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Abstract 

Our main motivation is to provide some insight in the transduction process in the rod cells of retina upon 
absorption of light. Models for the prosthetic group of rhodopsin (protonated Schiff base of 11–cis–retinal with 
opsin, named as 11–cis–rhodopsin and all–trans–rhodopsin in what follows) were studied with various 
theoretical procedures. The initial geometry of the compounds was first refined with molecular mechanics and 
further optimized with semi–empirical AM1 and PM3 methods. We also analyzed electrostatic potential charges 
with ab initio methods. The calculations were applied to the ground and the first excited singlet states. For a 
more comprehensive description of the species under study, accurate configuration interaction calculations for 
the electronics absorption spectrum of 11–cis– and all trans–rhodopsin with the aid of the ZINDO/S CI program 
were performed. The theoretical results were almost identical with the experimental measurements. Finally, we 
qualitatively comment on the influence of an SH– group in the absorption spectrum. Our results suggest that the 
excited state is somewhat less ordered than the ground state, which may have connections with the transduction 
process. 
Keywords. Visual pigments; photoresistor; semiempirical methods; ab initio methods. 

1 INTRODUCTION 

Vertebrates, including humans, have a large number of light sensitive neuron cells in the retina, 
named rods or cones, depending on the form of their terminal segments [1]. The rods sense low 
light intensity but cannot discriminate colors, while the cones, less light sensitive, are able to 
distinguish colors [2]. In these neurons, the electromagnetic energy of light is transformed in 
electric impulses, which eventually produce the vision phenomenon. The combination of 11–cis–
retinal, aldehyde derived from vitamin A (retinol), with the protein opsin present in the rods gives 
origin to the visual pigment rhodopsin. 

A photoconducting model for the act of vision had great support for a period of time [3,4]. 

                                                          
# Dedicated to Professor Nenad Trinajsti  on the occasion of the 65th birthday. 
* Correspondence author; E–mail: milan@iqsc.usp.br. 



Quantum Calculations for Protonated Rhodopsin and Considerations on the Transduction Process in the Retina 
Internet Electronic Journal of Molecular Design 2004, 3, 45–54 

46
BioChem Press http://www.biochempress.com

However, if such would be the case, the absorption of a second photon by the same rod would raise 
the conductivity; the contrary occurs, the absorption of the first photon inactivates the rod until a 
slow biochemical process of recuperations in dark is finished. 

In 1969 Trsic [5] advocated for a photoresistor model for the initiation of the nerve impulse; this 
proposition was based on semi–empirical quantum chemical methods available at the time (Hückel 
and –technique) and quantum mechanical calculations of transmittance of electrons through the 
electronic structures of the ground and the excited states of the chromophore group of the rhodopsin 
molecule. This model was consistent with all the available experimental information, including the 
fact that a continuous dark flux of Na+, Ca2+ and K+ ions between the disks containing rhodopsin 
and the rod membrane was interrupted by the absorption of light [6,7]. Notwithstanding, the naive 
character of the quantum chemical methods employed at that time hampered the acceptance of that 
proposition.

A model for the prosthetic group of rhodopsin (protonated Schiff base of 11–cis–retinal with 
opsin, named as 11–cis–rhodopsin in what follows) was studied with various theoretical procedures. 
The initial experimental geometry of the molecule was first refined with molecular mechanics and 
further optimized with the semiempirical AM1 and PM3 methods. Charges and bond orders either 
semiempirical or by ab initio methods were also calculated. All the former calculations were also 
applied to the first excited singlet state and further the ground and the excited states were compared. 

The electronic spectra of the isomers 11–cis and all–trans rhodopsin were also calculated and 
compared favorably with experimental measurements. Configuration interaction (CI) was employed 
for this purpose. 

2 MATERIALS AND METHODS 

The chemical models for the protonated 11–cis and all–trans chromophores of rhodopsin are 
shown in Figure 1. Low quality of crystals prevents the obtainment of the X–ray structure of 
rhodopsin with good resolution. We thus used as initial geometry the structure of 11–cis–retinal (6–
s–cis, 12–s–trans), assessed by Raman, FTIR and solid–state 13C NMR spectroscopy [8–13] and the 
all–trans–rhodopsin structure. An initial optimization was then performed with molecular 
mechanics (MM+) as implemented in HyperChem 6.0 [14]. Further, the geometry was refined with 
AMPAC 6.5 [15], using the AM1 and PM3 methods. Vibrational frequencies were calculated as 
well in order to check eventual distortions in the geometry. The ZINDO/S CI routine [16–18] was 
applied for the calculation of the electronic absorption spectra of the systems under study. 

The geometry of the excited state of the cis isomer was also calculated, both with the ground 
(frozen) state geometry and with relaxed geometry (optimized for the first excited singlet state). The 
first excited singlet state was obtained from AMPAC with the option EXCITED. 
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Figure 1. Chemical structures for the protonated 11–cis (a) and all–trans (b) rhodopsin chromophores used for the 
calculations.

The total charge of the system is +1.0. AMPAC 6.5 was also employed to calculate charges, 
bond orders and energy levels, comparing the ground and the first excited singlet states. Net atomic 
charges were also calculated with RHF ab initio method using STO–3G, 3–21G, 6–31G* and, 6–
31G** basis sets, as implemented in the Gaussian 98 program [19]. 
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Figure 2. The ZINDO/S CI calculated electronic absorption spectrum of the 11–cis–rhodopsin chromophore for the 
molecular geometry optimization obtained with the PM3 Method. The curves were normalized, giving the value 1.0 to 
the highest peak. 

3 RESULTS AND DISCUSSION 

3.1 Electronic Spectra
The ZINDO/S CI routine [16–18] was applied for the calculation of the electronic absorption 

spectra of the systems under study. The ZINDO/S CI procedure and parameterization is certainly 
appropriate for the theoretical estimate of the electronic spectrum of these species. The resulting 
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UV–Visible spectrum the cis isomer is shown in the Figure 2 (for PM3 optimized geometry). For 
the stronger transitions, one finds in the ZINDO/S CI calculation that the HOMO LUMO 
determinant has a weight of 83% in the CI expansion. It is also found that the oscillator strength for 
the first transition is of 1.48. All other transitions have oscillator strength values below 0.21. We 
can situate the experimental first band, usually called –band at about 498 nm and the –band
around 340 nm [20–25], as slight variations are found due to different electrostatic or dispersion 
chromophore–opsin interactions for different species. The agreement is remarkable, specially noting 
that chromophore–opsin interactions are not accounted for in the above theoretical values. As a 
matter of fact, the qualitative effect of the opsin specific species in the position of the first band is 
not difficult to estimate. In a preliminary numerical experiment, we verified that shift in a few nm 
units can be induced by including a SH– group in the proximity of the chromophore. 
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Figure 3. The ZINDO/S CI calculated absorption spectrum of the all–trans–rhodopsin chromophore for the molecular 
geometry optimization obtained with the PM3 Method. The curves were normalized, giving the value 1.0 to the highest 
peak.

For the trans isomer (Figure 3) the first peak is found at 524 nm, thus the shift is bathochromic 
when going from the cis to the trans isomer, as expected. This main theoretical absorption band has 
a weight of 86 % for the HOMO LUMO determinant and an oscillator strength of 1.81. We 
remark that the experimental value for this peak is approximately at 543 nm at low temperatures 
[20–23] and 535 nm at room temperature [24]. Thus, both in the experiment and from theory, the 
shift is bathochromic when going from the cis to the trans isomer. 
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3.2 Comparison between the Ground State and the First Excited Singlet State 
Due to the small time elapsed between the absorption of the photon in the retina and the 

appearance of the signal in the optic nerve, either the excited state itself, or the very first 
photoproducts after excitation should be responsible for the generation of the electric impulse in the 
nerve membrane. That is the reason why, if a discussion of the mechanism of the generation of the 
electric impulse is aimed, the theoretical description of the excited state is of interest. We calculated 
both the vertical or Frank–Condon (frozen geometry) excited state and the excited state after 
geometrical relaxation. 

3.2.1 Energy levels

It is interesting to observe the correlation diagram (PM3) for the frontier orbitals for the ground, 
excited–frozen and excited–relaxed states in Figure 4. For the HOMO–LUMO gap, in the frozen 
case the two orbitals (now single occupied each) become much closer than in the ground state. After 
relaxation, the distance between HOMO and LUMO increases but remains smaller than in the 
ground state. These changes in the HOMO–LUMO gap upon excitation have a first explanation in 
the fact that self–consistent Hartree–Fock theory for the ground state produces artificial and high–
lying virtual levels [see for example ref. 26]. Further, the increase of the gap in the excited state 
after geometry relaxation implies in a better accommodation of the electronic cloud. 
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Figure 4. Correlation diagram of the 11–cis–rhodopsin chromophore for the ground state, frozen geometry excited state 
and the excited state after geometrical relaxation, obtained with the PM3 method (AM1 provides the same scheme). 
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Figure 5. Representation of the 11–cis–rhodopsin chromophore 
interatomic distances calculated for the ground state. 
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Figure 6. Representation of the 11–cis–rhodopsin chromophore interatomic 
distances calculated for the excited state (relaxed geometry). 
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3.2.2 Interatomic distances, bond orders and charges

The geometries of the ground and the excited (relaxed) states are shown in Figures 5 and 6, 
respectively. Although there are no drastic changes, two modifications may be observed: (a) the 
very neat C–C bond length alternation in the ground state is slightly reduced (i.e. double bond 
lengths are slightly decreased while single bond lengths increase) after absorption of the photon; (b)
on the other hand, the C15–N16 distance increases from ca. 1.33 Å to about 1.35 Å (AM1) and from 
ca. 1.34 Å to about 1.36 Å (PM3). We calculated the charge density distribution for the ground and 
the first excited singlet states for the 11–cis–rhodopsin chromophore with AM1 and PM3 methods 
and also, for comparison propose, with the ab initio RHF method using STO–3G, 3–21G, 6–31G* 
and 6–31G** basis sets, as implemented in the Gaussian 98 program [19]. On the other hand, 
charges were calculated with both the Mulliken analysis and as derived from electrostatic potential 
calculation (ESP) [27,28]. No doubt, some numerical variances are encountered, but similar trends 
can be observed in all cases. We choose to illustrate the charge distribution with ESP as calculated 
with AM1. Figures 7 and 8 compare the ESP ground and excited state (relaxed geometry) charges 
for 11–cis–rhodopsin chromophore, respectively. One can observe a crucial difference between the 
two states: for the excited state there is a clear disruption (from carbon atom C9 to atom C15) in the 
neat alternation of charges in the carbon chain found in the ground state. Similar qualitative trends 
are found for other calculated charges. This decrease in alternation upon excitation would not be a 
result of the very minor geometry change (we are discussing stages well before the cis–trans
isomerization) but of electron density rearrangement, since the former trends are present for the 
frozen geometry excited state as well. 
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Figure 7. Representation of the 11–cis–rhodopsin chromophore charges calculated for the ground state. 
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Figure 8. Representation of the 11–cis–rhodopsin chromophore charges 
(ESP) calculated, for the excited state and relaxed geometry. 

We found a decrease in single–double bond alternation, i.e., conjugation in the skeleton of the 
11–cis isomer upon electronic excitation. This trend is detected for atom–atom distances, bond 
orders and, in a more enhanced manner, for the charge distribution. This effect is caused rather by 
electron density rearrangement after the absorption of light than due to change in geometry. These 
results would suggest why the cis trans isomerization is facilitated in the excited state. But our 
finding is also suggestive of a decrease in charge density alternation order in the excited state, 
which could thus be a poorer electric conductor than the ground state. The experiment by 
Mergulhão et al. [29] shows exactly the same behavior for a protonated polymer. Moreover, the 
accepted model for the visual information generation, as described by Rieke et al. [7], has the very 
same photoresistance mechanism. 

4 CONCLUSIONS 

Two tasks were undertaken in this study: (a) To provide an accurate description of the electronic 
absorption spectra of 11–cis– and all–trans rhodopsin chromophores; (b) To compare the ground 
and first excited singlet states of the protonated chromophore of 11–cis–rhodopsin in the hope to 
bring some insight for the process of the generation of the visual signal after absorption of light by 
the rods in the retina. Theoretical electronic absorption spectra for the 11–cis species and the all–
trans isomer were calculated with the ZINDO/S CI method. The resulting simulated spectra agree 
remarkably with experimental measurements. 

Our comparison of the ground and the excited state indicates some decrease in conjugation in the 
last case. These results give support to the early findings of Trsic [5], although, curiously enough, 
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this trend seemed more enhanced in the old calculations. The present theoretical results allow the 
consideration that the ordered conjugated ground system is a better electrical conductor than the 
excited defect species. This is certainly consistent with the fact that absorption of light stops the 
dark current and the Ca2+, K+ and Na+ ion flow [6,7]. A very enlightening analogy is provided by 
protonated polyanilines, in which a light impulse produces a decrease in current, with the possible 
creation of excited defect species [29]. The former conclusions are consistent with some long time 
well established notions by Professor Wald. Rhodopsin in the rods is virtually in the solid state [30] 
and there are millions of rhodopsin molecules in each rod. If there is an ionic dark current between 
the rods and the cell membrane, the rods ought to conduce electrical charges. The time elapsed 
between the absorption of light and the detection of an electric impulse in the optical nerve is 
shorter than the initiation of isomerization [31]. Thus, optical information is due to a very early 
phenomenon. A rod has many compartments, and the absorption of a photon by one of them stops 
the dark current and initiates the bleaching process [32]. Further happens a slow biochemical 
sequence of events, which eventually recovers that particular rod. (We all have the experience that 
after a very intense light exposure, many rods simultaneously excited, we remain blind for several 
seconds). It is licit to presume that the compartment is a section of the rod membrane containing 
one or several rhodopsin molecules. This work puts forward some plausible arguments for a 
possible mechanism for the interruption of the dark current after light absorption in the rods of the 
retina.
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