Links [49] at http://www.biochempress.com. Before computing the SVM model, 
the input vectors were scaled to zero mean and unit variance. The prediction power of each SVM 
model was evaluated with a leave–10%–out cross–validation procedure, and the capacity parameter 
C took the values 10, 100, and 1000. We present below the kernels and their parameters used in this 
study.

The dot kernel. The inner product of x and y defines the dot kernel: 

yxyxK ),( (1)
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Table 1. Blood concentration of Zn, Ba, Mg, Ca, Cu, and Se for 
cancer patients (class +1) and normal individuals (class –1) 

No Zn Ba Mg Ca Cu Se Class 
1 0.65 0.005 19.9 78.4 0.58 0.088 +1 
2 0.63 0.012 20.7 81.4 1.02 0.066 +1 
3 0.52 0.032 19.4 74.1 0.68 0.059 +1 
4 0.66 0.007 23.7 86.5 1.01 0.07 +1 
5 0.64 0.023 20.4 78.4 0.94 0.073 +1 
6 0.67 0.026 20.2 85.6 1.09 0.071 +1 
7 0.67 0.022 19.4 85.1 0.84 0.052 +1 
8 0.67 0.006 19.6 76.7 0.85 0.081 +1 
9 0.73 0.013 17.8 74.7 0.84 0.074 +1 

10 0.51 0.010 16.4 77.2 0.88 0.084 +1 
11 0.54 0.017 18.6 74.7 1.14 0.081 +1 
12 0.70 0.009 21.6 78.8 0.97 0.071 +1 
13 0.41 0.013 17.4 60.1 0.69 0.075 +1 
14 0.55 0.017 20.8 71.2 0.98 0.083 +1 
15 0.58 0.012 21.7 71.4 0.74 0.068 +1 
16 0.46 0.007 18.2 68.3 0.81 0.096 +1 
17 0.44 0.035 21.1 71.6 1.31 0.057 +1 
18 0.54 0.013 22.5 79.5 0.86 0.075 +1 
19 0.48 0.006 18.3 71.9 0.76 0.046 +1 
20 0.49 0.034 17.7 68.9 0.73 0.088 +1 
21 0.47 0.021 15.2 66.3 1.00 0.067 +1 
22 0.45 0.163 16.9 65.6 0.80 0.067 +1 
23 0.49 0.008 15.6 63.0 0.74 0.072 +1 
24 0.43 0.143 15.3 57.0 0.83 0.049 +1 
25 1.76 0.243 12.5 52.1 0.64 0.082 +1 
26 0.70 0.008 13.8 63.8 0.84 0.052 +1 
27 2.20 0.067 15.6 65.8 0.96 0.066 +1 
28 0.58 0.032 9.2 41.8 0.98 0.087 +1 
29 1.09 0.010 10.8 42.3 0.60 0.076 +1 
30 0.55 0.201 14.3 60.0 0.57 0.065 +1 
31 0.60 0.228 18.8 72.6 0.99 0.069 +1 
32 1.08 0.238 20.2 76.4 0.95 0.060 +1 
33 1.91 0.224 27.3 74.6 2.60 0.052 –1 
34 0.67 0.175 18.6 65.6 1.33 0.074 –1 
35 1.13 0.148 16.6 63.5 0.94 0.038 –1 
36 0.88 0.145 20.1 59.4 1.37 0.045 –1 
37 0.54 0.033 16.1 49.6 1.46 0.049 –1 
38 1.03 0.052 16.4 42.5 1.59 0.042 –1 
39 0.92 0.039 16.8 64.8 1.54 0.043 –1 
40 0.76 0.042 16.4 54.0 1.69 0.085 –1 
41 1.61 0.078 16.0 49.9 1.18 0.055 –1 
42 1.56 0.044 10.2 57.2 1.35 0.049 –1 
43 0.84 0.051 16.5 48.2 1.05 0.055 –1 
44 0.70 0.051 14.2 41.0 0.64 0.031 –1 
45 0.73 0.024 15.2 36.0 1.14 0.069 –1 
46 0.69 0.048 18.6 44.9 1.91 0.079 –1 
47 1.01 0.031 17.8 46.9 0.75 0.099 –1 
48 0.83 0.049 18.4 34.4 0.86 0.126 –1 
49 0.30 0.002 6.5 15.3 0.43 0.074 –1 
50 0.61 0.037 19.4 49.4 2.03 0.055 –1 
51 0.53 0.032 17.3 45.1 0.85 0.037 –1 
52 0.51 0.026 18.6 54.8 1.21 0.022 –1 
53 2.40 0.046 15.8 53.0 1.20 0.065 –1 
54 0.52 0.031 19.6 41.0 0.75 0.051 –1 
55 0.35 0.008 17.7 36.8 1.10 0.040 –1 
56 0.56 0.028 19.5 43.7 1.06 0.069 –1 
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Table 1. (Continued) 
No Zn Ba Mg Ca Cu Se Class 
57 0.32 0.024 11.1 30.5 0.40 0.081 –1 
58 0.75 0.035 20.2 50.7 0.94 0.081 –1 
59 1.98 0.036 17.5 53.6 0.57 0.074 –1 
60 0.22 0.046 9.9 35.5 0.45 0.059 –1 
61 0.33 0.018 13.6 34.9 0.66 0.061 –1 
62 0.97 0.036 17.8 48.3 0.72 0.047 –1 
63 0.78 0.027 18.3 46.9 0.49 0.075 –1 
64 0.32 0.028 10.8 41.2 0.66 0.034 –1 
65 0.48 0.024 20.9 49.5 1.20 0.125 –1 
66 0.54 0.033 16.1 51.2 1.17 0.061 –1 
67 0.58 0.029 15.5 44.8 2.74 0.046 –1 
68 0.66 0.026 16.4 39.8 1.08 0.068 –1 
69 0.69 0.046 14.0 47.4 1.07 0.058 –1 
70 1.32 0.041 18.0 49.8 0.43 0.056 –1 
71 0.27 0.036 16.0 45.0 1.32 0.047 –1 
72 0.41 0.050 19.9 56.5 1.35 0.056 –1 
73 0.47 0.035 12.3 40.1 1.73 0.057 –1 
74 1.90 0.030 15.7 43.0 1.44 0.039 –1 

The polynomial kernel. The polynomial of degree d (values 2, 3, 4, and 5) in the variables x and 
y defines the polynomial kernel: 

dyxyxK )1(),( (2)

The radial kernel. The following exponential function in the variables x and y defines the radial 
basis function kernel, with the shape controlled by the parameter  (values 0.5, 1.0, and 2.0): 

)||||exp(),( 2yxyxK (3)

The neural kernel. The hyperbolic tangent function in the variables x and y defines the neural 
kernel, with the shape controlled by the parameters a (values 0.5, 1.0, and 2.0) and b (values 0, 1.0, 
and 2.0): 

)tanh(),( byaxyxK (4)

The anova kernel. The sum of exponential functions in x and y defines the anova kernel, with 
the shape controlled by the parameters  (values 0.5, 1.0, and 2.0) and d (values 1, 2, and 3): 

d

i
ii yxyxK ))(exp(),( (5)

3 RESULTS AND DISCUSSION 

Similarly with other multivariate statistical models, the performances of SVM classifiers depend 
on the combination of several parameters, and the kernel type is the most important one. Because 
the use of SVM models in chemometrics, structure–activity studies, and QSAR is only in the 
beginning, there are no clear guidelines on selecting the most effective kernel for a certain 
classification problem. Another important problem in SVM applications is the selection of the input 
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numerical indices that can discriminate the investigated patterns. For the moment, this is an 
unexplored problem, and in this study we have used the blood concentration of Zn, Ba, Mg, Ca, Cu, 
and Se from [6,9] without any attempt of removing indices with low influence on the classification 
performance. 

The statistical results obtained in the SVM experiments are presented in Table 2. The calibration 
of the SVM models, performed with the whole set of 74 patterns from Table 1, is characterized by 
the following statistics: SV, number of support vectors; BSV, number of bounded support vectors; 
+/+, number of +1 patterns (cancer patients) predicted in class +1; +/–, number of +1 patterns 
predicted in class –1; –/–, number of –1 patterns (normal individuals) predicted in class –1; –/+, 
number of –1 patterns predicted in class +1; CAa, accuracy. The high flexibility of multivariate 
statistical models in approximating a wide range of mathematical functions comes with a significant 
danger, namely overfitting. Using sophisticated kernels, SVM can be calibrated to perfectly 
discriminate two populations of patterns, but only a cross–validation test can demonstrate the 
potential utility of an SVM model. For each SVM model we present in Table 2 the following leave–
10%–out (L10%O) cross-validation statistics: ASV, average number of support vectors; ABSV, 
average number of bounded support vectors; TRa, training accuracy; TEa, test accuracy. 

The first group of SVM models from Table 2, experiments 1–3, was obtained with the dot 
kernel. As can be seen from the results of experiments 2 and 3, the dot kernel is able to perfectly 
separate the two classes of patterns, using only seven support vectors, and with good leave–10%–
out (L10%O) cross–validation results, namely TEa = 0.93. The SVM model from experiment 3 is 
determined by four +1 patterns (cancer patients) (i.e., 24, 25, 28, and 29) and by three –1 patterns 
(normal individuals) (i.e., 34, 35, and 60). These seven patterns can be used to predict the cancer 
diagnosis from the blood concentration of Zn, Ba, Mg, Ca, Cu, and Se. 

The dot kernel is the simplest kernel used in our SVM experiments, and one would expect that 
by using more complex kernel functions the classification performances of the SVM model would 
increase. However, our experiments performed with the polynomial, radial basis function, neural, 
and anova kernels clearly show that the prediction statistics obtained with these functions are lower 
than those obtained with the simple dot kernel. The results obtained with the polynomial kernel 
(Table 2, experiments 4–15) show that a perfect separation of the two classes is obtained in 
calibration, but the number of support vectors is large (between 19 and 30) and the L10%O results 
are worse than those obtained with the dot kernel (TEa takes values between 0.87 and 0.89). 

The SVM models obtained with the radial basis function kernel (Table 2, experiments 16–24) 
have TEa between 0.82 (experiments 22–24) and 0.89 (experiments 16–18), indicating that the 
L10%O predictions are of lower quality than those obtained with the dot kernel. The main 
deficiency of the SVM models obtained with the radial kernel is the large number of support 
vectors, between 51 (experiments 16–18) and 70 (experiments 22–24). 
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Table 2. Results for SVM Modeling of the Cancer Diagnosis.a

No C K   SV BSV +/+ +/– –/– –/+ CAa ASV ABSV TRa TEa 
1 10 D   12 5 32 0 42 0 1.00 10.8 4.1 0.99 0.93 
2 100    7 0 32 0 42 0 1.00 7.0 0.0 1.00 0.93 
3 1000    7 0 32 0 42 0 1.00 7.0 0.0 1.00 0.93 
   d             

4 10 P 2  19 0 32 0 42 0 1.00 18.3 0.0 1.00 0.87 
5 100  2  19 0 32 0 42 0 1.00 18.3 0.0 1.00 0.87 
6 1000  2  19 0 32 0 42 0 1.00 18.3 0.0 1.00 0.87 
7 10  3  28 0 32 0 42 0 1.00 24.1 0.0 1.00 0.89 
8 100  3  28 0 32 0 42 0 1.00 24.1 0.0 1.00 0.89 
9 1000  3  28 0 32 0 42 0 1.00 24.1 0.0 1.00 0.89 

10 10  4  30 0 32 0 42 0 1.00 26.1 0.0 1.00 0.88 
11 100  4  30 0 32 0 42 0 1.00 26.1 0.0 1.00 0.88 
12 1000  4  30 0 32 0 42 0 1.00 26.1 0.0 1.00 0.88 
13 10  5  28 0 32 0 42 0 1.00 25.6 0.0 1.00 0.87 
14 100  5  28 0 32 0 42 0 1.00 25.6 0.0 1.00 0.87 
15 1000  5  28 0 32 0 42 0 1.00 25.6 0.0 1.00 0.87 

               
16 10 R 0.5  51 0 32 0 42 0 1.00 47.8 0.0 1.00 0.89 
17 100  0.5  51 0 32 0 42 0 1.00 47.8 0.0 1.00 0.89 
18 1000  0.5  51 0 32 0 42 0 1.00 47.8 0.0 1.00 0.89 
19 10  1.0  62 0 32 0 42 0 1.00 56.8 0.0 1.00 0.85 
20 100  1.0  62 0 32 0 42 0 1.00 56.8 0.0 1.00 0.85 
21 1000  1.0  62 0 32 0 42 0 1.00 56.8 0.0 1.00 0.85 
22 10  2.0  70 0 32 0 42 0 1.00 63.5 0.0 1.00 0.82 
23 100  2.0  70 0 32 0 42 0 1.00 63.5 0.0 1.00 0.82 
24 1000  2.0  70 0 32 0 42 0 1.00 63.5 0.0 1.00 0.82 

   a b            
25 10 N 0.5 0.0 21 18 23 9 33 9 0.76 17.2 14.3 0.79 0.77 
26 100  0.5 0.0 17 14 25 7 35 7 0.81 16.1 14.3 0.78 0.77 
27 1000  0.5 0.0 17 14 25 7 35 7 0.81 17.4 15.4 0.77 0.79 
28 10  1.0 0.0 18 18 25 7 33 9 0.78 18.7 16.1 0.76 0.81 
29 100  1.0 0.0 18 15 25 7 34 8 0.80 17.5 15.4 0.77 0.78 
30 1000  1.0 0.0 18 15 25 7 34 8 0.80 18.6 16.0 0.76 0.84 
31 10  2.0 0.0 20 18 23 9 33 9 0.76 20.0 18.0 0.74 0.85 
32 100  2.0 0.0 20 17 23 9 34 8 0.77 19.1 16.5 0.75 0.81 
33 1000  2.0 0.0 21 19 23 9 32 10 0.74 18.6 16.3 0.75 0.88 
34 10  0.5 1.0 30 30 22 10 25 17 0.64 26.0 24.3 0.64 0.62 
35 100  0.5 1.0 30 30 22 10 25 17 0.64 25.7 23.9 0.65 0.62 
36 1000  0.5 1.0 30 30 22 10 25 17 0.64 25.6 23.7 0.65 0.62 
37 10  1.0 1.0 30 28 18 14 28 14 0.62 26.1 24.5 0.63 0.61 
38 100  1.0 1.0 28 28 18 14 26 16 0.59 25.3 23.8 0.63 0.66 
39 1000  1.0 1.0 28 28 18 14 26 16 0.59 25.8 23.9 0.64 0.59 
40 10  2.0 1.0 24 22 21 11 31 11 0.70 23.2 21.3 0.68 0.73 
41 100  2.0 1.0 24 22 21 11 31 11 0.70 23.3 21.2 0.68 0.76 
42 1000  2.0 1.0 25 22 21 11 31 11 0.70 23.4 21.2 0.68 0.76 
43 10  0.5 2.0 32 32 22 10 19 23 0.55 29.8 28.7 0.56 0.65 
44 100  0.5 2.0 30 30 22 10 19 23 0.55 28.2 26.7 0.58 0.57 
45 1000  0.5 2.0 30 30 22 10 19 23 0.55 28.4 26.6 0.58 0.58 
46 10  1.0 2.0 32 32 20 12 19 23 0.53 30.2 28.7 0.55 0.54 
47 100  1.0 2.0 32 30 17 15 27 15 0.59 29.6 28.6 0.55 0.54 
48 1000  1.0 2.0 32 30 17 15 27 15 0.59 29.0 28.4 0.55 0.54 
49 10  2.0 2.0 30 30 19 13 24 18 0.58 27.2 26.1 0.60 0.62 
50 100  2.0 2.0 30 30 19 13 24 18 0.58 26.7 25.8 0.61 0.59 
51 1000  2.0 2.0 30 30 19 13 24 18 0.58 26.9 26.1 0.60 0.57 
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Table 2. (Continued) 
No C K d SV BSV +/+ +/– –/– –/+ CAa ASV ABSV TRa TEa 
52 10 A 0.5 1 18 0 32 0 42 0 1.00 16.6 0.0 1.00 0.85 
53 100  0.5 1 18 0 32 0 42 0 1.00 16.6 0.0 1.00 0.85 
54 1000  0.5 1 18 0 32 0 42 0 1.00 16.6 0.0 1.00 0.85 
55 10  1.0 1 21 0 32 0 42 0 1.00 20.2 0.0 1.00 0.81 
56 100  1.0 1 21 0 32 0 42 0 1.00 20.2 0.0 1.00 0.81 
57 1000  1.0 1 21 0 32 0 42 0 1.00 20.2 0.0 1.00 0.81 
58 10  2.0 1 23 0 32 0 42 0 1.00 22.9 0.0 1.00 0.82 
59 100  2.0 1 23 0 32 0 42 0 1.00 22.9 0.0 1.00 0.82 
60 1000  2.0 1 23 0 32 0 42 0 1.00 22.9 0.0 1.00 0.82 
61 10  0.5 2 24 0 32 0 42 0 1.00 22.3 0.0 1.00 0.91 
62 100  0.5 2 24 0 32 0 42 0 1.00 22.3 0.0 1.00 0.91 
63 1000  0.5 2 24 0 32 0 42 0 1.00 22.3 0.0 1.00 0.91 
64 10  1.0 2 31 0 32 0 42 0 1.00 29.2 0.0 1.00 0.91 
65 100  1.0 2 31 0 32 0 42 0 1.00 29.2 0.0 1.00 0.91 
66 1000  1.0 2 31 0 32 0 42 0 1.00 29.2 0.0 1.00 0.91 
67 10  2.0 2 40 0 32 0 42 0 1.00 36.9 0.0 1.00 0.91 
68 100  2.0 2 40 0 32 0 42 0 1.00 36.9 0.0 1.00 0.91 
69 1000  2.0 2 40 0 32 0 42 0 1.00 36.9 0.0 1.00 0.91 
70 10  0.5 3 27 0 32 0 42 0 1.00 26.7 0.0 1.00 0.89 
71 100  0.5 3 27 0 32 0 42 0 1.00 26.7 0.0 1.00 0.89 
72 1000  0.5 3 27 0 32 0 42 0 1.00 26.7 0.0 1.00 0.89 
73 10  1.0 3 42 0 32 0 42 0 1.00 38.4 0.0 1.00 0.89 
74 100  1.0 3 42 0 32 0 42 0 1.00 38.4 0.0 1.00 0.89 
75 1000  1.0 3 42 0 32 0 42 0 1.00 38.4 0.0 1.00 0.89 
76 10  2.0 3 52 0 32 0 42 0 1.00 48.9 0.0 1.00 0.91 
77 100  2.0 3 52 0 32 0 42 0 1.00 48.9 0.0 1.00 0.91 
78 1000  2.0 3 52 0 32 0 42 0 1.00 48.9 0.0 1.00 0.91 

a The table reports the experiment number Exp, capacity parameter C, kernel type K (dot D; 
polynomial P; radial basis function R; neural N; anova A) and corresponding parameters, 
calibration results (SV, number of support vectors; BSV, number of bounded support vectors; 
+/+, number of +1 patterns (cancer patients) predicted in class +1; +/–, number of +1 patterns 
predicted in class –1; –/–, number of –1 patterns (normal individuals) predicted in class –1; –
/+, number of –1 patterns predicted in class +1; CAa, accuracy), and cross-validation results 
(ASV, average number of support vectors; ABSV, average number of bounded support vectors; 
TRa, training accuracy; TEa, test accuracy). 

The fourth group of SVM models was obtained with the neural kernel (Table 2, experiments 25–
51). Although we have explored a wide range of values for the parameters a (values 0.5, 1.0, 2.0) 
and b (values 0, 1.0, 2.0), the classification results are bad. The neural kernel is not able to separate 
the two classes in calibration, while in prediction TEa takes values between 0.54 (experiments 46 
and 47) and 0.88 (experiment 33). Despite its success as a transfer function in artificial neural 
networks, the hyperbolic tangent is not a very useful kernel in SVM models, as found also in other 
investigations [45–47]. 

The last group of SVM models was obtained with the anova kernel (Table 2, experiments 52–
78). This kernel separates perfectly the two classes in calibration, while in prediction TEa takes 
values between 0.81 (experiments 55–57) and 0.91 (experiments 61–69 and 76–78). Compared with 
the dot kernel, the number of support vectors is much larger, between 18 (experiments 52–54) and 
52 (experiments 76–78). Considering the number of support vectors, the best SVM models are 
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obtained in experiments 61–63, with TEa = 0.91, 24 support vectors in calibration, and an average 
of 22.3 support vectors in prediction. Although TEa is very close to the value obtained with the dot 
kernel, namely 0.93, the number of support vectors is more than three times greater (dot kernel 
SVM models were obtained with 7 support vectors in calibration and prediction). 

4 CONCLUSIONS 

Support vector machines represent a new class of machine learning algorithms that can have 
significant applications in the design of chemical libraries, in chemometrics, and in structure–
activity models. The possibility to discriminate clusters separated by non–linear surfaces, the unique 
solution for the class separation, and the fast optimization are three important advantages of SVM. 
In this study we have investigated the application of SVM for the cancer diagnosis from the blood 
concentration of Zn, Ba, Mg, Ca, Cu, and Se, using a data set previously explored in Refs. [6] and 
[9]. The influence of the kernel type on the SVM performances was extensively explored using 
various kernels, namely the dot, polynomial, radial basis function, neural, and anova kernels. 

The role of a classifier is to learn the classification rule from training patterns and then to apply 
the rule to new patterns in order to obtain reliable predictions. Therefore, for a classifier, one of the 
most important properties is its generalization ability or its ability to make correct predictions for 
patterns not used in the calibration phase. In this investigation, the prediction power of each SVM 
model was evaluated with a leave–10%–out cross–validation procedure. After experimenting with 
various kernels and associated parameters, our results clearly demonstrate that the performance of 
the SVM classifier is strongly dependent on the kernel shape. 

The best predictions were obtained with a dot kernel with seven support vectors, namely four +1 
patterns (cancer patients) (i.e., 24, 25, 28, and 29) and three –1 patterns (normal individuals) (i.e.,
34, 35, and 60). These seven patterns can be used to predict the cancer diagnosis from the blood 
concentration of Zn, Ba, Mg, Ca, Cu, and Se. Although the dot kernel represents a simple separation 
hyperplane, its predictions are better than those obtained with the polynomial, radial basis function, 
and neural kernels. Only the anova kernel gives predictions close to those obtained with the dot 
kernel, but with three times more support vectors. The neural kernel constantly gives bad 
classification results, both in calibration and prediction. Despite its success as a transfer function in 
artificial neural networks, the hyperbolic tangent is not a very useful kernel in SVM models, as 
found also in other investigations [45–47]. 

Contrary to the almost general misconception, our results clearly indicate that the dot polynomial 
can give better predictions than more complex kernels. Because the development of an SVM model 
is an empirical process, various kernels and associated parameters must be investigated in order to 
identify the SVM with the best prediction power. 
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Supplementary Material 
The mySVM model files for experiments 2 and 3 are available as supplementary material. 
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