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Abstract 

Quantitative structure–activity relationships (QSAR) models for the dermal penetration of 60 polycyclic 
aromatic hydrocarbons (PAHs) were established with the CODESSA program. The QSAR models for the PAH 
dermal penetration are obtained by selecting descriptors from a wide diversity of constitutional, topological, 
electrostatic and quantum structural indices. Standard quantum chemistry packages are used for optimizing the 
molecular geometry and for semi–empirical quantum computations. A heuristic algorithm selects the best 
multiple linear regression equation according to the highest statistical indices; the predictive power of each 
QSAR is estimated with the leave–one–out (LOO) cross–validation method. The best QSAR model with two 
descriptors has r2 = 0.748, r2

LOO = 0.719, s = 6.5, and F = 84.42. A significant improvement of the statistical 
indices is obtained by adding a third theoretical descriptor, i.e. r2 = 0.761, r2

LOO = 0.725, s = 6.4, and F = 59.39. 
Our results demonstrate that QSAR models can be used in risk assessment studies in order to estimate the dermal 
penetration properties of PAHs from mineral oils, coal, tar, and derived products. 
Keywords. Quantitative structure–activity relationships; QSAR; dermal penetration; polycyclic aromatic 
hydrocarbon. 

1 INTRODUCTION 

During the last twenty years quantitative structure–property relationships (QSPR) and 
quantitative structure–activity relationships (QSAR) models have gained an extensive recognition in 
physical, organic, analytical, pharmaceutical and medicinal chemistry, biochemistry, chemical 
engineering and technology, toxicology, and environmental sciences. The main contributions to the 
widespread use of QSPR and QSAR models come from the development of novel structural 
descriptors and statistical equations relating various physical, chemical, and biological properties to 
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the chemical structure. The success of the QSPR and QSAR approach can be explained by the 
insight offered into the structural determination of chemical properties, and the possibility to 
estimate the properties of new chemical compounds without the need to synthesize and test them. 
The main hypothesis in the QSPR and QSAR approach is that all properties (physical, chemical, 
and biological) of a chemical substance are statistically related to its molecular structure. 

The dermal penetration of drugs or toxic compounds is usually investigated (a) by monitoring 
their in vivo release in human volunteers or live animals, (b) by using excised skin from human or 
animal sources, or (c) with experiments employing synthetic membranes that model the skin 
diffusion of chemicals [1–4]. The amount of a chemical which is able to penetrate the skin, together 
with its concentration–dependent distribution within the skin, are important factors in the 
development of formulations for topical application and transdermal delivery, and for risk 
assessment of xenobiotics. In order to reach the systemic circulation, any chemical that comes into 
contact with the skin has to pass through both the stratum corneum and the viable tissue. Whenever 
a chemical has a potential toxic, mutagenic, or carcinogenic action, its in vivo testing in humans is 
substituted with in vitro methods. The skin contact with polycyclic aromatic hydrocarbons (PAHs) 
represents a potential health risk because several PAHs found in mineral oils, coal–tars, and derived 
products have been shown to be mutagenic and carcinogenic. Dermal exposure to PAHs can occur 
by deposition of vapors and particles, by splashing of oils, or by contact with contaminated soil. 
Recently, Roy and co–workers determined the dermal penetration of 60 PAHs using skin excised 
from rats [5]. From an initial set of more than 50 structural descriptors, 18 were selected to generate 
multiple linear regression (MLR) models. With the same experimental database Gute et al. used a 
hierarchical QSAR approach to obtain several reliable QSAR models for PAH dermal penetration 
[6]. An artificial neural network (ANN) structure–dermal penetration model was proposed by 
Devillers for the same 60 compounds, with the intention to explore the nonlinear relationships 
between the structural descriptors and skin penetration properties of PAHs [7]. Another QSAR 
model for the dermal penetration for this set of PAHs was developed using molecular quantum 
similarity measures [8]. In this paper we improve the dermal penetration QSAR models for PAHs 
by selecting the structural descriptors for the multilinear regression equation from a wide range of 
topological, geometrical, electrostatic, and quantum indices. 

2 MATERIALS AND METHODS 

The investigation of large and diverse molecular databases was made possible by the advent of 
general QSPR/QSAR programs [9,10], such as CODESSA [11–15], which integrate the 
computation of structural descriptors with the generation of structure–property models. These 
programs compute more than one thousand structural descriptors from five classes: constitutional, 
graph theoretic and topological indices, geometrical, electrostatic, and quantum–chemical 
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descriptors. Using statistical methods, such as MLR, PCA (principal components analysis), PLS 
(partial least squares), or ANN, the best descriptors are selected in the final QSAR model. 

PAH Dermal Penetration Data. The experimental values for the dermal penetration of 60 
PAHs (Figure 1) taken from the literature [5] are presented in Table 1, where PADA represents the 
percent of applied dose dermally absorbed over 24 hours. Dorsal skin from female Sprague–Dawley 
rats was lightly shaved with an electric clipper before excision, and skin sections (~350 m) were 
prepared. The dermal penetration was determined by GC/FID and GC/MS. 
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Figure 1. The structure of the 60 polycyclic aromatic hydrocarbons from Ref. [5]. 
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Figure 1. (Continued). 

Previous QSAR Models. For the whole set of 60 PAHs, Roy et al. [5] obtained the following 
QSAR equation: 

PADA = 111.9 – 14.7 log P – 22.0 SHDW6 
n = 60 r2 = 0.640 s = 7.7    F = 54 (1)

where log P is the calculated octanol–water partition coefficient, and SHDW6 is the normalized 
area of the two–dimensional projection of the molecule onto the Y–Z plane. For a subset of 22 
PAHs (non–hydro and substituted) the QSAR model contains only the log P descriptor [5]: 
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PADA = 121.4 – 19.6 log P
n = 22 r2 = 0.792 s = 7.2    F = 73 (2)

For the subset of 38 non–hydro, unsubstituted, or methyl–substituted PAHs, a good correlation is 
obtained with log P and EDEN, the most negative value for the approximate atomic –electron
density calculated as (Qi – NBDi)/VDWi, where Qi is the partial atomic charge of atom i, NBDi is 
the number of nonbonded electrons of atom i, and VDWi is the van der Waals radius of atom i [5]: 

PADA = 104.7 – 16.9 log P – 1405 EDEN 
n = 38 r2 = 0.689 s = 8.0    F = 41 (3)

Table 1. The Name of the 60 PAHs from Figure 1, their Experimental, Computed and 
Residual PADA Obtained with Eq. (10). 

PAH Compound PADA 
 exp. cal. res. 

1 coronene 0.7 –0.1 0.8 
2 dibenzo[a,l]pyrene 2.0 5.3 –3.3 
3 9,10–diphenylanthracene 6.0 5.4 0.6 
4 perylene 7.0 16.4 –9.4 
5 dibenzo[a,i]pyrene 8.0 4.8 3.2 
6 3–methylcholanthene 8.0 12.9 –4.9 
7 9–benzylidenefluorene 8.0 18.9 –10.9 
8 7,10–dimethylbenzo[a]pyrene 8.3 11.3 –3.0 
9 indeno[1,2,3:c,d]pyrene 9.0 11.7 –2.7 

10 dibenz[a,h]anthracene 9.4 9.4 0.0 
11 benzo[e]pyrene 10.0 14.0 –4.0 
12 benzo[g,h,i]perylene 10.0 7.5 2.5 
13 9–p–tolylfluorene 10.0 18.7 –8.7 
14 6–ethylchrysene 10.0 16.9 –6.9 
15 9–E–cinnamylfluorene 11.0 13.7 –2.7 
16 6–methylbenz[a]anthracene 14.0 20.7 –6.7 
17 benzo[k]fluoranthene 14.0 17.2 –3.2 
18 benzo[a]pyrene 15.0 15.9 –0.9 
19 1–ethylpyrene 18.0 23.7 –5.7 
20 7–isopropyl–1–methylphenanthrene 20.0 20.5 –0.5 
21 2–tert–butylanthracene 20.0 26.3 –6.3 
22 9–phenylanthracene 20.0 19.3 0.7 
23 3–methylbenzo[c]phenanthrene 20.0 20.9 –0.9 
24 10–methylbenz[a]anthracene 20.0 21.0 –1.0 
25 5–methylbenz[a]anthracene 20.0 20.8 –0.8 
26 9,10–dihydroanthracene 20.0 29.4 –9.4 
27 9–phenylfluorene 20.0 20.8 –0.8 
28 1,2,3,6,7,8–hexahydropyrene 20.0 20.6 –0.6 
29 n–butylpyrene 20.0 16.1 3.9 
30 5,6–dihydro–4H–dibenz[a,k,l]anthracene 20.0 11.2 8.8 
31 3–ethylfluoranthene 20.0 27.2 –7.2 
32 triphenylene 20.0 20.6 –0.6 
33 7,8,9,10–tetrahydroacephenanthrene 20.0 23.3 –3.3 
34 2,3–benztriphenylene 20.0 9.3 10.7 
35 benzo[c]phenanthrene 20.0 23.4 –3.4 
36 1–methylpyrene 22.0 27.1 –5.1 
37 3,9–dimethylbenz[a]anthracene 24.0 16.0 8.0 
38 2,3–benzofluorene 25.0 26.8 –1.8 
39 1,2–benzofluorene 25.0 25.8 –0.8 
40 9–benzylfluorene 26.0 19.6 6.4 
41 9–m–tolylfluorene 29.0 18.9 10.1 
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Table 1. (Continued) 
PAH Compound PADA 

 exp. cal. res. 
42 pyrene 30.0 31.2 –1.2 
43 2–ethylanthracene 30.0 34.7 –4.7 
44 10–methylbenzo[a]pyrene 32.0 15.2 16.8 
45 1–methylanthracene 32.0 39.9 –7.9 
46 2–methylfluoranthene 33.0 31.5 1.5 
47 3,6–dimethylphenanthrene 33.0 28.6 4.4 
48 benz[a]anthracene 35.0 23.5 11.5 
49 fluorene 36.0 47.4 –11.4 
50 2–methylphenanthrene 36.0 36.6 –0.6 
51 9–ethylfluorene 38.0 37.6 0.4 
52 1–methylphenanthrene 40.0 35.8 4.2 
53 9,10–dihydrophenanthrene 40.0 39.3 0.7 
54 9–vinylanthracene 40.0 35.9 4.1 
55 anthracene 42.0 45.7 –3.7 
56 fluoranthene 42.0 35.2 6.8 
57 1–methylfluorene 49.0 41.3 7.7 
58 2–methylanthracene 50.0 40.2 9.8 
59 4H–cyclopenta[d,e,f]phenanthrene 50.0 37.0 13.0 
60 phenanthrene 50.0 41.5 8.5 

Gute et al. improved the QSAR models from Eq. (1) by using structural descriptors computed 
with POLLY [6]. The use of the number of paths of length 0, P0, significantly improved the QSAR: 

PADA = 224.1 – 67.9 P0
n = 60 r2 = 0.675 s = 7.4    F = 120.6 (4)

The use of the topological index 1 b, the bond path connectivity index of order 1, further 
improved the correlation of the dermal penetration with the PAH structure [6]: 

PADA = 179.7 – 78.8 1 b

n = 60 r2 = 0.695 s = 7.1    F = 132.0 (5)

The QSAR with 3DW, the three–dimensional Wiener index computed from the geometric 
(Euclidean) distance matrix of the hydrogen–suppressed molecule, was almost as good as the one 
obtained with P0 [6]: 

PADA = 186.0 – 25.4 3DW
n = 60 r2 = 0.673 s = 7.4    F = 119.3 (6)

However, P0 was computed from the molecular graph while 3DW was computed from the 
molecular geometry, making P0 a much more attractive descriptor for modeling the PAH dermal 
penetration. A fairly good QSAR model was obtained by using the molecular weight MW [6]: 

PADA = 90.6 – 0.3 MW
n = 60 r2 = 0.674 s = 7.4    F = 120.0 (7)

Various artificial neural network (ANN) models were investigated by Devillers for the same 60 
compounds, with the intention to explore the nonlinear relationships between the structural 
descriptors and skin penetration properties of PAHs [7]. The best results were obtained with a 



O. Ivanciuc, T. Ivanciuc, and A. T. Balaban 
Internet Electronic Journal of Molecular Design 2002, 1, 559–571 

565 
BioChem Press http://www.biochempress.com

multiplayer perceptron ANN with 6 input neurons, 3 hidden neurons, and one output neuron. The 6 
input structural descriptors were log P, MW, 1 b, SHDW6, an indicator variable for the presence of 
hydro–PAH, and an indicator variable for PAHs with 5 or more cycles. However, the ANN model 
contains 25 optimizable parameters (connections between neurons) while Eqs. (4)–(7) contain each 
2 optimizable parameters. 

Molecular quantum similarity measures computed at the 3–21G level were also used to model 
the dermal penetration of the 60 PAHs [8]. The structural information from the quantum similarity 
matrix for the 60 PAHs was analyzed with PCA (principal components analysis) and the first 17 
PCs (principal components) were retained for developing QSAR models. The best QSAR model (r2

= 0.684 and r2
LOO = 0.634) was obtained with three PCs (namely 1, 2, and 13). 

Molecular Modeling. In the present investigation, the chemical structures were generated with 
HyperChem [16], the geometry optimization was performed with MOPAC [17] using the 
semiempirical quantum method AM1 [18] and the QSAR models were computed with CODESSA 
[19].

Structural Descriptors. The HyperChem structure files and the MOPAC output files were used 
by the CODESSA program to calculate 328 descriptors for the 60 PAHs. CODESSA computes five 
classes of structural descriptors: constitutional (number of various types of atoms and bonds, 
number of rings, molecular weight); topological (Wiener index, Randi  connectivity indices, Kier 
shape indices, information theory indices); geometrical (principal moments of inertia, shadow 
indices, molecular volume and surface area); electrostatic (when atomic charges are computed on 
the basis of atomic electronegativity: minimum and maximum partial charges, polarity parameter, 
charged partial surface area descriptors, hydrogen bond donor and acceptor surface indices); 
quantum-chemical (minimum and maximum partial charges, Fukui reactivity indices, dipole 
moment, HOMO and LUMO energies, molecular polarizability, minimum/maximum valency of an 
atom, minimum/maximum electron–electron repulsion for an atom, minimum/maximum exchange 
energy for a chemical bond, minimum/maximum atomic orbital electronic population, 
minimum/maximum nucleus–nucleus repulsion for a chemical bond, minimum/maximum electron–
nucleus attraction for a chemical bond). 

Multiple Linear Regression Model. From the whole set of 328 descriptors generated with 
CODESSA we have discarded descriptors with a constant value for all molecules in the data set. 
Descriptors for which values were not available for every molecule were assigned a zero value for 
the missing position. In the next step the number of descriptors was reduced by eliminating those 
with F–test values less than 1, t–test values less than 0.1 or correlation coefficients with the dermal 
penetration less than 0.1; as a result of this descriptor selection procedure, 204 descriptors remained 
for 60 PAHs. CODESSA develops MLR models by a heuristic method which includes the 
following steps: (a) All quasi–orthogonal pairs of structural descriptors are selected from the initial 
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set. Two descriptors are considered orthogonal if their intercorrelation coefficient rij is lower than 
0.1. (b) CODESSA uses the pairs of orthogonal descriptors to compute the biparametric regression 
equations. The most significant 10 pairs of molecular descriptors are used in the third step. (c) To 
an MLR model containing n descriptors a new descriptor is added to generate a model with n+1
descriptors if the new descriptor is not significantly correlated with the previous n descriptors 
(intercorrelation coefficient lower than 0.8). Step (c) is repeated until MLR models with a 
prescribed number of descriptors are obtained. 

Table 2. Notation of the Structural Descriptors Involved in the QSAR 
Models for the Dermal Penetration of Polycyclic Aromatic Compounds. 
Notation Descriptor 
SD1 average electrophilic reactivity index for a C atom 
SD2 1 v, Kier and Hall valence connectivity index of order 1 
SD3 total molecular 2–center resonance energy 
SD4 2 v, Kier and Hall valence connectivity index of order 2 
SD5 gravitation index for all pairs of bonded atoms 
SD6 3 v, Kier and Hall valence connectivity index of order 3 
SD7 number of bonds 
SD8 3 , Randi  connectivity index of order 3 
SD9 CIC0, complementary information content of order 0 
SD10 log P, the octanol/water partition coefficient taken from Ref. [5] 
SD11 average valence of a C atom 
SD12 XY shadow / XY rectangle 
SD13 minimum electron–electron repulsion for a C–H bond 
SD14 maximum nucleus–nucleus repulsion for a C–H bond 
SD15 minimum (>0.1) bond order of a H atom 
SD16 maximum resonance energy for a C–H bond 
SD17 FPSA3 = PPSA3/TMSA, fractional PPSA3 (quantum) 
SD18 maximum 1–electron reactivity index for a C atom 
SD19 RPCG, relative positive charged surface area (quantum) 
SD20 relative number of rings 
SD21 maximum quantum bond order of a H atom 
SD22 EHOMO–1, energy of the HOMO – 1 molecular orbital 
SD23 RNCG, relative negative charged surface area (electrostatic) 
SD24 maximum valence of a H atom 
SD25 Qmin, minimum partial atomic charge 
SD26 ABIC2, average bonding information content of order 2 
SD27 ACIC2, average complementary information content of order 2 
SD28 BIC2, bonding information content of order 2 
SD29 IC2, information content of order 2 

Model Validation. QSAR correlations can be observed not only because a causal relationship 
exists between a set of descriptors and a property, but also due to statistical bias resulting from 
errors in determining structural descriptors, experimental errors in measuring the property, or even 
due to chance alone. Model validation techniques are needed in order to distinguish between true 
and random correlations and to estimate the predictive power of the model. Although the QSAR 
equations developed with CODESSA are obtained by selection of descriptors from a large pool, 
several descriptor selection techniques are used in order to minimize the possibility of chance 
correlations. In a first step, from the initial pool of descriptors, CODESSA eliminates descriptors as 
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indicated above, thus greatly reducing the dimensionality of the problem – that of finding a QSAR 
equation with a good predictive power. Then, as described in the previous section, a heuristic 
algorithm selects only quasi–orthogonal groups of descriptors that are tested for correlation with the 
boiling temperatures of carbonyl compounds. This selection algorithm ensures that the probability 
of obtaining a chance correlation is low, and maintains a reasonable searching time. Finally, the 
leave–one–out (LOO) cross–validation procedure is applied to each and every MLR equation in 
order to estimate the prediction power of dermal penetration QSAR. 

3 RESULTS AND DISCUSSION 

Table 2 presents the notation and a short description of the structural descriptors involved in the 
QSAR models reported in this investigation; more complete definitions of the descriptors can be 
found in the CODESSA manuals [19]. The statistical results obtained in the best ten 
monoparametric correlations are presented in Table 3. For each equation we report the descriptor 
involved and the statistical indices of the model, i.e. the correlation coefficient r, the leave–one–out 
cross–validation correlation coefficient rcv, the standard deviation s, and the F–test value. 

Table 3. Structural Descriptors and Statistical Indices (Calibration Correlation Coefficient r,
Leave–One–Out Cross–Validation Correlation Coefficient rLOO, Standard Deviation s, and Fisher 
Test F) in the Best Ten Monoparametric QSAR Models for the Dermal Penetration of the 60 PAH. 

No. SD r2 r2
LOO s F

1 SD1 0.7112 0.6896 6.9 142.82 
2 SD2 0.6970 0.6745 7.1 133.44 
3 SD3 0.6748 0.6493 7.4 120.36 
4 SD4 0.6681 0.6464 7.4 116.73 
5 SD5 0.6664 0.6424 7.4 115.84 
6 SD6 0.6631 0.6418 7.5 114.14 
7 SD7 0.6562 0.6304 7.6 110.72 
8 SD8 0.6517 0.6281 7.6 108.50 
9 SD9 0.6342 0.6024 7.8 100.57 

10 SD10 0.6187 0.5880 8.0 94.09 

The best PADA model from Table 3 is obtained with SD1, the average electrophilic reactivity 
index for a carbon atom: 

PADA = – 50.10(±6.26) + 12542(±1050) SD1 
n = 60 r2 = 0.711 r2

LOO = 0.690 s = 6.9    F = 142.82 (8)

The QSAR models obtained with SD1 represents a significant improvement over previous models 
from Eqs. (1) and (4)–(7). In the group of 10 QSAR monoparametric models from Table 3 one can 
find a constitutional descriptor (SD7, the number of bonds), log P, five topological indices (1 v, 2 v,
3 v, 3 , and CIC0), a geometrical index (SD5, the gravitation index for all pairs of bonded atoms), 
and two quantum indices (the average electrophilic reactivity index for a carbon atom and the total 
molecular 2–center resonance energy). 
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Table 4. Structural Descriptors and Statistical Indices in the Best Ten QSAR 
Models with Two Descriptors for the Dermal Penetration of the 60 PAH. 

No. SD1 SD2 r2 r2
LOO s F

1 SD1 SD11 0.7476 0.7189 6.5 84.42 
2 SD1 SD12 0.7373 0.7079 6.7 79.98 
3 SD1 SD13 0.7359 0.7028 6.7 79.40 
4 SD1 SD14 0.7350 0.7042 6.7 79.05 
5 SD1 SD15 0.7338 0.7021 6.7 78.57 
6 SD1 SD16 0.7307 0.6986 6.8 77.31 
7 SD1 SD17 0.7299 0.6994 6.8 77.00 
8 SD2 SD18 0.7250 0.6952 6.8 75.15 
9 SD19 SD20 0.7211 0.6920 6.9 73.68 

10 SD3 SD18 0.7142 0.6831 7.0 71.23 

Improved PADA QSAR models are obtained by using two descriptors, as can be seen from the 
models in Table 4, with r2 between 0.7476 and 0.7142, and the leave–one–out cross–validation 
correlation coefficient r2

LOO between 0.7189 and 0.6831. In the first 7 bi–parametric models, SD1 
appears together with other geometric, electrostatic, or quantum descriptors. The best model from 
Table 4 is obtained with SD1 and SD11, the average valence of a carbon atom: 

PADA = 8897(±3119) + 12025(±1006) SD1 – 2269(±791) SD11 
n = 60 r2 = 0.748 r2

LOO = 0.719 s = 6.5    F = 84.42 (9)

Table 5. Structural Descriptors and Statistical Indices in the Best Ten QSAR Models with 
Three Descriptors for the Dermal Penetration of 60 PAH. 

No. SD1 SD2 SD3 r2 r2
LOO s F

1 SD1 SD11 SD21 0.7608 0.7251 6.4 59.39 
2 SD1 SD11 SD22 0.7593 0.7211 6.4 58.89 
3 SD1 SD11 SD23 0.7589 0.7225 6.4 58.77 
4 SD1 SD11 SD24 0.7574 0.7214 6.5 58.27 
5 SD1 SD11 SD18 0.7572 0.7194 6.5 58.20 
6 SD1 SD11 SD25 0.7570 0.7209 6.5 58.14 
7 SD1 SD11 SD26 0.7562 0.7212 6.5 57.90 
8 SD1 SD11 SD27 0.7561 0.7210 6.5 57.87 
9 SD1 SD11 SD28 0.7560 0.7215 6.5 57.82 

10 SD1 SD11 SD29 0.7559 0.7215 6.5 57.81 

A further improvement of the QSAR models is obtained by using three descriptors, as can be 
seen from Table 5, where the PADA models have r2 between 0.7608 and 0.7559, and the leave–
one–out cross–validation correlation coefficient r2

LOO between 0.7251 and 0.7215. All QSAR 
models from Table 5 are derived from the best bi–parametric model containing SD1 and SD11. The 
best PADA model is obtained with SD1, SD11, and SD21, the maximum quantum bond order of a 
H atom: 

PADA = 9947(±3121) + 11754(±999) SD1 – 2566(±795) SD11 + 126.2(±71.7) SD21 
n = 60 r2 = 0.761 r2

LOO = 0.725 s = 6.4    F = 59.39 (10)

A further increase in the number of structural descriptors in the PADA models does not 
significantly improve the prediction power of the QSAR models. In Figure 1 we present the 
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experimental vs. calculated PADA for the group of 60 PAHs, while in Figure 2 we display the 
calibration residuals computed with Eq. (10). Both these figures show that there is no special trend 
of the residuals and no clusters can be detected in the data. 
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Figure 2. Experimental dermal penetration vs calculated 
with Eq. (10) for 60 PAHs. 

Figure 3. Calibration residuals computed with Eq. (10) for 
the dermal penetration of 60 PAHs. 

Table 6. Distribution of the Absolute Values of the Residuals 
for QSAR Models from Eq. (1), Eq. (5), ANN, and Eq. (10). 

Range Eq. (1) 
Ref. [5] 

Eq. (5) 
Ref. [6] 

ANN 
Ref. [7] 

Eq. (5) 

<2 9 9 21(2) 19 
[2, 4) 15 16 11(1) 11 
[4, 6) 9 9 6(1) 8 
[6, 8) 9 12 8 8 
[8, 10) 7 6 5 7 

[10, 12) 5 3 4(1) 5 
[12, 14) 4 2 0 1 
[14, 16) 0 1 0 0 

16 2 2 0 1 

The distribution of the absolute values of the residuals for QSAR models from Eq. (1) [5], Eq. 
(5) [6], ANN [7], and Eq. (10) is presented in Table 6. For the results obtained with the neural 
network, the residual values obtained for the testing set (PAH 9, 18, 27, 36, and 45) are indicated in 
parentheses. In this comparison we have to consider that Eqs. (4)–(7) contain each 2 optimizable 
parameters, Eq. (10) has four optimizable parameters, while the ANN model contains 25 
optimizable parameters. With a much lower number of optimizable parameters than the ANN, Eq. 
(10) has a distribution of the residuals very similar to the one obtained with the neural network, with 
the majority of absolute residuals lower than 2. Two compounds have residuals between 2s and 3s
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(59 with 13.0, and 44 with 16.8), and no statistical outlier (PAHs with absolute residual greater than 
3s) is produced by Eq. (10). 

4 CONCLUSIONS 

A successful application of the CODESSA software system was presented in this study for the 
prediction of the dermal penetration of 60 polycyclic aromatic hydrocarbons using theoretical 
descriptors derived from the molecular structure. After a heuristic screening of relevant structural 
descriptors, the QSAR model with the best statistics (r2 = 0.761, r2

LOO = 0.725, s = 6.4, and F = 
59.39) was obtained with three quantum descriptors: average electrophilic reactivity index for a C 
atom, average valence of a C atom, and maximum quantum bond order of a H atom. Together with 
the QSAR model proposed in this study, these three quantum descriptors could be used to estimate 
the dermal penetration for not yet synthesized or laboratory tested polycyclic aromatic 
hydrocarbons.
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