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Abstract 

Motivation. Considering the importance of quantitative structure–toxicity relationship (QSTR) studies in the 
field of aquatic toxicology from the viewpoint of ecological safety assessment, fish and algae toxicity of various 
aromatic compounds has been modeled by the multiple regression technique. Topological indices are used to 
relate the chemical structures to their toxic activity against aquatic organisms. In our experiment we do not look 
for the best model for a property on a given set of molecules, but for the best set of descriptors modeling a given 
functional group. 
Method. Correlation analysis and Multiple Linear Regression (MLR) have been carried out to derive the best 
QSAR models, giving important information on functional groups by topological descriptors. The models 
belonging to benzene derivative toxicity against Poecilia reticulata were validated with an external validation 
set, and the indices in the best models were used to predict the toxicity for other two sets of aromatic compounds 
against Tetrahymena pyriformis. The robustness and prediction power of each model was evaluated by a leave–
half–out (LHO) procedure. 
Results. The classification performance of topological descriptor models generated with multiple regressions 
show that the statistical results depend strongly on the functional groups description. The basic set, toxicity data 
of 92 diverse aromatic compounds against Poecilia reticulata, provided very good results witch were validated 
more then 93%. For the both prediction sets against Tetrahymena pyriformis the best models are: R = 0.98; 
R2 = 0.96; Q2 = 0.94; F = 188.36; s = 0.13 (the set with 37 nitrobenzene derivatives) and R = 0.92; R2 = 0.84; 
Q2 = 0.82; F = 198.64; s = 0.2 (for 167 aromatic compounds). 
Conclusions. Our statistical study demonstrated that topological indices based on Cluj matrices show a good 
predictive ability of the aquatic toxicity against Poecilia reticulata and Tetrahymena pyriformis. These indices 
account for molecular bulk, halogen, nitro and amino substitutions in the benzene ring. The four descriptors that 
describe the equation of nitrobenzene derivative are very useful to predict the activity of other compounds 
containing the nitro functional group. It appears that topological descriptors have significant potential in QSTR 
studies, which warrants extensive evaluation. This procedure can be used to approach the aquatic toxicity and to 
select the appropriate model for new chemical compounds. 
Keywords. QSAR; quantitative structure–activity relationships; QSTR; quantitative structure–toxicity 
relationships; aquatic toxicity; topological indices; aromatic compounds; benzene derivatives; Poecilia
reticulata; Tetrahymena pyriformis.
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1 INTRODUCTION 

Toxicity of organic compounds is one of the particularly interesting biological activities in the 
scientific community due to its impact on environment and human health. The term “toxicity” 
defines just a biological end–point, including several different mechanisms at the molecular level. 
Data sets usually consist of compounds acting by different mechanisms making the use of linear 
models questionable. The use of short–term toxicity assays and computational models over their 
traditional counterparts is preferred for many reasons including the ease of use, speed and relatively 
low cost. In addition, they pose fewer problems with regard to the stability of chemicals and 
potential losses during the testing due to volatility. The acute toxicity, assessed in short and low–
cost unicellular tests, is also considered to be a surrogate for the prediction of toxicity to higher 
aquatic organisms [1]. 

Chemical byproducts from industrial systems that are allowed to escape into the environment can 
have toxic effects. Each of these chemicals can be harmful, and it is crucial that each compound be 
assessed for its toxicity level. However, this can be costly, time–consuming, and could potentially 
produce toxic side products from the experimental methods used today [2]. 

Recently, computational methods have been used to solve complex problems in many aspects of 
science. One particularly useful method, the development of quantitative structure activity 
relationships (QSAR) [3], has found diverse applications in chemistry. These applications include 
biological activity (QSAR) prediction [4–6], physical property (QSPR), prediction [6–8], and 
toxicity (QSTR) prediction [9–12]. QSAR has great advantages over both experimental techniques 
and other computational methods. First, QSAR is a purely computational method that does not 
require the use of expensive equipment or hazardous chemicals. Second, QSAR has the advantage 
of being computationally inexpensive, as compared with molecular dynamics, Monte Carlo, and ab
initio quantum mechanical methods. 

QSAR approach is based on the assumption that the structure of a molecule must contain the 
features responsible for its physical, chemical, and biological properties and on the possibility of 
representing a molecule by numerical descriptors. The difficulty of predicting toxicity is due to the 
lack of knowledge of the toxic mechanisms for reactive chemicals and the complexity and 
heterogeneity of the data available. More powerful computational approaches have now opened 
new avenues to QSAR studies and several research papers have been published [1–9]. While 
toxicity databases on a number of fish species, including the guppy (Poecilia reticulata) exist, the 
largest and most chemically diverse of the fish data sets is that for 96–h flow through fathead 
minnow (Pimephales promelas) 50% mortality [13]. 

The aim of this study, therefore, is to evaluate a series of aromatic compounds, such as phenols, 
anilines, nitrobenzenes and other poly–substituted benzenes vs. their toxicity on the above fish 
populations. Substituted benzenes, including anilines and phenols, represent a significant portion of 



A. Costescu and M. V. Diudea 
Internet Electronic Journal of Molecular Design 2006, 5, 116–134 

118 
BioChem Press http://www.biochempress.com

the chemicals that are of environmental concern. Their toxic potency may vary, however, in a wide 
range. According to Fish Acute Toxicity Syndromes [14] for fathead minnows, substituted benzenes 
can act as nonpolar narcotics, polar narcotics, uncouplers of oxidative phosphorylation, or even 
invoke reactive mode of toxic action.

Nitroaromatic compounds form an important class of industrial chemicals with substantial 
marketing volumes and a diverse range of use patterns [15]. Besides applications as solvents, they 
are used for the synthesis of dyestuffs, urethane polymers, and other plastics as well as of anilines, 
and among derivative products are also insecticides, herbicides, and pharmaceuticals. The latter is 
of ongoing interest also in an effort to better understand the mutagenicity of ambient air, pointing to 
an important aspect of the toxicological profile of this class of compound [16–17]. Moreover, there 
is evidence that nitrophenols are formed photochemically from aromatic precursor compounds in 
rain, which was discussed in the context of xenobiotics contributing to forest decline [18]. From the 
chemical viewpoint, the nitro group is a strong ð–electron acceptor, lowering the electron density of 
the aromatic ring. Inside the nitro group, excess electronic charge is mainly localized at the oxygen 
atoms, while the nitrogen atom is typically electron–deficient. 

As a consequence, nitroaromatic compounds show enhanced reactivity for the attack of 
nucleophiles at aromatic ring carbons as well as for reactions with reducing agents. In phenol 
derivatives the nitro group leads to a pronounced enhancement of the acidity of the OH group. The 
presence of nitroaromatics in aquatic systems has led to various studies on the associated hazard 
potential. Many studies have concentrated on investigating the acute toxicity toward fish [19–20] 
and other aquatic species [21], including the QSARs for elucidating underlying modes of action and 
their link to characteristics of the molecular structure of these compounds. Excess toxicity of 
bioreactive compounds can be identified by its upward deviation from hydrophobicity–based 
QSARs, and there are various molecular descriptors available for modeling the reactivity profile of 
the chemicals, which allows a mechanistic interpretation of specific toxicity effects as related to 
metabolic pathways and chemical interactions with endogenous macromolecules [20,21]. 

Different QSAR models, descriptors and statistical methods have been applied to model toxicity 
data of diverse chemicals by different group of workers. Recently, Rose and Hall [22] have 
published a paper on E–state modeling of fish toxicity independent of 3D structure information. 
QSARs were developed for the prediction of aqueous toxicities for Poecilia reticulata using 
CODESSA treatment by Katritzky et al. [23]. Optimization of correlation weights of local graph 
invariants was used by Toropov et al. [24] to predict the aquatic toxicity. Seward et al. [25] have 
reported toxicity modeling of aliphatic carboxylic acids and salts to Tetrahymena pyriformis using 
physicochemical and quantum mechanical parameters. Roy and Ghosh [26] have modeled toxicity 
of substituted phenols against Tetrahymena pyriformis and fish toxicity data of substituted benzenes 
against Poecilia reticulata [27] to explore the suitability of the newly developed extended 
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topochemical atom (ETA) indices in modeling studies. 

Table 1. Observed [22] fish toxicity values of substituted benzenes 
No Compounds pLC50 obs  No Compounds pLC50 obs
1 phenol 3.45  47 nitrobenzene 2.97 
2 2–methylphenol 3.77  48 2–nitrotoluene 3.59 
3 3–methylphenol 3.48  49 3–nitrotoluene 3.65 
4 4–methylphenol 3.74  50 4–nitrotoluene 3.67 
5 2,4–dimethylphenol 3.86  51 2,3–dimethylnitrobenzene 4.39 
6 2,6–dimethylphenol 3.75  52 3,4–dimethylnitrobenzene 4.21 
7 3,4–dimethylphenol 3.92  53 2–chloronitrobenzene 3.72 
8 2,3,6–trimethylphenol 4.21  54 3–chloronitrobenzene 4.01 
9 4–Ethylphenol 4.07  55 4–chloronitrobenzene 4.42 
10 4–propylphenol 4.09  56 2,3–dichloronitrobenzene 4.66 
11 4–butylphenol 4.47  57 2,4–dichloronitrobenzene 4.46 
12 4–tert–butylphenol 4.46  58 2,5–dichloronitrobenzene 4.59 
13 2–tert–butyl–4–methylphenol 4.90  59 3,5–dichloronitrobenzene 4.58 
14 4–pentylphenol 5.12  60 2–chloro–6–nitrotiluene 4.52 
15 4–tert–pentylphenol 4.81  61 4–chloro–2–nitrotoluene 4.44 
16 2–allylphenol 3.96  62 aniline 2.91 
17 2–phenylphenol 4.76  63 2–methylaniline 3.12 
18 1–naphthol 4.50  64 3–methylaniline 3.47 
19 4–chlorophenol 4.18  65 4–methylaniline 3.72 
20 4–chloro–3–methylphenol 4.33  66 N,N–dimethylaniline 3.33 
22 3–methoxyphenol 3.22  68 3–ethylaniline 3.65 
23 4–methoxyphenol 3.05  69 4–ethylaniline 3.52 
24 4–phenoxyphenol 4.58  70 4–butylaniline 4.16 
25 quinoline 3.63  71 2,6–diisopropylaniline 4.06 
26 chlorobenzene 3.77  72 2–chloroaniline 4.31 
27 1,2–dichlorobenzene 4.40  73 3–chloroaniline 3.98 
28 1,3–dichlorobenzene 4.28  74 4–chloroaniline 3.67 
29 1,4–dichlorobenzene 4.56  75 2,4–dichloroaniline 4.41 
30 1,2,3–trichlorobenzene 4.89  76 2,5–dichloroaniline 4.99 
31 1,2,4–trichlorobenzene 4.83  77 3,4–dichloroaniline 4.39 
32 1,3,5–trichlorobenzene 4.47  78 3,5–dichloroaniline 4.62 
33 1,2,3,4–tetrachlorobenzene 5.35  79 2,3,4–trichloroaniline 5.15 
34 1,2,3,5–tetrachlorobenzene 5.43  80 2,3,6–trichloroaniline 4.73 
35 1,2,4,5–tetrachlorobenzene 5.85  81 2,4,5–trichloroaniline 4.92 
36 3–chlorotoluene 3.84  82 –4–tetrafluoro–3–methylaniline 3.77 
37 4–chlorotoluene 4.33  83  –4–tetrafluoro–2–methylaniline 3.78 
38 2,4–dichlorotoluene 4.54  84 pentafluoroaniline 3.69 
39 2,4,5–trichlorotoluene 5.06  85 2–nitroaniline 4.15 
40 3,4,5–trichlorotoluene 4.60  86 3–nitroaniline 3.24 
41 pentachlorotoluene 6.15  87 4–nitroaniline 3.23 
42 benzene 3.09  88 2–chloro–4–nitrianiline 3.93 
43 toluene 3.13  89 4–bromoaniline 3.56 
44 2–xylene 3.48  90 3–benzyloxyaniline 4.34 
45 3–xylene 3.45  91 4–hexyloxyaniline 4.78 
46 4–xylene 3.48  92 4–ethoxy–2–nitroaniline 3.85 

In the present work we modeled the toxicity of benzene derivatives against Poecilia reticulata
(taken from Rose et al. [22]) using topological descriptors by multiple regression technique. The 
best found relations were used to predict the toxicity of nitrobenzene derivatives against 
Tetrahymena pyriformis [28] and the toxicity of aromatic compounds against Tetrahymena
pyriformis [29]. 
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2 MATERIALS AND METHODS 

2.1 Chemical Data 

In our present QSAR study, fish toxicity data of 92 diverse aromatic compounds against Poecilia

reticulate [22] have been modeled by using topological parameters and the multiple regression 

technique. The data set is chemically heterogeneous and includes phenols, anilines, nitrobenzenes, 

as well as compounds with more than one functional group on the benzene ring (Table 1). The data 

set does not include chemicals that are anticipated to elicit their toxicity via target–specific 

mechanisms such as enzyme inhibition. 

Table 2. Observed [28] nitrobenzene toxicity values to Tetrahymena pyriformis
No Compound pLC50  No Compound pLC50
1 2,6–Dimethylnitrobenzene 0.30  20 6–Bromo–1,3–nitrobenzene 2.31 
2 2,3–Dimethylnitrobenzene 0.56  21 3–Bromonitrobenzene 1.03 
3 2–Methyl–3–chloronitrobenzene 0.68  22 2,4,6–Trimethylnitrobenzene 0.86 
4 2–Methylnitrobenzene 0.05  23 5–Methyl–1,2–dinitrobenzene 1.52 
5 2–Chloronitrobenzene 0.68  24 2,4–Dichloronitrobenzene 0.99 
6 2–Methyl–5–chloronitrobenzene 0.82  25 3,5–Dichloronitrobenzene 1.13 
7 2,4,5–Trichloronitrobenzene 1.53  26 6–Iodo–1,3–dinitrobenzene 2.12 
8 2,5–Dichloronitrobenzene 1.13  27 2,3,4,5–tetrachloronitrobenzene 1.78 
9 6–Chloro–1,3–dinitrobenzene 1.98  28 2,3–Dichloronitrobenzene 1.07 

10 Nitrobenzene 0.14  29 2,5–Dibromonitrobenzene 1.37 
11 3–Methylnitrobenzene 0.05  30 1,2–Dichloro–4,5–dinitrobenzene 2.21 
12 3,4–Dichloronitrobenzene 1.16  31 3–Methyl–4–bromonitrobenzene 1.16 
13 4–Methylnitrobenzene 0.17  32 2,3,4–Trichloronitrobenzene 1.51 
14 1,4–Dinitrobenzene 1.30  33 2,4,6–Trichloronitrobenzene 1.43 
15 4–Chloronitrobenzene 0.43  34 4,6–Dichloro–1,2–dinitrobenzene 2.42 
16 2,3,5,6–Tetrachloronitrobenzene 1.82  35 2,4,6–Trichloro–1,4–dinitrobenzene 2.19 
17 3–Chloronitrobenzene 0.73  36 2,3,5,6–Tetrachloro–1,4–dinitrobenzene 2.74 
18 1,2–Dinitrobenzene 1.25  37 2,4,6–Trichloro–1,3–dinitrobenzene 2.59 
19 2–Bromonitrobenzene 0.75 

A problem in computational chemistry pertains to the dependent variable in the QSAR. To make 

any sense at all, the left–hand term in the QSAR (dependent variable) must be uniform. Often 

researchers take great satisfaction in demonstrating how many molecules can be covered by a 

correlation equation. As some workers demonstrated [26] with a large set of phenols, it makes no 

sense to lump compounds together unless it can be shown that they are all acting by the same 

mechanism. 

Data set representing several mechanisms of toxic action was divided by functional group in four 

sets: phenol substitutes, benzene substitutes, nitrobenzene substitutes and aniline substitutes. In an 

effort to further demonstrate the utility of the successful indices, models for two other toxicity data 

sets [28–29] were calculated, by using the same set of descriptors. 
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Table 3. Observed [29] aromatic compounds toxicity values to Tetrahymena pyriformis
No Compound pIGC50  No Compound pIGC50
1 4–cyanopyridine –0.82  82 1–cyanonaphthalene 0.69 
2 2–cyanopyridine –0.79  83 ethyl–4–nitrobenzoate 0.71 
3 3–cyanopyridine –0.74  84 4–methyl–3–nitrophenol 0.74 
4 benzonitrile –0.52  85 2–chloro–4–nitroaniline 0.75 
5 2–hydroxy–4–methyl–3–nitropyridine –0.50  86 4,5–difluoro–2–nitroaniline 0.75 
6 3–cyanoaniline –0.47  87 2–chloromethyl–4–nitrophenol 0.75 
7 4–cyanobenzamide –0.38  88 4–ethoxy–2–nitroaniline 0.76 
8 4–acetylbenzonitrile –0.37  89 3–chloro–4–fluoronitrobenzene 0.80 
9 1,2–dicyanobenzene –0.34  90 2–chloro–5–nitropyridine 0.80 

10 2–cyanobenzamide –0.32  91 5–chloro–2–methylnitrobenzene 0.82 
11 4–fluorobenzonitrile –0.26  92 4–nitrophenetole 0.83 
12 3–tolunitrile –0.25  93 3–chloronitrobenzene 0.84 
13 2–tolunitrile –0.24  94 2,6–dinitroaniline 0.84 
14 4–tolunitrile –0.10  95 2–bromonitrobenzene 0.86 
15 3–chlorobenzonitrile –0.06  96 2,4,6–trimethylnitrobenzene 0.86 
16 methyl–4–cyanobenzoate –0.06  97 6–methyl–1,3–dinitrobenzene 0.87 
17 3–cyanophenol –0.06  98 3–hydroxy–2–nitropyridine 0.87 
18 3–cyanobenzaldehyde –0.02  99 2–chloro–3–nitropyridine 0.87 
19 2–amino–3–nitropyridine –0.01  100 1,3–dinitrobenzene 0.89 
20 2–methoxy–2–nitropyridine –0.01  101 3–fluoro–4–nitrophenol 0.93 
21 4–chlorobenzonitrile 0.00  102 3,5–dinitroaniline 0.94 
22 3–nitroaniline 0.03  103 2,5–dinitrophenol 0.95 
23 2–cyanophenol 0.04  104 4–amino–2–nitrophenol 0.98 
24 4–cyanobenzaldehyde 0.04  105 2,4–dichloronitrobenzene 0.99 
25 3–methoxybenzonitrile 0.05  106 1–nitronaphthalene 1.00 
26 2–methylnitrobenzene 0.05  107 2–methyl–1–nitronaphthalene 1.04 
27 3–methylnitrobenzene 0.05  108 2,3–dichloronitrobenzene 1.07 
28 4–methoxybenzonitrile 0.10  109 2–bromo–5–nitropyridine 1.07 
29 4–nitrobenzyl alcohol 0.12  110 1–fluoro–3–iodo–5–nitrobenzene 1.09 
30 4–nitrophenylacetonitrile 0.13  111 3,4–dinitrobenzyl alcohol 1.09 
31 3–nitrobenzaldehyde 0.14  112 2,4–dinitrophenol 1.10 
32 nitrobenzene 0.14  113 4–nitro–1–naphthylamine 1.12 
33 2–nitrobenzaldehyde 0.17  114 5–fluoro–2–nitrophenol 1.12 
34 4–methylnitrobenzene 0.17  115 2,5–dichloronitrobenzene 1.13 
35 4–nitrobenzamide 0.18  116 3,5–dichloronitrobenzene 1.13 
36 4–nitrobenzaldehyde 0.20  117 3,4–dichloronitrobenzene 1.16 
37 1–fluoro–3–nitrobenzene 0.20  118 2–bromo–5–nitrotoluene 1.16 
38 2–amino–5–nitropyridine 0.22  119 2–amino–4–chloro–5–nitrophenol 1.18 
39 1–fluoro–2–nitrobenzene 0.23  120 3,5–dinitrobenzonitrile 1.22 
40 4–cyanoaniline 0.24  121 2–chloro–4,6–dinitroaniline 1.22 
41 4–fluoronitrobenzene 0.25  122 3–bromonitrobenzene 1.22 
42 4–fluoro–2–nitrotoluene 0.25  123 2,6–dinitromethylphenol 1.23 
43 3–hydroxy–4–nitrobenzaldehyde 0.27  124 2–bromo–4,6–dinitroaniline 1.24 
44 2–chlorobenzonitrile 0.28  125 4–biphenylcarbonitrile 1.24 
45 4–bromobenzonitrile 0.29  126 1,2–dinitrobenzene 1.25 
46 2,6–dimethylnitrobenzene 0.30  127 2,4–dichloro–6–nitroaniline 1.26 
47 3–nitroacetophenone 0.32  128 4–chloro–3–nitrophenol 1.27 
48 5–hydroxy–2–nitrobenzaldehyde 0.33  129 2–phenylnitrobenzene 1.30 
49 2–fluoro–4–nitrotoluene 0.33  130 2–chloro–6–methoxy–3–nitropyridine 1.36 
50 4–methyl–2–nitroaniline 0.37  131 2,6–dibromo–4–nitrophenol 1.36 
51 ethyl–4–cyanobenzoate 0.37  132 2–nitro–1–naphthol 1.36 
52 2–amino–4–methyl–5–nitropyridine 0.37  133 2,5–dibromonitrobenzene 1.37 
53 3,4–dinitrophenol 0.37  134 3,5–dinitrophenol 1.39 
54 4–nitroanisole 0.38  135 4–butoxynitrobenzene 1.42 
55 3–hydroxy–6–methyl–2–nitropyridine 0.39  136 2,4,6–trichloronitrobenzene 1.43 
56 methyl–4–nitrobenzoate 0.40  137 2,3,4–trichloronitrobenzene 1.51 
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Table 3. (Continued) 
No Compound pIGC50  No Compound pIGC50
57 4–nitropyridine 0.41  138 3,4–dinitrotoluene 1.52 
58 2–chloro–4–methyl–5–nitropyridine 0.42  139 2,4,5–trichloronitrobenzene 1.53 
59 4–ethylnitrobenzene 0.43  140 3–phenylnitrobenzene 1.57 
60 4–chloronitrobenzene 0.43  141 2,4–dibromo–6–nitroaniline 1.62 
61 2–amino–5–chlorobenzonitrile 0.44  142 3–trifluoromethyl–4–nitrophenol 1.65 
62 3–nitrobenzonitrile 0.45  143 4,5–dichloro–2–nitroaniline 1.66 
63 4,5–dimethyl–2–nitroaniline 0.45  144 2,4–dinitro–5–fluoroaniline 1.69 
64 2,5–difluoronitrobenzene 0.45  145 2,4–dinitrofluorobenzene 1.71 
65 2–amino–4–nitrophenol 0.47  146 2–methyl–4,6–dinitrophenol 1.73 
66 2–methyl–4–nitroaniline 0.49  147 2,4–dichloro–6–nitrophenol 1.75 
67 3–nitrophenol 0.51  148 2,3,4,5–tetrachloronitrobenzene 1.78 
68 4–nitrophenylene–1,2–diamine 0.52  149 4–tertbutyl–2,6–dinitrophenol 1.8 
69 2,3–dimethylnitrobenzene 0.56  150 2,6–diiodo–4–nitrophenol 1.81 
70 4–methyl–2–nitrophenol 0.57  151 2,3,4,6–tetrafluoronitrobenzene 1.87 
71 1,2–dimethyl–4–nitrobenzene 0.59  152 1,2,3–trifluoro–4–nitrobenzene 1.89 
72 2–chloro–5–nitrobenzaldehyde 0.60  153 4–nitrodiphenylamine 1.89 
73 4–hydroxy–3–nitrobenzaldehyde 0.61  154 2,4–dinitronaphth–1–ol 1.89 
74 2–nitroresorcinol 0.66  155 1,5–difluoro–2,4–dinitrobenzene 2.08 
75 2–methyl–5–nitrophenol 0.66  156 4–iodo–1,3–dinitrobenzene 2.12 
76 2–nitrophenol 0.67  157 2,4,6–trichloro–1,3–dinitrobenzene 2.19 
77 3–methoxynitrobenzene 0.67  158 1,2–dichloro–4,5–dinitrobenzene 2.21 
78 4–nitrobenzaldoxime 0.68  159 3,5–dichloro–1,2–dinitrobenzene 2.42 
79 2–chloronitrobenzene 0.68  160 pentafluoronitrobenzene 2.43 
80 2–nitroaniline 0.68  161 1,3–dinitro–2,4,5–trichlorobenzene 2.60 
81 3–chloro–2–methylnitrobenzene 0.68  162 2,3,5,6–tetrachloro–1,4–dinitrobenzene 2.74 

For the first set, containing 37 nitrobenzene compounds, acting against Tetrahymena pyriformis
[28] (Table 2) the toxicity is 50% inhibitory growth impairment concentration (log 1/LC50 = pLC50). 
For the second one, consisting of 167 aromatic compounds acting against Tetrahymena pyriformis
[29] (Table 3), the toxicity data as 50% growth inhibitory concentration (log 1/IGC50 = pIGC50) was 
considered.

2.2 Calculation of Molecular Descriptors
Topological indices were calculated with TOPOCLUJ, release 3.0, molecular modeling software 

package [30], developed in our laboratory. A single number, representing a chemical structure, in 
graph–theoretical terms, is called a topological descriptor. Being a structural invariant, it does not 
depend on the labeling or the pictorial representation of the graph. Despite the considerable loss of 
information by the projection in a single number of a structure, such descriptors found broad 
applications in the correlation and prediction of several molecular properties [31–33] and also in 
tests of similarity and isomorphism [33,34]. 

When a topological descriptor correlates with a molecular property, it can be denominated as 
molecular index or topological index (TI). Only an index having a direct and clear structural 
interpretation can help to the interpretation of a complex molecular property. If the index correlates 
with a single molecular property it could indicate the structural composition of that property [35]. If 
the index can be generalized to higher analogues or it can be built up on various bases (e.g., on 
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various matrices [34, 35]) it could offer a larger pool of descriptors for the regression analysis. 

Almost all descriptors used in this study are based on the Cluj matrices (CJ and CF). Definitions 
of some basic parameters used in building the Cluj indices are given below. Cluj matrix, CJ,
proposed by Diudea [36–38], is defined by using either the distance or the detour concept. The 
non–diagonal entries, [UM]ij , M = CJD (Cluj–Distance) or CJ  (Cluj–Detour), are defined as: 

pkji
21kij V ,,

,...,
maxUM (1)

,...2,1,;,;;,, khGorGDkpikphvijvdivdGVvvpjiV k (2)

where pkjiV ,,  is the cardinality of the set pkjiV ,, , which is taken as the maximum over all paths 

pk = (i,j)k. D(G) and (G) are the sets of distances (i.e., geodesics) and detours (i.e., elongations), 
respectively. 

If pkjiV ,,  real (connected) chemical fragments are wanted, the Cluj fragmental matrices [38], 

CF are defined. In this version, the sets pkjiV ,,  are: 

}GorGDp;GdGd;pGG;GV{v/vV kpjvpivkppi,j,pk (3)

where div(Gp) and djv(Gp) are the topological distances between a vertex v and vertices i and j,
respectively, in the spanning subgraph Gp resulted by cutting the path pk = (i,j)k (except its 
endpoints) from G.

The Cluj indices are calculated as half–sum of the entries in a Cluj symmetric matrix, M, (M =
CJD, CJD, CFD, CFD) [36–38]. 

ijjiijjiijijji //IE AUMUM21AM21M (4)

jiijjiijji //IP UMUM21M21M (5)

The number defined on edge, IE, is an index while the number defined on path, IP is a hyper–index.

Another descriptor used for the model is partial charges as electronic descriptor. Within 
TOPOCLUJ program the partial charges Chi are calculated as follows [30]: 

2
, )/(1)/log(, jid

iSjSjiCh (5)

j jii chCh , (7)

In the above relations, Si, Sj represent the Sanderson group electronegativities calculated for the 
hydride groups (i.e., the heavy atoms with their surrounding hydrogen atoms) in the molecule and 
dij is the Euclidean distance separating atoms i and j in a minimal energy optimized chemical 
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structure (HyperChem [45]). Chi,j is the perturbation of the electronegativity of atom i by any j atom 
in molecule while Chi is the resultant of these perturbations on the atom i.

2.3 Data Analysis

The toxicity data analyzed by means of quantitative structure activity relationships resulted in the 

finding that the best descriptors set in modeling the toxicity on a given aquatic species can be an 

excellent predictor of the toxicity of chemicals to other species. Prediction of toxicity can be done 

from the chemical structure alone and the methods are easily automated [39]. The quality of the 

QSAR models should meet a number of criteria, which are currently subject of intensive discussion 

[40]. QSAR models also are required to undergo some form of validation [41]. Benzene derivatives 

comprise a significant component of the pollutant burden on the environment. The toxicity of these 

compounds can arise from a multitude of mechanisms of toxic action including a range of narcoses 

as well as reactive mechanisms in which the compounds are able to form covalent bonds with 

biological macromolecules. 

A total of 92 benzene derivatives representing several mechanisms of toxic action were 

considered in this study. These are listed in Table 1. The data set is chemically heterogeneous and 

includes phenols, anilines, nitrobenzenes, other poly–substituted benzenes as well as compounds 

with more than one functional group on the benzene ring. The data set was distributed in 4 subsets 

by functional groups, namely: subset 1 (phenol group, compounds 1–25) subset 2 (benzene group, 

compounds 26–46) subset 3 (nitrobenzene group, compounds 47–61) subset 4 (aniline group, 

compounds 62–92).

A QSAR model requires to be validated in prediction. To do so, every subset was randomly 

divided into two groups: a training set and a validation set. A total of four different random tset/vset 

pairs were generated. The toxicity of the compounds in the validation sets were treated as unknowns 

and were calculated using the best equation obtained in the corresponding training set. 

In order to test the reliability and the prediction potential of entire model, validation procedure 

was performed using the best models in each subset. These 21 validation compounds are shown in 

Table 5. The four models were tested for statistical outliers. A compound was considered as an 

outlier if the residual is more than twice the standard error of estimate for a particular equation. 

Compounds 6 and 23 (subset 1) and compound 76 (subset 3) appear to be outliers. These 

compounds were not included in the further analyses. With these outliers removed, we observed 

somewhat improved correlation with the same descriptors. With TOPOCLUJ software program 

package [30] we computed 878 molecular descriptors. 
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2.3.1 Descriptor analysis
Once the desired set of descriptors had been calculated and stored, the process of descriptor 

analysis is started. It is important to examine the pool of descriptors in an objective manner and to 
remove from further consideration those descriptors which are redundant or do not contain enough 
discriminatory information to be of any significant value. All descriptors containing identical values 
for 90% or more of the compounds in a given data set, including both zero and non–zero values, 
were removed. All possible combinations of remaining descriptor pairs were examined to identify 
those pairs that are highly correlated. As a rule of thumb, a critical value of 0.950 for the correlation 
coefficient (r) was used. If two descriptors were correlated at or above the critical value, one 
descriptor was discarded. The decision of which one to retain was based on the possible physical 
interpretation of the descriptor, ease of calculation, or usefulness in the past studies. The result of 
this analysis is a reduced pool of information–rich descriptors that can then be screened by using 
multiple linear regression analysis. After all these procedures we reduced the searching space from 
828 to 498 descriptors. 

Table 4. Statistics for derived QSTR models for benzene derivative compounds in Table 1 
Subset 1

 B Std.Err. t p–level 
Intercept –0.3839 0.66522 –0.57716 0.579705 
C[LM[vdWRadius]] –3.1417 1.38478 –2.26872 0.052996 
C[Sh[CjMax[Covalent radius]]] 3.4842 1.30389 2.67215 0.028268 
CS[Sh[CfMin[Charge]]] 0.3807 0.06509 5.84876 0.000383 
IP[CfMax[Charge]] 66.7206 7.12156 3.89687 0.004565 
IP[CjMax[Charge]] –84.7958 2.18025 –4.20192 0.002989 
IP[CjMin[Charge]] 7.8711 1.81513 4.33635 0.002491 

Subset 2
 B Std.Err. t p–level 
Intercept 0.61566 0.296057 2.07952 0.064250 
PDS1[LM[Mass]] 0.02283 0.002325 9.81923 0.000002 
PDS2[Sh[CjMin[Charge]]] 0.75033 0.098268 7.63561 0.000018 
Charges –4.24963 0.616803 –6.88978 0.000042 
PDS2[Sh[CjMin]] –0.01296 0.002378 –5.45066 0.000281 
X[Sh[Distance]] –1.28584 0.665023 –1.93353 0.081954 

Subset 3
 B Std.Err. t p–level 
Intercept 0.63535 1.007826 0.63041 0.551663 
PDS2[LM[Electronegativity]] 0.00569 0.013955 0.40792 0.697487 
C[Sh[CjMax[Atomic radius]]] –1.94433 0.579010 –3.35802 0.015267 
PDS1[LM[Mass]] 0.00835 0.002771 3.01437 0.023567 
C[Sh[Adjacency]] 0.40779 0.230279 1.77084 0.126977 

Subset 4
 B Std.Err. t p–level 
Intercept 0.850818 0.886617 0.95962 0.349959 
IE[CfMin[Mass]] –0.000129 0.000059 –2.18713 0.042176 
SCH[AdjacencyAdjacencyCharges] –0.109875 0.028315 –3.88050 0.001096 
W2[Covalent radius_Adjacency] 1.109039 0.189763 5.84432 0.000016 
PDS3[LM[Density]] –0.025828 0.005147 –5.01788 0.000089 
W2[Electronegativity_Adjacency] –0.121353 0.046058 –2.63479 0.016821 
PDS1[Sh[CfMin[Mass]]] 0.002553 0.001568 1.62852 0.120792 
PDS2[Sh[CfMax[Charge]]] 0.120145 0.119824 1.00268 0.329305 
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2.3.2 Regression Analysis

In most cases, linear regression models were developed by the method of multiple regression 
with progressive deletions. The process builds up a model through stepwise addition of terms 
(descriptors), where the inclusion of a given term is based on the F statistic values. A deletion 
process is then employed where each independent variable is held out in turn, and a model is 
developed by using the remaining pool of descriptors. Then all pairs and triplets are held out, and 
the process is repeated. 

This series of steps has the effect of finding the best equations. The best descriptors and the 
models were also examined for robustness and predictive ability through both internal and external 
validation methods. These evaluations are included in the discussion below. As we discussed above, 
every subset is divided in a training set and a validation set. Subset 1 (tset, N = 15; vset, N = 7), 
subset 2 (tset, N = 16; vset, N = 5), subset 3 (tset, N = 11; vset, N = 4), subset 4 (tset, N = 25; vset, 
N = 5). 
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(a) N = 15; R = 0.998; R² = 0.996; 

R2
CV = 0.918; F = 220.08; p < 0.00001; s = 0.047 

(b) N = 16; R = 0.997; R² = 0.994 ; 

R2
CV = 0.933; F = 322.57; p < 0.000001; s = 0.068 
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(c) N = 11; R = 0.993; R² = 0.986; 

R2
CV = 0.958; F = 104.40; p<0.00001; s = 0.077 

(d) N = 25; R = 0.926; R² = 0.857; 

R2
CV = 0.83; F = 15.438; p < 0.000001; s = 0.25 

Figure 1. Observed vs. predicted values for the training subsets. 
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2.3.3 Regression Analysis

To find the best correlations, the four subsets were submitted to STATISTICA software [42] and 
the results are present in Table 4. Statistical quality of the multivariate relations was judged by 
parameters such as regression coefficients of the variables (B), standard error (Std. Err.), test for 
independent samples (t), probability of error (p–level). The corresponding regression equations are 
shown in Figure 1. 

Plots of observed versus predicted values also give evidence of the validity of the models (Figure 
1 a–d: (a) calculated values cf. Table 4, subset 1; (b) calculated values cf. Table 4, subset 2, (c)
calculated values cf. Table 4, subset 3; (d) calculated values cf. Table 4, subset 4). The quality of the 
models was estimated by: correlation coefficient (R), squared correlation coefficient (R2), standard 
error of estimate (s), Fischer test (F) cross–validated correlation coefficient (R2

CV), and probability 
of error (p). The best equations for the training sets are from Table 4 subset 2 and subset 3, as 
shown in Figure 1 with the high correlation coefficient R, low standard deviations, and least 
variables.

Table 5. Observed, predicted, residual values and the coefficient of variance (CV%) for the validation data 
Compd. pLC50 obs pLC50 pred pLC50 residual CV % 

62 2.91 3.24 –0.331 11.383 
69 3.52 3.41 0.105 2.987 
48 3.59 3.71 –0.119 3.311 
82 3.77 3.83 –0.059 1.562 
36 3.84 3.74 0.104 2.715 

5 3.86 4.04 –0.177 4.581 
88 3.93 4.01 –0.084 2.146 
16 3.96 4.06 –0.097 2.454 

8 4.21 3.89 0.316 7.508 
20 4.33 4.67 –0.343 7.919 
77 4.39 4.40 –0.008 0.174 
59 4.58 4.50 0.078 1.697 
40 4.6 4.72 –0.123 2.682 
56 4.66 4.56 0.100 2.153 
15 4.81 4.64 0.167 3.477 
13 4.9 5.07 –0.171 3.498 
14 5.12 4.78 0.345 6.732 
79 5.15 5.16 –0.013 0.252 
33 5.35 5.53 –0.181 3.382 
35 5.85 5.53 0.322 5.509 
41 6.15 5.77 0.378 6.144 

2.3.4 Validation set

After all the toxicity values for the training subsets were predicted and cross–validated 
correlation coefficient calculated we can find the residual toxicity values for the validation data. 
The 21 benzene derivative compounds randomly selected for every subset are presented in Table 5, 
while the plot of predicted and residual values in the validation set in Figure 2. 
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Predicted vs. Observed Values
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pLC50 obs = – 0.03879 + 1.0896 pLC50 pred

Figure 2. Observed and predicted values in the validation set. 

The prediction ability of the derived QSAR model (Figure 2) has the following statistics: N = 21; 
R = 0.967; R2 = 0.935; F = 277.07; p = 8.71E–13; s = 0.2. The residuals (i.e., differences between 
predicted and experimental data) for the acute toxicity over Poecilia reticulata, listed in Table 5, are 
very low. The results confirm the excellent prediction and the robustness of the QSAR models 
derived by topological descriptors analysis. The prediction ability of the model (93.5%) shows that 
topological descriptors used for the models are useful to detect some functional groups of 
molecules, particularly for NO2 group, observation that will be demonstrated in section 2.3.5. The 
goal of the experiment was to select those descriptors able to describe better a given functional 
group but not to describe well a mixing set of molecules. 

Recall that, benzene derivatives sets were modeled by Roy and Ghosh [26] and the model with 
their non–ETA indices showed the following quality: N = 92, Q2 = 0.718, R2 = 0.738, R = 0.859, 
F = 82.8, s = 0.340. With extended topochemical atom (ETA) indices the quality of the models was: 
N = 92, Q2 = 0.865, R2 = 0.885, R = 0.941, F = 92.6, s = 0.230. However, our experiment is 
different in that we do not look for the best model for a property on a given set of molecules, but for 
the best set of descriptors modeling a given functional group. In conclusion, based on the results 
from Table 5 and Figure 2, we can say that toxicity increases as the number of electronegative 
substituents on the benzene nucleus, such as chlorine atoms, increase. The presence of NO2 (or 
NH2) groups on benzene decreases the toxicity. 

2.3.5 Prediction sets

A more convincing test is to use the QSAR models in predicting the values of a biological 
activity for an entirely new set of compounds, and to examine how well these descriptors will 
predict the experimental values. The indices from the best models were used to predict the toxicity 
of nitrobenzene derivatives and aromatic compounds to Tetrahymena pyriformis. To investigate the 
robustness of the model, a leave–half–out (LHO) method, one of many cross–validation (CV) 
techniques has been applied. LHO method simulates the predictive quality of the regression 
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equation in a satisfactory manner. The first set comprising the toxicity data of 37 nitrobenzene 
derivatives against to Tetrahymena pyriformis, was taken from Ref. [28] and are shown in Table 2. 
The statistics are presented in Table 6, together with the LHO cross–validated value (Q2).

Table 6. Statistics model for the toxicity of nitrobenzenes in Table 2 
Indices from subset 1 (Table 4)

 B Std.Err. t(30) p–level R R2 Q2 F p s 
Intercept –4.05E–02 1.19E+00 –3.40E–02 9.73E–01 
C[LM[vdWRadius]] 2.25E+01 4.15E+00 5.42E+00 7.15E–06 
C[Sh[CjMax[Covalent radius]]] –2.18E+01 4.42E+00 –4.93E+00 2.83E–05 
CS[Sh[CfMin[Charge]]] –6.39E–02 2.50E–02 –2.56E+00 1.58E–02 
IP[CfMax[Charge]] 1.40E+00 3.71E+00 3.78E–01 7.08E–01 
IP[CjMax[Charge]] –1.93E+00 3.70E+00 –5.21E–01 6.06E–01 
IP[CjMin[Charge]] –1.25E–01 2.72E–01 –4.59E–01 6.49E–01 

0.917 

0.841 

0.78 

26.45 

1.03E–10 

0.32 

Indices from subset 2 (Table 4)
 B Std. Err. t(31) p–level R R2 Q2 F p s 
Intercept –3.67E+00 8.95E–01 –4.10E+00 2.80E–04 
Charges 1.28E+00 2.82E–01 4.55E+00 7.79E–05 
PDS1[LM[Mass]] 1.60E–03 3.18E–03 5.02E–01 6.19E–01 
PDS2[Sh[CjMin[Charge]]] 1.12E–05 1.05E–05 1.07E+00 2.95E–01 
PDS2[Sh[CjMin]] –1.23E–02 6.96E–03 –1.77E+00 8.65E–02 
X[Sh[Distance]] 1.11E–01 5.22E–02 2.13E+00 4.17E–02 

0.977

0.955

0.92

136.17

3.88E–20

0.16

Indices from subset 3 (Table 4)
 B Std. Err. t(32) p–level R R2 Q2 F p s 
Intercept –4.74E+00 5.09E–01 –9.31E+00 1.26E–10 
C[Sh[Adjacency]] –2.16E–05 7.06E–06 –3.06E+00 4.40E–03 
C[Sh[CfMax[Atomic radius]]] 1.81E–01 4.79E–02 3.77E+00 6.64E–04 
PDS1[LM[Mass]] 1.63E–02 3.12E–03 5.24E+00 9.84E–06 
PRDS[LM[Electronegativity]] –8.08E–02 2.55E–02 –3.17E+00 3.33E–03 

0.98

0.96

0.94

188.36

9.42E–22

0.13

Indices from subset 4 (Table 4)
 B Std. Err. t(31) p–level R R2 Q2 F p s 
Intercept –4.60E+00 1.51E+00 –3.06E+00 4.74E–03 
PDS1[Sh[CfMin[Mass]]] 6.47E–04 1.26E–04 5.15E+00 1.69E–05 
W2[Electronegativity_Adjacency] –4.85E–01 5.24E–01 –9.24E–01 3.63E–01 
SCH[AdjacencyAdjacencyCharges] –2.37E–02 9.66E–03 –2.46E+00 2.03E–02 
W2[Covalent radius_Adjacency] 1.22E+00 5.48E–01 2.22E+00 3.45E–02 
PDS3[LM[Density]] –1.05E–02 2.60E–03 –4.03E+00 3.69E–04 
IE[CfMin[Mass]] –7.71E–02 4.22E–01 –1.83E–01 8.56E–01 
PDS2[Sh[CfMax[Charge]]] –9.11E–02 2.99E–02 –3.05E+00 4.84E–03 

0.975

0.95

0.91

79.699

3.27E–17

0.18

The models in Table 6 were developed by the best indices in Table 4, namely the best models are 
obtained with indices for the subset 3 which are proper for describing the nitrobenzene derivatives 
subset.

pLC50 = – 4.74 – 0.00002 C[Sh[Adjacency]] + 0.18 C[Sh[CfMax[Atomic radius]]]  
+ 0.016 PDS1[LM[Mass]] – 0.08 PRDS[LM[Electronegativity]] (8)

So, if the activity of nitrobenzene derivatives is assumed unknown, from the predicted toxicity 
by Eq. (8), we figure up that it speaks on nitrobenzene compounds. Figure 3 shows the plot of 
observed vs. predicted values by subset 3 (Table 6). 

The prediction of toxicity for nitrobenzene derivatives against Tetrahymena pyriformis shows 
very good quality: four topological descriptors, Eq. (8), explain 96% and predict 94% of the 
variance of toxicity of nitrobenzene derivative with a low standard error (s = 13%). Toxicity of 
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nitrobenzenes to Tetrahymena pyriformis was modeled by Estrada et al. [28] using fragmental 
contributions adopting TOPSMODE approach, and R2 statistic for the best developed model was 
0.910 (Q2 = 0.901, F = 93.9 [df 4,37], s = 0.22). Nitrobenzenes toxicity data against Tetrahymena
pyriformis was also modeled by Cronin et al. [41] using physicochemical descriptors (1–octanol–
water partition coefficient and molecular orbital parameters) and R2 value of the best model was 
0.881 (Q2 = 0.866, F = 154 [df 2,39], s = 0.246). 
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pLC50 obs = 6.779E–8+ 0.997 pLC50 pred

Figure 3. Plot of observed vs. predicted values for the best model with indices for subset 3 
(Table 6) for 37 nitrobenzene derivatives (Table 2) against Tetrahymena pyriformis.
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pIGC50 obs = 1.531E–8+ 0.999 pIGC50 pred

Figure 4. Plot of observed vs. predicted values for the best model with indices for subset 3 
(Table 7) for 162 aromatic compounds (Table 3) against Tetrahymena pyriformis.

The positive coefficient of PDS1[LM[Mass]] in Eq. (8) indicates that the nitrobenzene toxicity 
increases with rise in molecular bulk while the negative coefficient of 
PRDS[LM[Electronegativity]] implies the decrease of toxicity with decreasing atom 
electronegativity. Molecules with two nitro groups attached to aromatic ring together with three, 
four chlorine atoms have the highest toxicity. The presence of –CH3 in meta or para position vs.
nitrobenzene, results in some decrease of toxicity. Some data on frequent probability (e.g.,
HazardExpert) [3] show that the probability that a substance containing both aromatic nitro groups 
and chlorine atoms to be carcinogenic is 68%. 
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The second prediction set contains 167 aromatic compounds tested against Tetrahymena
pyriformis is taken from Ref. [29] and are shown in Table 3. From this set, 135 are nitro derivative 
compounds. The statistics of the models for the toxicity of these aromatic compounds are presented 
in Table 7. 

Table 7. Statictics for the toxicity of aromatic compounds in Table 3 
Indices from subset 1 (Table 4)

 B Std.Err. t(158) p–level R R2 Q2 F p s 
Intercept –3.38E+00 6.92E–01 –4.88E+00 2.59E–06 
C[LM[vdWRadius]] 8.07E+00 1.82E+00 4.44E+00 1.73E–05 
C[Sh[CjMax[Covalent radius]]] –6.37E+00 1.69E+00 –3.77E+00 2.33E–04 
CS[Sh[CfMin[Charge]]] 6.07E–02 1.53E–02 3.96E+00 1.14E–04 
IP[CfMax[Charge]] 6.26E–02 2.00E+00 3.12E–02 9.75E–01 
IP[CjMax[Charge]] 9.01E–02 2.25E+00 4.00E–02 9.68E–01 
IP[CjMin[Charge]] –6.41E–02 2.70E–01 –2.38E–01 8.13E–01 

0.83

0.69

0.61

58.02

3.7E–40

0.4

Indices from subset 2 (Table 4)
B Std.Err. t(156) p–level R R2 Q2 F p s 

Intercept –2.02E+00 1.57E–01 –1.29E+01 1.87E–26 
Charges 7.05E–01 2.19E–01 3.21E+00 1.59E–03 
PDS1[LM[Mass]] 7.83E–03 7.64E–04 1.02E+01 3.76E–19 
PDS2[Sh[CjMin[Charge]]] 1.52E–02 5.71E–02 2.65E–01 7.91E–01 
PDS2[Sh[CjMin]] 2.96E–04 5.37E–04 5.50E–01 5.83E–01 
X[Sh[Distance]] –7.73E–01 9.61E–01 –8.05E–01 4.22E–01 

0.896

0.80

0.77

128.36

0.0E–01

0.32

Indices from subset 3 (Table 4)
 B Std.Err. t(157) p–level R R2 Q2 F p s 
Intercept –2.80E+00 2.51E–01 –1.12E+01 1.13E–21 
PDS1[LM[Mass]] 6.56E–03 8.95E–04 7.33E+00 1.16E–11 
C[Sh[Adjacency]] 1.48E–01 4.64E–02 3.19E+00 1.71E–03 
C[Sh[CjMax[Atomic radius]]] –8.73E–03 1.18E–03 –7.37E+00 9.09E–12 
PRDS[LM[Electronegativity]] –1.08E–03 2.93E–03 –3.68E–01 7.13E–01 

0.917

0.84

0.82

198.64

0.0E–01

0.2

Indices from subset 4 (Table 4)
 B Std.Err. t(154) p–level R R2 Q2 F p s 
Intercept –2.03E+00 6.98E–01 –2.91E+00 4.14E–03 
IE[CfMin[Mass]] –1.32E–05 9.73E–06 –1.36E+00 1.76E–01 
PDS1[Sh[CfMin[Mass]]] 1.06E–03 3.84E–04 2.75E+00 6.63E–03 
PDS2[Sh[CfMax[Charge]]] 1.46E–01 4.42E–02 3.29E+00 1.23E–03 
PDS3[LM[Density]] 7.97E–01 3.37E–01 2.37E+00 1.93E–02 
SCH[Adjacency 
AdjacencyCharges] –4.51E–02 1.39E–02 –3.23E+00 1.50E–03 

W2[ElectronegativityAdjacency] 3.23E–02 2.91E–02 1.11E+00 2.70E–01 
W2[Covalent radius_Adjacency] 1.96E–01 1.66E–01 1.18E+00 2.39E–01 

0.90

0.82

0.79

101.04

0.0E–01

0.3

The best equation was obtained with the same descriptors as for the nitrobenzene derivatives, 
with indices for subset 3 (Table 7). The four topological descriptors, Eq. (9), explain 84% and 
predict 82% of the variance of toxicity for 162 aromatic compounds against Tetrahymena
pyriformis.

pIGC50 = – 2.08 + 0.0065 PDS1[LM[Mass]] + 0.148 C[Sh[Adjacency]]
– 0.0087 C[Sh[CjMax[Atomic radius]]] – 0.001 PRDS[LM[Electronegativity]] (9)

Plot of observed vs. predicted values for the best model (subset 3, Table 7) is presented in Figure 
4. The slope near unity and the intercept near to zero, demonstrates again a good fit between 
observed and predicted values. Eq. (9) has the following quality (Table 7): N = 162, R = 0.917, R2 = 
0.84, Q2 = 0.82, F = 198.64, s = 0.2 and the results are comparable with those reported in literature 
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for this type of compounds. Cronin et al. [42] studied aromatic compounds against Tetrahymena
pyriformis and they obtained the following model with electrophylic parameter: N = 203, R2 = 0.70, 
s = 0.42, F = 237. In another study Cronin et al. [43] developed a model with 268 aromatic 
compounds and with LUMO and LogP as descriptors, they obtained a better model: N = 239, R2 = 
0.800, RCV

2 = 0.796, s = 0.335, F = 476. Substances that contain two nitro groups and more than 
three chlorine atoms bring to the benzene nucleus increasing toxicity. Further, the toxicity decreases 
with the presence of nitrile group and methyl on the benzene nucleus, as well as with the presence 
of cyano substituted pyridine nucleus. 

3 CONCLUSIONS 

In this paper, a QSAR method based on topological descriptors was employed to predict acute 
toxicity of benzene derivatives against Poecilia reticulata. The predicted values are very close to 
the experimental ones. The goal of the experiment was to select those descriptors able to describe 
better a given functional group but not to describe well a mixing set of molecules. To evaluate the 
importance of the descriptors from the best models we predicted the acute toxicity for two other sets 
of benzene derivatives against Tetrahymena pyriformis. The results showed this QSAR approach a 
highly predictive one for aquatic toxicity of pollutants. 

The prediction ability of the toxicity model of benzene derivatives against Poecilia reticulata
describes 93.5% of the variance with a low standard error, better than those presented in previous 
studies. The prediction of toxicity for nitrobenzene derivatives against Tetrahymena pyriformis
shows very good quality: it explains 96% and predicts 94% of the variance with very good 
statistical parameters. These results have more statistical significance that those reported in the 
literature. The same four descriptors that describe NO2 group explain 84% and predict 82% of the 
variance of toxicity for 162 aromatic compounds against Tetrahymena pyriformis.

For all the three sets of aromatic compounds toxicity increases with the presence of 
electronegative atoms, particularly the chlorine atoms bound to the benzene nucleus, in various 
positions. Further, nitrobenzene derivatives, with two nitro groups attached to aromatic ring show 
an increased toxicity. The presence of nitrile group on pyridine rings or amino group as the same as 
methyl radical attached to aromatic ring decrease toxicity. 

In the present study, it was shown that topological indices could explore the important chemical 
information contributing to the aquatic toxicity of substituted benzenes and the quantitative 
relations obtained could predict the activity of unknowns with good accuracy. It appears that 
topological descriptors have significant potential in QSAR/QSPR/QSTR studies, which warrants 
extensive evaluation. 



QSTR Study on Aquatic Toxicity Against Poecilia reticulata and Tetrahymena pyriformis Using Topological Indices 
Internet Electronic Journal of Molecular Design 2006, 5, 116–134 

133 
BioChem Press http://www.biochempress.com

5 REFERENCES 

[1] T. W. Schultz, TETRATOX: The Tetrahymena pyriformis population growth impairment endpoint. A surrogate 
for fish lethality. Toxicol. Methods 1997, 7, 289–309. 

[2] D. L. Hill, The Biochemistry and Physiology of Tetrahymena, 1972, 1st ed., pp 230, Academic Press, New York. 
[3] Eldred, C. L. Weikel, P. C Jurs, and K. L. E. Kaiser, Prediction of fathead minnow acute toxicity of organic 

compounds from molecular structure. Chem. Res. Toxicol. 1999, 12, 670–678. 
[4] G. W. Kauffman and P. C. Jurs, Prediction of the sodium ion–proton antiporter by benzoylguanidine derivatives 

from molecular structure, J. Chem. Inf. Comput. Sci. 2000, 40, 753–761. 
[5] S. J. Patankar and P. C. Jurs, Prediction of IC50 values for ACAT inhibitors from molecular structure. J. Chem.

Inf. Comput. Sci. 2000, 40, 706–723. 
[6] M. D. Wessel, P. C. Jurs, J. W. Tolan, and S. M. Muskal, Prediction of human intestinal absorption of drug 

compounds from molecular structure. J. Chem. Inf. Comput. Sci. 1998, 38, 726–735. 
[7] S. R. Johnson and P. C. Jurs, Prediction of the clearing temperatures of a series of liquid crystals from molecular 

structure. Chem. Mater. 1999, 11, 1007–1023. 
[8] H. E. McClelland and P. C. Jurs, Quantitative structure–property relationships for the prediction of vapor 

pressures of organic compounds from molecular structure. J. Chem. Inf. Comput. Sci. 2000, 40, 967–975. 
[9] P. J. Cumpson, Estimation of inelastic mean free paths for polymers and other organic materials: use of 

quantitative structure–property relationships. Surf. Interface Anal. 2001, 31, 23– 34. 
[10] A. D. DeWeese and T. W. Schultz, Structure–activity relationships for aquatic toxicity to Tetrahymena:

Halogensubstituted aliphatic esters. Environ. Toxicol. 2001, 16, 54–60. 
[11] V. A. Filov, A. A. Golubev, E. I. Liublinaand, and N. A. Tokontsev, Quantitative Toxicology, John Wiley & Sons, 

New York, 1979, 1st ed., pp 462 
[12] J. D. LeBlond, B. M. Applegate, F. M. Menn, T. W. Schultz, and G. S. Sayler, Structure–toxicity assessment of 

metabolites of the aerobic bacterial transformation of substituted naphthalenes. Environ. Toxicol. Chem. 2000, 19,
1235–1246. 

[13] C. L. Russom, S. P. Bradbury, S. J. Broderius, D. E. Hammermeister, and R. A. Drummond, Predicting modes of 
toxic action from chemical structure: Acute toxicity in the fathead minnow (Pimephales promelas). Environ.
Toxicol. Chem. 1997, 16, 948–967. 

[14] S. P. Bradbury, T. R. Henry, and R. W. Carlson, Fish Acute Toxicity Syndromes in the Development of 
Mechanism–Specific QSARs. In Practical Applications of QSARs in Environmental Chemistry and Toxicology;
W. Karcher, J. Devillers, Eds.; Kluwer: Dordrecht, 1990, pp 295–316. 

[15] D. R. Hartter, The use and importance of nitroaromatic chemicals in the chemical industry. In Toxicity of
nitroaromatic compounds (Rickert, D. E., Ed.), Hemisphere, New York, 1985, pp 1–13. 

[16] J. Arey, Atmospheric reactions of PAHs including formation of nitroarenes. In The Handbook of Environmental
Chemistry, Volume 3, Part I. PAHs and Related Compounds (Neilson, A. H., Ed.) Springer–Verlag, Berlin, 1998,
pp 347–385. 

[17] W. F. Jr. Bushby, H. Smitz, C. L. Crespi, B. W. Penman, and A. L Lafleur, Mutagenicity of the atmospheric 
transformation products 2–nitrofluoranthene and 2–nitrodibenzopyranone in Salmonella and human cell forward 
mutation assays. Mutat. Res. 1997, 389, 261–270. 

[18] G. Rippen, E. Zietz, R. Frank, T. Knacker, and W. Klopffer, Do airborne nitrophenols contribute to forest decline, 
Environ. Technol. Lett. 1987, 8, 475–482. 

[19] H. C. Bailey and R. J. Spanggord, The relationship between the toxicity and structure of nitroaromatic chemicals. 
In Aquatic Toxicology and Hazard Assessment, Sixth Symposium, ASTM STP 802 (Bishop, W. E., Cardwell, R. 
D., and Heidolph, B. B., Eds.), American Society for Testing and Materials, Philadelphia. 1983, pp 98–107. 

[20] J. W. Deneer, T. L. Sinnige, W. Seinen, and J. L. M. Hermens, Quantitative structure–activity relationships for the 
toxicity and bioaccumulation factor of nitrobenzene derivatives towards the guppy (Poecilia reticulata). Aquat.
Toxicol. 1987, 10, 115– 129. 

[21] J. W. Deneer, C. J. van Leeuwen, W. Seinen, J. L. Maas–Diepeveen, and J. L. M.Hermens, A QSAR study of the 
toxicity of nitrobenzene derivatives towards Daphnia magna, Chlorella pyrenoidosa and Photobacterium
phosphoreum. Aquat. Toxicol. 1989, 15, 83–98.  

[22] K. Rose and L. H. Hall, E–State Modeling of Fish Toxicity Independent of 3–D Structure Information, SAR QSAR
Environ. Res. 2003, 14, 113–129. 

[23] A. R. Katritzky, D. B. Tatham, and U. Maran, Theoretical Descriptors for the Correlation of Aquatic Toxicity of 
Environmental Pollutants by Quantitative Structure–Toxicity Relationships, J. Chem. Inf. Comput. Sci. 2001, 41,
1162–1176. 

[24] A. A. Toropov and T. W. Schultz, Prediction of Aquatic Toxicity: Use of Optimization of Correlation Weights of 
Local Graph Invariants, J. Chem. Inf. Comput. Sci. 2003, 43, 560–567. 



A. Costescu and M. V. Diudea 
Internet Electronic Journal of Molecular Design 2006, 5, 116–134 

134 
BioChem Press http://www.biochempress.com

[25] J. R. Seward and T. W. Schultz, QSAR Analyses of the Toxicity of Aliphatic Carboxylic Acids and Salts to 
Tetrahymena pyriformis, SAR QSAR Environ Res. 1999, 10, 557–567. 

[26] K. Roy and G. Ghosh, Introduction of Extended Topochemical Atom (ETA) Indices in the Valence Electron 
Mobile (VEM) Environment as Tools for QSAR/QSPR Studies, Internet Electron. J. Mol. Des. 2003, 2, 599–620, 
http://www.biochempress.com.

[27] K. Roy and G. Ghosh, QSTR with Extended Topochemical Atom Indices. 2. Fish Toxicity of Substituted 
Benzenes, J. Chem. Inf. Comput. Sci. 2004, 44, 559–567. 

[28] E. Estrada and E. Uriate, Quantitative Structure Activity Relationships Using TOPS–MODE. 1. Nitrobenzene 
Toxicity to Tetrahymena pyriformis. SAR QSAR Environ. Res. 2002, 12, 309–324. 

[29] T. W. Schultz, T. I. Netzeva, and M. T. D. Cronin, Selection of Data Sets for QSARs: Analysis of Tetrahymena
Toxicity from Aromatic Compounds, SAR QSAR Environ. Res. 2003, 14, 59–81. 

[30] M. V. Diudea and O. Ursu, TOPOCLUJ (Copyright Babes–Bolyai Univ. Cluj), 2002
[31] A.T. Balaban, I. Motoc, D. Bonchev, and O. Mekenyan, Topological Indices for Structure–Activity Correlations, 

Top. Curr. Chem. 1993, 114, 21–55. 
[32] D. H. Rouvray, The Challenge of Characterizing Branching in Molecular Species Discr. Appl. Math. 1988, 19,

317–338. 
[33] M. Randi , Design of Molecules with Desired Properties. A Molecular Similarity Approach to Property 

Optimization, in Concepts and Applications of Molecular Similarity, M. A. Johnson and G. M. Maggiora, Eds. 
John Wiley & Sons, Inc., 1990, Chap. 5, pp.77–145 

[34] M. V. Diudea, Molecular Topology. 16. Layer Matrixes in Molecular Graphs, J. Chem. Inf. Comput. Sci. 1994,
34, 1064–1071. 

[35] M. Randi , Generalized Molecular Descriptors, J. Math. Chem. 1991, 7, 155–168. 
[36] M. V. Diudea, Cluj Matrix Invariants, J. Chem. Inf. Comput. Sci. 1997, 37, 300–305 
[37] M. V. Diudea, I. Gutman, Wiener–Type Topological Indices, Croat. Chem. Acta, 1998, 71, 21–51. 
[38] M. V. Diudea and B. Parv, I. Gutman, Detour–Cluj Matrix and Derived Invariants, J. Chem. Inf. Comput. Sci.

1997, 37, 1101–1108. 
[39] M. T. D. Cronin, The current status and future applicability of quantitative structure–activity relationships 

(QSARs) in predicting toxicity. ATLA 2002, 30, Supplement 2, 81–84. 
[40] A. P. Worth, ECVAM’s activities on computer modelling and integrated testing. ATLA 2002, 30, Supplement 2, 

133–137. 
[41] M. T. D. Cronin, B. W. Gregory, and T. W. Schultz, Quantitative Structure–Activity Analyses of Nitrobenzene 

Toxicity to Tetrahymena pyriformis, Chem. Res. Toxicol. 1998, 11, 902–908. 
[42] M. T. D. Cronin, N. Manga, J. R. Seward, G. D. Sinks, and T. W. Schultz, Parametrization of Electrophilicity for 

the Prediction of the Toxicity of Aromatic Compounds, Chem Res Toxicol. 2001, 14, 498–505. 
[43]  M. T. D. Cronin and T. W. Schultz, Development of Quantitative Structure–Activity Relationships for the 

Toxicity of Aromatic Compounds to Tetrahymena pyriformis: Comparative Assessment of the Methodologies, 
Chem. Res. Toxicol. 2001, 14, 1284–1295. 

[44] StatSoft, Inc. (2001), STATISTICA (data analysis software system), version 6, www.statsoft.com. 
[45] HyperChem, release 4.5 for SGI,  1991–1995, Hypercube, Inc. 

Biographies
Adina Costescu is a Ph. D student of computational chemistry at University of Chemistry and Chemical 

Engineering. Her current research activities include: molecular similarity, SAR (Structure Activity Relationships), 
QSAR/QSPR (Quantitative Structure Activity/Property Relationships), advanced statistical methods and data analysis 
(PLS, PCA, PCR), advanced chemometrics methods. 

Mircea V. Diudea is professor of Organic Chemistry and Molecular Topology at the “Babes–Bolyai” University, 
Cluj, Romania. His research topics include: topological matrices, topological indices, hyper branched structures, 
symmetry and similarity, QSPR/QSAR, fullerenes, nanotubes and tori, periodic nanostructures, aromaticity of 
nanostructures. He is member of the International Academy of Mathematical Chemistry. 


