
Internet Electronic Journal of Molecular Design 2002, 1, 157–172 ISSN 1538–6414 
BioChem Press http://www.biochempress.com

Copyright  ©  2002 BioChem Press

Internet Electronic  Journal  of 
Molecular Design

March 2002, Volume 1, Number 3, Pages 157–172 

Editor: Ovidiu Ivanciuc 

Special issue dedicated to Professor Alexandru T. Balaban on the occasion of the 70th birthday 
Part 3 

Guest Editor: Mircea V. Diudea 

Support Vector Machine Identification of the Aquatic Toxicity 
Mechanism of Organic Compounds 

Ovidiu Ivanciuc 
Sealy Center for Structural Biology, Department of Human Biological Chemistry & Genetics, 

University of Texas Medical Branch, Galveston, Texas 77555–1157 

Received: January 17, 2002; Accepted: February 19, 2002; Published: March 31, 2002 

Citation of the article: 
O. Ivanciuc, Support Vector Machine Identification of the Aquatic Toxicity Mechanism 
of Organic Compounds, Internet Electron. J. Mol. Des. 2002, 1, 157–172, 
http://www.biochempress.com. 



O. Ivanciuc 
Internet Electronic Journal of Molecular Design 2002, 1, 157–172 

157 
BioChem Press http://www.biochempress.com

Internet Electronic Journal
of Molecular Design

BioChem Press
http://www.biochempress.com

Support Vector Machine Identification of the Aquatic Toxicity 
Mechanism of Organic Compounds#

Ovidiu Ivanciuc* 
Sealy Center for Structural Biology, Department of Human Biological Chemistry & Genetics, 

University of Texas Medical Branch, Galveston, Texas 77555–1157 
Received: January 17, 2002; Accepted: February 19, 2002; Published: March 31, 2002 

Internet Electron. J. Mol. Des. 2002, 1 (3), 157–172 
Abstract 

Motivation. Because numerous organic chemicals can be environmental pollutants, considerable efforts were 
directed towards the study of the relationships between a compound’s structure and its toxicity. Significant 
progress has been made to classify chemical compounds according to their mechanism of toxicity and to screen 
them for their environmental risk assessment. The prediction of the mechanism of action using structural 
descriptors has major applications in selecting the appropriate quantitative structure–activity relationships 
(QSAR) model, to identify chemicals with similar toxicity mechanism, and in extrapolating toxic effects 
between different species and exposure regimes. 
Method. Support vector machine (SVM) is a new machine learning algorithm that found numerous applications 
in various classification studies. In this study we have investigated the application of SVM for the recognition of 
the aquatic toxicity mechanism of 88 organic compounds. For each compound, the chemical structure was 
encoded by four structural descriptors, namely the octanol–water partition coefficient log Kow, the energy of the 
highest occupied molecular orbital EHOMO, the energy of the lowest unoccupied molecular orbital ELUMO, and the 
average acceptor superdelocalizability SN

av.
Results. Extensive simulations using the dot, polynomial, radial basis function, neural, and anova kernels 
demonstrate that the classification performances of SVM depend strongly on the kernel type and various 
parameters that control the kernel shape. The best prediction results were obtained with a polynomial kernel of 
degree 2. 
Conclusions. Support vector machines represent a powerful and flexible classification algorithm, with many 
potential applications in QSAR and molecular design. The results reported in the present study demonstrate such 
an application in the identification of the aquatic toxicity mechanism. 
Keywords. Support vector machines; structure–toxicity relationships; aquatic toxicity; mechanism of action. 

Abbreviations and notations 
MOA, mechanism of action ELUMO, energy of the lowest unoccupied molecular orbital 
SVM, support vector machines log Kow, octanol–water partition coefficient 
EHOMO, energy of the highest occupied molecular orbital SN

av, average acceptor superdelocalizability 

1 INTRODUCTION 

The quantitative structure–activity relationships (QSAR) models consider that the physical, 
chemical, and biological properties of a chemical compound are related to, and can be modeled 
                                                          
# Dedicated on the occasion of the 70th birthday to Professor Alexandru T. Balaban. 
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from from, the molecular structure of that compound. In the field of aquatic toxicology QSAR is a 
reliable scientific tool for modeling the toxic effect of organic compounds and for predicting the 
ecological risk associated with new, not yet tested compounds [1]. Using QSAR models and 
comprehensive investigation of the chemical reactivity of organic compounds, significant progress 
has been made to classify chemical compounds according to their mechanism of toxicity and to 
screen them for their environmental risk assessment. Using theoretical descriptors computed from 
the molecular structure and various classification algorithms, the prediction of the mechanism of 
action (MOA) has major applications in identifying chemicals with similar toxicity mechanism, in 
selecting the appropriate QSAR model, and in extrapolating toxic effects across species and 
exposure regimes when limited experimental data are available [2–13]. 

A structure–toxicity study compared the toxicity of various organic compounds with different 
MAOs for the fathead minnow (Pimephales promelas) and Tetrahymena pyriformis using 
hydrophobicity and electronic indices as numerical descriptors for the chemical structure [8]. In a 
recent study, discriminant analysis and logistic regression were used for the same set of compounds 
to discriminate between narcotic and reactive MOA [13]. Support vector machines (SVM) represent 
a new class of machine learning algorithms that found numerous applications in various 
classification and regression models. In this study we have investigated the application of SVM for 
the recognition of the aquatic toxicity mechanism for the compounds previously explored in Refs. 
[8] and [13]. The influence of the kernel type on the SVM performances was extensively explored 
using various kernels, namely the dot, polynomial, radial basis function, neural, and anova kernels. 

2 SUPPORT VECTOR MACHINES 

The support vector machines were developed by Vapnik [14–16] as a powerful tool for pattern 
classification in two classes by determining an optimal hyperplane that separates the classes 
[17,18]. The SVM algorithm generates a separating hypersurface in the input space that optimally 
separates two classes of patterns. In the first step, using various kernels that perform a nonlinear 
mapping, the input space is transformed into a higher dimensional feature space. Then, a maximal 
margin hyperplane (MMH) is computed in the feature space. MMH maximizes the distance to the 
hyperplane of the closest patterns from the two classes. This powerful classification technique 
found interesting applications in molecular modeling: recognition of translation initiation sites [19], 
cancer diagnosis [20–22], identification of HIV protease cleavage sites [23], protein class prediction 
[24], protein–protein interactions [25], protein subcellular localization [26,27], protein fold 
recognition [28], protein secondary structure prediction [29], and DNA hairpins recognition [30]. In 
this section the SVM algorithm is outlined first for the linearly separable case. When complete 
separation into two classes is not desirable due too significant errors in the data the SVM uses slack 
variables. Finally, kernel functions are introduced for patterns with a non–linear separation surface. 
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Figure 1. Two possible hyperplanes Ha and Hb that 
discriminate between patterns from the class +1 (black 
circles) and –1 (white circles).

Figure 2. Example of patterns from the class +1 (black 
circles) and –1 (white circles) linearly separable by the 
maximal margin hyperplane H. The support vectors from 
the class +1 define the hyperplane H1 while those from the 
class –1 define the hyperplane H2.

Let S be a set of l vectors xi Rn, i = 1, 2, …, l, in an n–dimensional space. Each vector xi

belongs to either of two classes identified by the label yi  {–1, +1}. If the two classes are linearly 
separable, then there exists a hyperplane that divides the set S leaving all the vectors of the same 
class on the same side. However, as one can see from Figure 1, this hyperplane is not unique 
because both hyperplanes Ha and Hb discriminate between patterns from class +1 (black circles) and 
–1 (white circles), and between them one can find an infinite number of hyperplanes with the same 
property. This is a well–known problem in chemometrics, and various pattern recognition methods 
were devised to solve it. SVM is a new approach to find a unique hyperplane that maximizes the 
separation between the two classes of patterns, as depicted in Figure 2. The maximal margin 
hyperplane (MMH) H is defined by w·x + b = 0, where w is the normal to the hyperplane, b/||w|| the 
perpendicular distance to the origin and ||w|| the Euclidean norm of w. The +1 class of patterns is 
bordered by the hyperplane H1 defined by w·x + b = +1, while the –1 class of patterns is bordered 
by the hyperplane H2 defined by w·x + b = –1. Hyperplanes H, H1, and H2 are parallel and no 
patterns are situated between H1 and H2. The +1 patterns that are situated on H1 and the –1 patterns 
that are situated on H2 are the support vectors, depicted in Figure 2 within a larger circle. These 
support vectors are used to define the separating hyperplane. Let d+ be the shortest distance from 
the separating hyperplane H to the closest positive pattern, and d– be the shortest distance from the 
separating hyperplane H to the closest negative pattern. The distance between H1 and H2 defines the 
margin, equal to d+ + d–. Because d+ = d– = 1/||w||, the margin is 2/||w||.

The maximal margin hyperplane H is computed as the solution to the following problem: 
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2
1minimize 2

libxwy

w

ii

(1)

The above equation is a quadratic programming problem, solved by the Karush–Kuhn–Tucker 
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theorem. If we denote by  = ( 1, 2, …, l) the l non–negative Lagrange multipliers associated 
with the constraints, the solution to the problem from Eq. (1) is equivalent to determining the 
solution of the following Wolfe dual problem: 

00with
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2
1maximize

,
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The solution for w is: 

i
iii xyw (3)

The only i that can have a nonzero value in equation (3) are those for which the constraints of 
the first problem are satisfied with the equality sign. For patterns that can be easily separated with a 
linear decision plane most of the i are usually null, and the vector w is a linear combination of a 
small percentage of the vectors xi. These vectors from both the +1 and –1 classes are termed support 
vectors (depicted in Figure 2 within a larger circle) and they are the only vectors of S needed to 
determine the MMH. In real applications, good SVM models are obtained by using a small fraction 
of the +1 and –1 patterns. The problem of classifying a new data vector x is now simply solved by 
looking at the sign of w·x + b with b obtained from the Karush–Kuhn–Tucker conditions. 

In real applications, it may happen that a significant fraction or even almost all x vectors are used 
as support vectors. This situation can appear from various causes, such as poor descriptors selected 
in the x vector or experimental errors in determining the class y. By forcing the algorithm to find a 
perfect separation hypersurface for the +1 and –1 classes, too many support vectors are used and the 
solution obtained is overfitted, giving erroneous predictions for patterns not used in obtaining the 
SVM model. The above classification model cannot be applied whenever, due to the partial 
overlapping of the +1 and –1 classes, a separating hypersurface does not exist. To deal with these 
problems, the perfect separation of the +1 and –1 classes is relaxed, and the SVM is extended to 
deal with imperfect separation cases. By introducing l non–negative slack variables  = ( 1, 2, …, 

l) a hyperplane is defined by minimizing the trade–off between margin and training error: 

),,2,1(1)( libxwy iii (4)

The solution to the problem: 
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is called the soft margin separating hyperplane (SMSH). The vectors satisfying the above 
constraints with the equality sign are called support vectors and are the only vectors needed to 
determine the decision surface. Similarly to the linearly separable case, the dual formulation 
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requires the solution of a quadratic programming problem with linear constraints: 
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where C is a capacity parameter. The above formulation of the separation hypersurface allows for 
the presence of +1 or –1 patterns in the margin of the hyperplane (between hyperplanes H1 and H2

from Figure 2), or for the presence of +1 patterns in the –1 region bordered by H2, or for the 
presence of –1 patterns in the +1 region bordered by H1.

When each vector x in input space is mapped into a vector z = (x) in a higher dimensional 
feature space, the above classification method can be extended to include nonlinear separating 
hypersurfaces. The Lagrangian function in the high dimensional feature space is: 

i ji
jijijii xxyyL
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The dot product (x), (y)  in feature space is substituted with a kernel function K(x,y). The 
kernel functions usually used in pattern clustering are the dot kernel, the polynomial kernel, and the 
radial basis function kernel. With a suitable kernel, SVM can separate in the feature space the data 
that in the original input space was non–separable. The non–negative slack variables i  0 are used 
to control the imperfect separation for non–linear separation surfaces, by using a penalty constant C
that sets the degree of penalty for patterns situated between H1 and H2 or misclassified: 
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More details on SVM can be found in references [14–18], while their various applications in 
molecular design are found in [19–30]. All SVM models from the present paper for the 
classification of the aquatic toxicity of organic compounds were obtained with mySVM [31], which 
is freely available for download. Links to Web resources related to SVM, namely tutorials, papers 
and software, can be found in BioChem Links [32] at http://www.biochempress.com. 

3 MATERIALS AND METHODS 

The 88 compounds investigated in the present study were taken from two recent studies [8,13] 
and are presented in Table 1 together with the four theoretical descriptors used to discriminate 
between their mechanism of action, namely the octanol–water partition coefficient log Kow, the 
energy of the highest occupied molecular orbital EHOMO, the energy of the lowest unoccupied 
molecular orbital ELUMO, and the average acceptor superdelocalizability SN

av. The compounds are 
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classified either as narcotics, which include non–polar and polar narcotics, or reactive compounds, 
which included respiratory uncouplers, soft electrophiles, and proelectrophiles. The data set consists 
of 48 narcotic compounds (class +1) and 40 reactive compounds (class –1). 

Table 1. Structure of the Chemical Compounds, Theoretical Descriptors (log Kow,
SN

av, EHOMO, and ELUMO) and Mechanism of Toxic Action (Narcotic +1, Reactive –1) 
No Chemical compound log Kow SN

av EHOMO ELUMO MOA 
1 Phenol 1.46 0.285 –9.17 0.29 +1 
2 o–Cresol 2.12 0.285 –9.04 0.31 +1 
3 p–Cresol 1.94 0.285 –8.95 0.33 +1 
4 2,4–Dimethylphenol 2.30 0.285 –8.85 0.35 +1 
5 2,4,6–Trimethylphenol 3.42 0.286 –8.90 0.28 +1 
6 2,3,6–Trimethylphenol 3.42 0.286 –8.90 0.28 +1 
7 4–Ethylphenol 2.58 0.285 –9.01 0.32 +1 
8 4–Propylphenol 3.18 0.285 –8.99 0.33 +1 
9 2–Methyl–3–butyn–2–ol 0.33 0.285 –10.98 1.80 –1 
10 2–Allylphenol 2.64 0.285 –9.11 0.26 +1 
11 4–Tert–butylphenol 3.31 0.286 –8.99 0.36 +1 
12 4–Tert–pentylphenol 3.98 0.286 –8.98 0.36 +1 
13 4–Phenylphenol 3.36 0.285 –8.87 –0.09 +1 
14 Catechol 0.88 0.310 –8.92 0.24 –1 
15 Resorcinol 0.80 0.287 –9.06 0.27 –1 
16 3–Methoxyphenol 1.58 0.287 –9.25 0.13 +1 
17 4–Methoxyphenol 1.34 0.288 –9.11 0.17 +1 
18 4–Phenoxyphenol 3.75 0.292 –8.91 0.09 +1 
19 2–Chlorophenol 2.15 0.299 –9.04 0.03 +1 
20 4–Chlorophenol 2.48 0.299 –9.01 0.05 +1 
21 4–Chloro–3–methylphenol 3.10 0.299 –8.95 0.05 +1 
22 4–Chlorocatechol 1.97 0.325 –8.88 0.00 –1 
23 2,4–Dichlorophenol 2.92 0.322 –9.01 –0.19 +1 
24 2,4,6–Trichlorophenol 3.69 0.327 –9.13 –0.44 +1 
25 2,3,4,6–Tetrachlorophenol 4.45 0.339 –9.19 –0.68 –1 
26 2,3,4,5–Tetrachlorophenol 4.21 0.338 –9.05 –0.59 –1 
27 Tetrachlorocatechol 4.29 0.340 –9.05 –0.62 –1 
28 2,4,6–Tribromophenol 4.02 0.320 –9.56 –0.80 +1 
29 2–Nitrophenol 1.85 0.311 –9.90 –1.22 –1 
30 2,6–Dinitrophenol 1.91 0.339 –10.69 1.96 –1 
31 2,5–Dinitrophenol 1.75 0.340 –10.54 –2.28 –1 
32 2,4–Dinitrophenol 1.54 0.340 –10.79 –1.88 –1 
33 Tert–butyldinitrophenol 3.36 0.339 –10.43 –1.84 –1 
34 4,6–Dinitro–o–cresol 2.56 0.339 –10.53 –1.82 –1 
35 Aniline 0.90 0.279 –8.61 0.42 +1 
36 4–Toluidine 1.39 0.279 –8.46 0.40 +1 
37 4–Ethylaniline 1.96 0.279 –8.50 0.39 +1 
38 4–Butylaniline 3.15 0.279 –8.50 0.38 +1 
39 3–Benzyloxyaniline 2.79 0.280 –9.12 0.11 +1 
40 4–Hexyloxyaniline 3.66 0.283 –8.57 0.24 +1 
41 2–Chloroaniline 1.90 0.292 –8.66 0.13 +1 
42 2,3,4–Trichloroaniline 3.33 0.318 –8.71 –0.26 +1 
43 2,3,5,6–Tetrachloroaniline 4.10 0.331 –8.91 –0.55 –1 
44 2,3,4,5,6–Pentafluoroaniline 2.22 0.336 –9.52 –1.15 –1 
45 , , –4–Tetrafluoro–3–toluidine 2.62 0.308 –9.18 –0.72 +1 
46 , , –4–Tetrafluoro–2–toluidine 2.62 0.308 –10.42 –1.12 +1 
47 4–Ethoxy–2–nitroaniline 2.47 0.308 –9.04 –1.06 –1 
48 Isopropylbenzene 3.66 0.282 –9.53 0.38 +1 
49 1,2,4–Trimethylbenzene 3.78 0.283 –9.09 0.38 +1 
50 Butylbenzene 4.26 0.282 –9.50 0.36 +1 
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Table 1. (Continued) 
No Chemical compound log Kow SN

av EHOMO ELUMO MOA 
51 Amylbenzene 4.91 0.282 –9.53 0.36 +1 
52 Biphenyl 4.09 0.283 –9.18 –0.10 +1 
53 Chlorobenzene 2.86 0.296 –9.39 0.06 +1 
54 1,2–Dichlorobenzene 3.38 0.309 –9.29 –0.17 +1 
55 1,2,4–Trichlorobenzene 4.02 0.324 –9.23 –0.43 +1 
56 3,4–Dichlorotoluene 4.22 0.310 –9.16 –0.16 +1 
57 Pentachloropyridine 4.34 0.344 –9.37 –1.02 –1 
58 Bromobenzene 2.99 0.294 –9.81 –0.05 +1 
59 Nitrobenzene 1.85 0.309 –10.60 –1.13 –1 
60 3–Nitrotoluene 2.45 0.309 –10.27 –1.09 –1 
61 1–Fluoro–4–nitrobenzene 1.80 0.321 –10.85 –1.41 –1 
62 1–Chloro–3–nitrobenzene 2.41 0.324 –10.06 –1.31 –1 
63 1–Chloro–2–nitrobenzene 2.24 0.323 –9.99 –1.19 –1 
64 1,4–Dinitrobenzene 1.46 0.339 –11.31 –2.25 –1 
65 2,4–Dinitrotoluene 2.00 0.337 –11.18 –1.84 –1 
66 1,3–Dichloro–4,6–dinitrobenzene 2.49 0.367 –10.63 –2.08 –1 
67 2–Butyn–1–ol 0.16 0.304 –10.26 1.66 –1 
68 Cis–3–hexen–1–ol 1.34 0.286 –9.89 1.02 –1 
69 1–Hexen–3–ol 1.12 0.297 –10.50 0.94 –1 
70 4–Pentyn–2–ol –0.08 0.296 –10.73 1.95 –1 
71 2–Phenyl–3–butyn–2–ol 1.68 0.285 –9.76 0.17 –1 
72 2–Propyn–1–ol –0.37 0.304 –10.66 1.73 –1 
73 3–Butyn–2–ol –0.06 0.302 –10.80 1.77 –1 
74 2–Decyn–1–ol 3.33 0.304 –10.21 1.63 –1 
75 3–Butyn–1–ol –0.50 0.296 –10.86 1.79 –1 
76 2–Butyn–1,4–diol –1.83 0.306 –10.21 1.52 –1 
77 4–Chloroaniline 1.83 0.292 –8.59 0.10 +1 
78 4–Bromoaniline 2.26 0.290 –8.78 0.06 +1 
79 4–Fluoroaniline 1.15 0.289 –8.74 0.07 +1 
80 4–Nitroaniline 1.31 0.304 –9.42 –1.01 –1 
81 Pentachlorophenol 5.12 0.351 –9.14 –0.79 –1 
82 4–Nonylphenol 6.36 0.285 –9.02 0.31 –1 
83 Pentabromophenol 5.74 0.340 –9.63 –1.14 –1 
84 3,4–Dichloroaniline 2.69 0.305 –8.67 –0.11 +1 
85 4–Octylaniline 5.27 0.279 –8.51 0.38 +1 
86 2,4,6–Tri(tert)butylphenol 6.95 0.289 –9.04 –0.43 +1 
87 2,6–Di(tert)butyl–4–methylphenol 6.07 0.288 –8.70 0.39 +1 
88 4–Nitrophenol 1.91 0.312 –10.17 –1.08 –1 

The discriminant analysis for the 88 compounds in Table 1 used the four theoretical descriptors, 
namely log Kow, EHOMO, ELUMO, and SN

av, to obtain a good classification in polar or reactive 
compounds [13]. Six out of the 48 narcotic compounds were erroneously classified as reactive 
compounds, namely: 2,4–dichlorophenol, 2,4,6–trichlorophenol, 2,4,6–tribromophenol, , , –4–
tetrafluoro–3–toluidine, , , –4–tetrafluoro–2–toluidine, and 2,4,6–tri(tert)butylphenol. From the 
40 reactive compounds, four were erroneously classified as narcotic compounds, namely: catechol, 
resorcinol, 2–phenyl–3–butyn–2–ol, and 4–nonylphenol. 

The variable selection in the logistic regression showed that ELUMO does not improve the 
classification [13]. Using three structural descriptors (log Kow, EHOMO, and SN

av) the logistic 
regression gives classification results similar with those obtained with the discriminant analysis. 
From the 48 narcotic compounds, four were erroneously classified as reactive compounds, namely: 
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2,4–dichlorophenol, 2,4,6–trichlorophenol, 2,4,6–tribromophenol, , , –4–tetrafluoro–2–toluidine,
and 1,2,4–trichlorobenzene. Four out of the 40 reactive compounds were erroneously classified as 
narcotic compounds, namely: resorcinol, 4–ethoxy–2–nitroaniline, 2–phenyl–3–butyn–2–ol, and 4–
nonylphenol. All SVM models for the classification of the 88 organic compounds from Table 1 into 
narcotic and reactive were obtained with mySVM [31] using the same four structural descriptors 
from ref. [13], namely log Kow, EHOMO, ELUMO, and SN

av. Before computing the SVM model, the 
input vectors were scaled to zero mean and unit variance. The prediction power of each SVM model 
was evaluated with a leave–10%–out cross–validation procedure, and the capacity parameter C took 
the values 10, 100, and 1000. We present below the kernels and their parameters used in this study. 

The dot kernel. The inner product of x and y defines the dot kernel: 

yxyxK ),( (9)

The polynomial kernel. The polynomial of degree d (values 2, 3, 4, and 5) in the variables x and 
y defines the polynomial kernel: 

dyxyxK )1(),( (10)

The radial kernel. The following exponential function in the variables x and y defines the radial 
basis function kernel, with the shape controlled by the parameter  (values 0.5, 1.0, and 2.0): 

)||||exp(),( 2yxyxK (11)

The neural kernel. The hyperbolic tangent function in the variables x and y defines the neural 
kernel, with the shape controlled by the parameters a (values 0.5, 1.0, and 2.0) and b (considered 0): 

)tanh(),( byaxyxK (12)

The anova kernel. The sum of exponential functions in x and y defines the anova kernel, with 
the shape controlled by the parameters  (values 0.5, 1.0, and 2.0) and d (values 1, 2, and 3): 

d

i
ii yxyxK ))(exp(),( (13)

4 RESULTS AND DISCUSSION 

Similarly with other multivariate statistical models, the performances of SVM classifiers in 
structure–activity studies depend on the combination of several parameters, and the kernel type is 
the most important one. Because the use of SVM models in chemometrics, structure–activity 
studies, and QSAR is only in the beginning, there are no clear guidelines on selecting the most 
effective kernel for a certain classification problem. Another important problem in SVM 
applications for structure–activity models is the selection of those structural descriptors that can 
discriminate the investigated set of compounds. For the moment, this is an unexplored problem, and 
in this study we have used four structural descriptors (log Kow, SN

av, EHOMO, and ELUMO) from [13]. 
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Table 2. Results for SVM Modeling of the Mechanism of Aquatic Toxicity Using log Kow, SN
av, EHOMO, and ELUMO.a

Exp C K   SV BSV +/+ +/– –/– –/+ CAa CAp ASV ABSV TRa TRp TEa TEp
1 10 D   25 20 47 1 27 13 0.84 0.78 23.1 17.7 0.85 0.80 0.84 0.76
2 100    29 19 47 1 31 9 0.89 0.84 22.6 17.6 0.85 0.79 0.84 0.76
3 1000    30 19 47 1 32 8 0.90 0.85 23.3 17.3 0.86 0.80 0.86 0.79

d                
4 10 P 2  14 0 48 0 34 6 0.93 0.89 16.2 0.0 0.94 0.90 0.92 0.88
5 100  2  14 0 48 0 34 6 0.93 0.89 16.2 0.0 0.94 0.90 0.92 0.88
6 1000  2  14 0 48 0 34 6 0.93 0.89 16.2 0.0 0.94 0.90 0.92 0.88
7 10  3  24 0 48 0 40 0 1.00 1.00 20.4 0.0 0.98 0.97 0.85 0.80
8 100  3  24 0 48 0 40 0 1.00 1.00 20.4 0.0 0.98 0.97 0.85 0.80
9 1000  3  24 0 48 0 40 0 1.00 1.00 20.4 0.0 0.98 0.97 0.85 0.80

10 10  4  21 0 48 0 33 7 0.92 0.87 20.2 0.0 0.98 0.98 0.87 0.81
11 100  4  21 0 48 0 33 7 0.92 0.87 20.2 0.0 0.98 0.98 0.87 0.81
12 1000  4  21 0 48 0 33 7 0.92 0.87 20.2 0.0 0.98 0.98 0.87 0.81
13 10  5  24 0 48 0 32 8 0.91 0.86 21.8 0.0 0.95 0.93 0.87 0.81
14 100  5  24 0 48 0 32 8 0.91 0.86 21.8 0.0 0.95 0.93 0.87 0.81
15 1000  5  24 0 48 0 32 8 0.91 0.86 21.8 0.0 0.95 0.93 0.87 0.81

               
16 10 R 0.5  23 2 48 0 29 11 0.88 0.81 25.4 1.5 0.91 0.86 0.82 0.75
17 100  0.5  24 0 48 0 32 8 0.91 0.86 26.4 0.0 0.90 0.84 0.83 0.76
18 1000  0.5  24 0 48 0 32 8 0.91 0.86 26.4 0.0 0.90 0.84 0.83 0.76
19 10  1.0  37 1 48 0 28 12 0.86 0.80 36.5 0.9 0.88 0.83 0.75 0.69
20 100  1.0  37 0 48 0 29 11 0.88 0.81 35.9 0.0 0.88 0.83 0.75 0.69
21 1000  1.0  37 0 48 0 29 11 0.88 0.81 35.9 0.0 0.88 0.83 0.75 0.69
22 10  2.0  53 0 48 0 28 12 0.86 0.80 51.0 0.0 0.91 0.87 0.66 0.61
23 100  2.0  53 0 48 0 28 12 0.86 0.80 51.0 0.0 0.91 0.87 0.66 0.61
24 1000  2.0  53 0 48 0 28 12 0.86 0.80 51.0 0.0 0.91 0.87 0.66 0.61

a                
25 10 N 0.5  19 16 40 8 31 9 0.81 0.82 19.5 16.7 0.78 0.78 0.78 0.82
26 100  0.5  18 16 40 8 31 9 0.81 0.82 18.9 15.9 0.77 0.78 0.76 0.75
27 1000  0.5  18 16 40 8 31 9 0.81 0.82 17.8 15.0 0.79 0.79 0.79 0.75
28 10  1.0  24 22 38 10 28 12 0.75 0.76 21.0 18.6 0.75 0.77 0.80 0.83
29 100  1.0  24 21 38 10 28 12 0.75 0.76 20.7 18.2 0.75 0.77 0.76 0.82
30 1000  1.0  24 21 38 10 28 12 0.75 0.76 20.6 18.1 0.76 0.77 0.76 0.82
31 10  2.0  28 25 35 13 26 14 0.69 0.71 22.7 20.4 0.73 0.74 0.77 0.82
32 100  2.0  27 25 35 13 26 14 0.69 0.71 21.7 19.6 0.74 0.75 0.78 0.82
33 1000  2.0  27 25 35 13 26 14 0.69 0.71 21.7 19.5 0.74 0.75 0.78 0.82

d               
34 10 A 0.5 1 21 7 48 0 35 5 0.94 0.91 18.6 6.3 0.94 0.90 0.87 0.84
35 100  0.5 1 17 1 48 0 33 7 0.92 0.87 16.7 0.3 0.94 0.90 0.85 0.80
36 1000  0.5 1 17 0 48 0 33 7 0.92 0.87 16.6 0.0 0.94 0.90 0.85 0.80
37 10  1.0 1 22 5 48 0 31 9 0.90 0.84 20.6 3.1 0.94 0.90 0.84 0.78
38 100  1.0 1 19 0 48 0 40 0 1.00 1.00 18.2 0.0 0.97 0.96 0.87 0.81
39 1000  1.0 1 19 0 48 0 40 0 1.00 1.00 18.2 0.0 0.97 0.96 0.87 0.81
40 10  2.0 1 27 0 48 0 31 9 0.90 0.84 25.7 0.0 0.95 0.92 0.86 0.79
41 100  2.0 1 27 0 48 0 31 9 0.90 0.84 25.7 0.0 0.95 0.92 0.86 0.79
42 1000  2.0 1 27 0 48 0 31 9 0.90 0.84 25.7 0.0 0.95 0.92 0.86 0.79
43 10  0.5 2 23 0 48 0 32 8 0.91 0.86 20.4 0.0 0.97 0.95 0.85 0.78
44 100  0.5 2 23 0 48 0 32 8 0.91 0.86 20.4 0.0 0.97 0.95 0.85 0.78
45 1000  0.5 2 23 0 48 0 32 8 0.91 0.86 20.4 0.0 0.97 0.95 0.85 0.78

a The table reports the experiment number Exp, capacity parameter C, kernel type K (dot D; polynomial P; radial basis 
function R; neural N; anova A) and corresponding parameters, calibration results (SV, number of support vectors; BSV, 
number of bounded support vectors; +/+, number of +1 patterns (narcotic compounds) classified in class +1; +/–, 
number of +1 patterns classified in class –1; –/–, number of –1 patterns (reactive compounds) classified in class –1; –/+, 
number of –1 patterns classified in class +1; CAa, accuracy; CAp, precision), and cross-validation results (ASV, 
average number of support vectors; ABSV, average number of bounded support vectors; TRa, training accuracy; TRp, 
training precision; TEa, test accuracy; TEp, test precision). 
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Table 2. (Continued) 
Exp C K d SV BSV +/+ +/– –/– –/+ CAa CAp ASV ABSV TRa TRp TEa TEp
46 10 A 1.0 2 25 0 48 0 40 0 1.00 1.00 25.3 0.0 0.89 0.84 0.84 0.77
47 100  1.0 2 25 0 48 0 40 0 1.00 1.00 25.3 0.0 0.89 0.84 0.84 0.77
48 1000  1.0 2 25 0 48 0 40 0 1.00 1.00 25.3 0.0 0.89 0.84 0.84 0.77
49 10  2.0 2 38 0 48 0 29 11 0.88 0.81 34.1 0.0 0.95 0.93 0.82 0.73
50 100  2.0 2 38 0 48 0 29 11 0.88 0.81 34.1 0.0 0.95 0.93 0.82 0.73
51 1000  2.0 2 38 0 48 0 29 11 0.88 0.81 34.1 0.0 0.95 0.93 0.82 0.73
52 10  0.5 3 24 0 48 0 31 9 0.90 0.84 22.2 0.0 0.93 0.90 0.84 0.78
53 100  0.5 3 24 0 48 0 31 9 0.90 0.84 22.2 0.0 0.93 0.90 0.84 0.78
54 1000  0.5 3 24 0 48 0 31 9 0.90 0.84 22.2 0.0 0.93 0.90 0.84 0.78
55 10  1.0 3 30 0 48 0 32 8 0.91 0.86 29.3 0.0 0.91 0.87 0.84 0.77
56 100  1.0 3 30 0 48 0 32 8 0.91 0.86 29.3 0.0 0.91 0.87 0.84 0.77
57 1000  1.0 3 30 0 48 0 32 8 0.91 0.86 29.3 0.0 0.91 0.87 0.84 0.77
58 10  2.0 3 49 0 48 0 27 13 0.85 0.79 41.1 0.0 0.94 0.90 0.76 0.68
59 100  2.0 3 49 0 48 0 27 13 0.85 0.79 41.1 0.0 0.94 0.90 0.76 0.68
60 1000  2.0 3 49 0 48 0 27 13 0.85 0.79 41.1 0.0 0.94 0.90 0.76 0.68

Table 3. Results for SVM Modeling of the Mechanism of Aquatic Toxicity Using Three Structural Descriptors: log 
Kow, SN

av, and EHOMO. For Notations See the Footnote of Table 2.
Exp C K   SV BSV +/+ +/– –/– –/+ CAa CAp ASV ABSV TRa TRp TEa TEp
61 10 D   26 22 47 1 29 11 0.86 0.81 23.1 19.1 0.85 0.80 0.84 0.76
62 100    26 22 47 1 26 14 0.83 0.77 23.3 19.2 0.85 0.79 0.83 0.75
63 1000    24 18 47 1 29 11 0.86 0.81 24.0 18.1 0.86 0.81 0.85 0.77

   d                
64 10 P 2  23 8 47 1 31 9 0.89 0.84 20.9 5.3 0.94 0.91 0.88 0.81
65 100  2  27 7 47 1 32 8 0.90 0.85 22.5 4.9 0.92 0.88 0.89 0.83
66 1000  2  26 5 47 1 38 2 0.97 0.96 22.7 4.1 0.93 0.90 0.91 0.86
67 10  3  22 2 47 1 34 6 0.92 0.89 20.7 1.6 0.97 0.96 0.80 0.74
68 100  3  18 0 48 0 40 0 1.00 1.00 18.3 0.0 0.92 0.88 0.81 0.75
69 1000  3  18 0 48 0 40 0 1.00 1.00 18.3 0.0 0.92 0.88 0.81 0.75
70 10  4  20 0 48 0 32 8 0.91 0.86 18.8 0.0 0.96 0.93 0.84 0.76
71 100  4  20 0 48 0 32 8 0.91 0.86 18.8 0.0 0.96 0.93 0.84 0.76
72 1000  4  20 0 48 0 32 8 0.91 0.86 18.8 0.0 0.96 0.93 0.84 0.76
73 10  5  21 0 48 0 32 8 0.91 0.86 19.9 0.0 0.97 0.95 0.85 0.77
74 100  5  21 0 48 0 32 8 0.91 0.86 19.9 0.0 0.97 0.95 0.85 0.77
75 1000  5  21 0 48 0 32 8 0.91 0.86 19.9 0.0 0.97 0.95 0.85 0.77

                  
76 10 R 0.5  29 4 47 1 32 8 0.90 0.85 26.4 3.9 0.93 0.90 0.88 0.81
77 100  0.5  25 1 48 0 39 1 0.99 0.98 23.6 0.7 0.92 0.87 0.80 0.74
78 1000  0.5  24 0 48 0 40 0 1.00 1.00 23.0 0.0 0.92 0.88 0.81 0.77
79 10  1.0  37 2 48 0 31 9 0.90 0.84 33.2 1.8 0.87 0.82 0.75 0.68
80 100  1.0  36 0 48 0 40 0 1.00 1.00 30.3 0.0 0.91 0.87 0.79 0.72
81 1000  1.0  36 0 48 0 40 0 1.00 1.00 30.3 0.0 0.91 0.87 0.79 0.72
82 10  2.0  49 1 48 0 39 1 0.99 0.98 46.1 0.6 0.95 0.93 0.69 0.63
83 100  2.0  50 0 48 0 40 0 1.00 1.00 46.1 0.0 0.97 0.95 0.69 0.63
84 1000  2.0  50 0 48 0 40 0 1.00 1.00 46.1 0.0 0.97 0.95 0.69 0.63

   a                
85 10 N 0.5  19 16 40 8 30 10 0.80 0.80 20.1 17.4 0.77 0.77 0.77 0.78
86 100  0.5  19 16 40 8 30 10 0.80 0.80 19.1 16.7 0.77 0.78 0.76 0.75
87 1000  0.5  18 15 41 7 31 9 0.82 0.82 19.0 16.7 0.77 0.78 0.76 0.75
88 10  1.0  20 20 38 10 31 9 0.78 0.81 19.6 17.1 0.77 0.78 0.78 0.75
89 100  1.0  20 18 39 9 30 10 0.78 0.80 18.8 16.4 0.77 0.78 0.75 0.71
90 1000  1.0  20 18 39 9 30 10 0.78 0.80 18.8 16.3 0.77 0.78 0.76 0.73
91 10  2.0  21 18 39 9 30 10 0.78 0.80 19.7 17.3 0.78 0.78 0.76 0.72
92 100  2.0  22 19 39 9 29 11 0.77 0.78 19.3 17.2 0.77 0.78 0.77 0.72
93 1000  2.0  22 19 39 9 29 11 0.77 0.78 19.3 17.5 0.76 0.78 0.75 0.73
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Table 3. (Continued) 
Exp C K d SV BSV +/+ +/– –/– –/+ CAa CAp ASV ABSV TRa TRp TEa TEp
94 10 A 0.5 1 28 10 48 0 34 6 0.93 0.89 20.4 8.2 0.92 0.88 0.87 0.81
95 100  0.5 1 21 6 47 1 38 2 0.97 0.96 19.3 2.8 0.95 0.93 0.89 0.83
96 1000  0.5 1 21 1 48 0 33 7 0.92 0.87 18.3 0.6 0.96 0.94 0.85 0.76
97 10  1.0 1 27 7 48 0 36 4 0.95 0.92 22.7 4.7 0.93 0.89 0.86 0.82
98 100  1.0 1 22 1 48 0 39 1 0.99 0.98 21.8 0.6 0.96 0.93 0.85 0.75
99 1000  1.0 1 22 0 48 0 40 0 1.00 1.00 20.7 0.0 0.97 0.95 0.84 0.74

100 10  2.0 1 28 2 48 0 33 7 0.92 0.87 26.2 1.5 0.94 0.90 0.83 0.76
101 100  2.0 1 24 0 48 0 33 7 0.92 0.87 25.0 0.0 0.94 0.91 0.82 0.77
102 1000  2.0 1 24 0 48 0 33 7 0.92 0.87 25.0 0.0 0.94 0.91 0.82 0.77
103 10  0.5 2 28 1 48 0 39 1 0.99 0.98 23.8 1.5 0.97 0.95 0.85 0.80
104 100  0.5 2 28 0 48 0 40 0 1.00 1.00 23.3 0.0 0.93 0.89 0.83 0.74
105 1000  0.5 2 28 0 48 0 40 0 1.00 1.00 23.3 0.0 0.93 0.89 0.83 0.74
106 10  1.0 2 33 0 48 0 40 0 1.00 1.00 30.3 0.0 0.93 0.89 0.86 0.79
107 100  1.0 2 33 0 48 0 40 0 1.00 1.00 30.3 0.0 0.93 0.89 0.86 0.79
108 1000  1.0 2 33 0 48 0 40 0 1.00 1.00 30.3 0.0 0.93 0.89 0.86 0.79
109 10  2.0 2 37 0 48 0 40 0 1.00 1.00 34.2 0.0 0.93 0.90 0.81 0.74
110 100  2.0 2 37 0 48 0 40 0 1.00 1.00 34.2 0.0 0.93 0.90 0.81 0.74
111 1000  2.0 2 37 0 48 0 40 0 1.00 1.00 34.2 0.0 0.93 0.90 0.81 0.74
112 10  0.5 3 31 0 48 0 40 0 1.00 1.00 25.7 0.0 0.94 0.90 0.84 0.78
113 100  0.5 3 31 0 48 0 40 0 1.00 1.00 25.7 0.0 0.94 0.90 0.84 0.78
114 1000  0.5 3 31 0 48 0 40 0 1.00 1.00 25.7 0.0 0.94 0.90 0.84 0.78
115 10  1.0 3 36 0 48 0 29 11 0.88 0.81 31.9 0.0 0.90 0.84 0.82 0.75
116 100  1.0 3 36 0 48 0 29 11 0.88 0.81 31.9 0.0 0.90 0.84 0.82 0.75
117 1000  1.0 3 36 0 48 0 29 11 0.88 0.81 31.9 0.0 0.90 0.84 0.82 0.75
118 10  2.0 3 48 0 48 0 31 9 0.90 0.84 42.2 0.0 0.90 0.85 0.73 0.66
119 100  2.0 3 48 0 48 0 31 9 0.90 0.84 42.2 0.0 0.90 0.85 0.73 0.66
120 1000  2.0 3 48 0 48 0 31 9 0.90 0.84 42.2 0.0 0.90 0.85 0.73 0.66

The statistical results obtained for the first set of SVM experiments are presented in Table 2. The 
SVM models were obtained with the above four descriptors, and with three values for the capacity 
parameter C, namely 10, 100, and 1000. The calibration of the SVM models was performed with 
the whole set of 88 compounds. The calibration results reported in Table 2 are: SV, number of 
support vectors; BSV, number of bounded support vectors; +/+, number of +1 patterns (narcotic 
compounds) predicted in class +1; +/–, number of +1 patterns predicted in class –1; –/–, number of 
–1 patterns (reactive compounds) predicted in class –1; –/+, number of –1 patterns predicted in 
class +1; CAa, accuracy; CAp, precision. The high flexibility of multivariate statistical models in 
approximating a wide range of mathematical functions comes with a significant danger: overfitting. 
Using sophisticated kernels, SVM can be calibrated to perfectly discriminate two populations of 
patterns, but only a cross–validation test can demonstrate the potential utility of an SVM model. For 
each SVM model we present in Table 2 the following leave–10%–out (L10%O) cross-validation 
statistics: ASV, average number of support vectors; ABSV, average number of bounded support 
vectors; TRa, training accuracy; TRp, training precision; TEa, test accuracy; TEp, test precision. As 
implemented in mySVM, C is scaled by 1/number of training examples. 

The first group of SVM models computed with log Kow, SN
av, EHOMO, and ELUMO were obtained 

with the dot kernel, but the number of support vectors is too large, the prediction statistics are low, 
and a significant fraction of –1 patterns (reactive compounds) are classified as narcotic. On the 
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other hand, from the 48 narcotic compounds only one is classified as reactive, which is a first sign 
that with these four structural descriptors reactive compounds are more difficult to classify than 
narcotic compounds. 

A significant improvement for the classification of narcotic and reactive compounds is obtained 
with the polynomial kernel, as presented in Table 2, experiments 4–15. Using 24 support vectors, a 
polynomial of degree 3 (experiments 7–9) can perfectly discriminate between narcotic and reactive 
compounds, with fairly good leave–10%–out (L10%O) cross–validation results, namely TEa = 0.85 
and TEp = 0.80. These results are not sensitive to the value of the capacity parameter C. When a 
polynomial of degree 2 is used (experiments 4–6), all 48 narcotic compounds are correctly included 
in the +1 class, while six reactive compounds are misclassified as narcotic compounds, namely 
resorcinol, 4–chlorocatechol, 2,6–dinitrophenol, 2,3,5,6–tetrachloroaniline, 3–nitrotoluene, and 4–
nonylphenol. Resorcinol and 4–nonylphenol were also outliers in the discriminant analysis and 
logistic regression [13]. Experiments 4–6 have the best overall prediction statistics, with TEa = 0.92 
and TEp = 0.88, and a polynomial of degree 2 should be considered the best choice for 
discriminating the aquatic toxicity mechanism of action for organic compounds. 

The next group of models, presented in Table 2 experiments 16–24, was obtained with the radial 
basis function kernel. The best results are obtained for  = 0.5; for example, in experiment 18, with 
24 support vectors all narcotic compounds are correctly classified, while eight reactive compounds 
are misclassified as narcotic compounds. Compared with the polynomial kernel, the radial basis 
function kernel performs worse with the data from this study, and the two classes of compounds 
cannot be separated. In our tests, the neural kernel gave the worst results, as can be seen from Table 
2 experiments 25–33, having the largest number of compounds incorrectly classified. The neural 
kernel is not able to correctly classify even the narcotic compounds, which are an easy task for the 
polynomial, radial, and anova kernels. 

The last group of models from in Table 2, experiments 34–60, was obtained with the anova 
kernel. Several combinations of the C, , and d provide a complete separation of the narcotic and 
reactive compounds:  = 1.0 and d = 1 for C = 100 and 1000;  = 1.0 and d = 2 for C = 10, 100 and 
1000. Similarly with other kernels, the classification performances of the anova kernel vary 
significantly with the parameters that control the shape of the kernel. In calibration, the anova 
kernel needs only 19 support vectors to completely separate the narcotic and reactive compounds 
(experiments 38 and 39), while the polynomial kernel needs 24 support vectors for a complete 
separation (experiments 7–9). However, the best prediction results in the L10%O cross–validation 
test are those obtained in experiments 4–6 with a polynomial of degree 2; this SVM model has 14 
support vectors in calibration and six reactive compounds are misclassified as narcotic compounds. 
Compared with the radial basis function, neural, or anova kernels, the polynomial of degree 2 
defines a simple kernel, but with a better prediction power obtained with the smallest number of 
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support vectors. These results indicate that, similarly with other multivariate statistical models used 
in structure–activity studies, the best SVM model (kernel type and parameters) must be selected to 
maximize the predictive potential, not the calibration results. 

A second group of SVM models, reported in Table 3, were obtained with log Kow, SN
av, and 

EHOMO, because the logistic regression showed that ELUMO does not improve the classification [13]. 
The general trends revealed by the data from Table 2 can be identified also in this set of 
experiments, but our intention was to determine if ELUMO can be deleted without loosing the 
predictive power. The dot and neural kernels show a poor discrimination between narcotic and 
reactive compounds, while the polynomial, radial, and anova kernels computed with certain 
parameters provide a complete separation of the two classes of compounds. Among the experiments 
from Table 3, the best predictions are obtained in the experiment 66, with a polynomial of degree 2, 
C = 1000, and 26 support vectors. In calibration, one narcotic compound was computed as reactive 
and two reactive compounds were classified as narcotic, while for prediction the cross–validation
statistics indicate a good prediction power for this model, i.e. TEa = 0.91 and TEp = 0.86. 

While a comparison of the results reported in tables 2 and 3 clearly shows that SVM with a 
polynomial of degree 2 kernel provide the best predictions, it is not very clear if ELUMO can be 
deleted without degrading the performance of the SVM model. The advantages of the SVM models 
from the experiments 4–6 are a lower number of support vectors (14 in calibration and an average 
of 16.2 in the prediction test) and slightly better prediction statistics (TEa = 0.92 and TEp = 0.88). 
The advantage of the experiment 66 is represented by a lower number of classification errors in 
calibration (one for narcotic compounds and two for reactive compounds), but the number of 
support vectors is significantly larger (26 in calibration and an average of 22.7 in the prediction 
test). The SVM model files for experiments 6 and 66 are available as supplementary material. These 
files can be used to make predictions for new organic compounds, using as input the four structural 
descriptors, namely log Kow, SN

av, EHOMO, and ELUMO.

5 CONCLUSIONS 

Support vector machines represent an attractive new class of machine learning algorithms that 
can have significant applications in developing structure–activity models, chemometrics, and design 
of chemical libraries. In the SVM approach, two clusters of patterns are optimally separated with a 
hyperplane that maximizes the separation between the two classes. Using various kernels, a non–
linear mapping transforms the input space into a higher dimensional feature space, and then a 
quadratic programming algorithm determines a unique maximal margin hyperplane. While many 
chemometrics algorithms and SAR models are currently used for the non–linear classification of 
patterns, their application is usually plagued by the existence of multiple minima. For example, 
artificial neural networks are very flexible and can easily model highly non–linear separating 
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surfaces, but the optimization process usually ends in the local minimum that is closest to the 
starting point. As a result, starting with different random sets of connection weights, typically the 
optimized parameters will be different from an experiment to another, making neural network 
models difficult to replicate. In contrast, for a given kernel SVM determines a unique maximal 
separation hyperplane, using a fast quadratic programming algorithm. The possibility to 
discriminate clusters separated by non–linear surfaces, the unique solution for the class separation, 
and the fast optimization are three important advantages of SVM. 

In this study we have investigated the application of SVM for the recognition of the aquatic 
toxicity mechanism for 88 compounds previously explored with discriminant analysis and logistic 
regression [8,13]. Four theoretical descriptors were used to discriminate between narcotic 
compounds (including non–polar and polar narcotics) and reactive compounds (including 
respiratory uncouplers, soft electrophiles, and proelectrophiles), namely the octanol–water partition 
coefficient log Kow, the energy of the highest occupied molecular orbital EHOMO, the energy of the 
lowest unoccupied molecular orbital ELUMO, and the average acceptor superdelocalizability SN

av.
Only calibration models were presented, and some compounds were misclassified both in 
discriminant analysis and logistic regression [13]. 

The SVM applications in structure–activity models, chemometrics, and chemical libraries 
clustering are only in the beginning and for the moment there are no clear rules on selecting the 
most efficient parameters that control the SVM performances, namely the kernel and the set of 
structural descriptors that are essential for the SVM model. We have explored the influence of the 
kernel type on the SVM performances by testing various kernels, namely the dot, polynomial, radial 
basis function, neural, and anova kernels. Because there is no simple algorithm for descriptor 
selection in SVM models, we have used the theoretical indices from [8,13]. 

The role of a classifier is to learn the classification rule from training patterns and then to apply 
the rule to new patterns in order to obtain reliable predictions. Therefore, for a classifier, one of the 
most important properties is its generalization ability or its ability to make correct predictions for 
patterns not used in the calibration phase. The prediction power of each SVM model was evaluated 
with a leave–10%–out cross–validation procedure. After experimenting with various kernels and 
associated parameters, our results clearly demonstrate that the performance of the SVM classifier is 
strongly dependent on the kernel shape. With four structural descriptors, the dot, radial, and neural 
kernels show a poor discrimination between narcotic and reactive compounds, while the polynomial 
and anova kernels computed with certain parameters give a complete separation of the two classes 
of compounds. Similar results obtained with three structural descriptors indicate a somewhat 
unexpected result: a low degree polynomial kernel offers superior separation compared with the 
radial and neural kernels that have a more complex shape. 

Our results show that with the four structural descriptors utilized, reactive compounds are more 
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difficult to classify than narcotic compounds. This can indicate either that this class is not 
homogeneous, or that more adequate descriptors must be used in order to describe the 
characteristics of the reactive compounds. In calibration, several kernels were able to give a 
complete separation of the two classes of compounds, unlike the discriminant analysis and logistic 
regression [13]. However, caution must be exerted in appreciating statistical models only by their 
calibration (training) results, because the goal of developing structure–activity models is to obtain 
equations that have a high predictive power. In our experiments, the SVM models with the best 
calibration performances were surpassed in the L10%O cross–validation by the polynomial of 
degree 2 kernel. This result clearly demonstrates that too complex kernels give overfitted SVM 
models, with low prediction power. Using sophisticated kernels, SVM can be calibrated to perfectly 
discriminate two populations of patterns, but only a cross–validation test can demonstrate the 
potential utility of an SVM model. Sometimes, the complete separation of the two classes of 
patterns is not possible to achieve due to errors in the experimental data or because the theoretical 
descriptors that describe the molecular structure of each compound are not adequate for the 
investigated property. Another important parameter that must be monitored in an SVM study is the 
number of support vectors, and whenever possible, SVM models with a lower number of support 
vectors must be preferred. In this study we have not addressed the important problem of selecting 
significant descriptors in SVM models. In QSAR studies it is generally accepted that it is more 
important to screen a wide variety of structural descriptors instead of using too sophisticated 
mathematical models. The same is true for SVM models, and considerable effort should be directed 
towards the development of efficient algorithms for descriptor selection. 

Supplementary Material 
The mySVM model files for experiments 6 and 66 are available as supplementary material. 
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