
Int. J. Mol. Sci. 2008, 9, 719-735 
 

International Journal of 
Molecular Sciences 

ISSN 1422-0067 
www.mdpi.org/ijms 

Article 

Binding of Ochratoxin A to a Urinary Globulin: A New Concept 
to Account for Gender Difference in Rat Nephrocarcinogenic 
Responses  
 
Peter G. Mantle 1,* and Judit M. Nagy 2 

 
1 Centre for Environmental Policy, Imperial College London, London SW7 2AZ, UK. 
2 Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK. 
 
* Author to whom correspondence should be addressed; E-Mail: p.mantle@imperial.ac.uk 
 
Received: 14 January 2008; in revised form: 6 April 2008 / Accepted: 6 May 2008 /  
Published: 8 May 2008 
 

 
Abstract: SDS-gradient mini-gel electrophoresis and immunoblotting of urine of rats 
given ochratoxin A (OTA), showed OTA binding to an α2u-globulin. Perceived potential 
internalised delivery of OTA to proximal tubule epithelia by the carrier, specific only to 
adult male rats and augmenting other uptake mechanisms, suggests that some experimental 
nephrotoxicological data may not be appropriate for human risk assessment. Re-
examination of female rat renal tumour histopathology of the NTP high dose OTA study 
showed all carcinomas were solitary, unilateral, microscopic and clinically insignificant at 
the 2-year end-stage. The novel concept, when consolidated further from our archived 
material, may moderate current perceptions of the human risk of traces of dietary OTA.  
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1. Introduction 
 

The general toxicity of ochratoxin A (OTA) and its binding to plasma albumins has long been well 
known in several animal systems [1,2,3], but demonstration of its potent renal carcinogenicity [4], 
notable particularly in male rats, showed a sinister aspect that has since stimulated much research. 
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Classification of OTA as “possibly carcinogenic to humans” [5], and its spasmodic trace occurrence in 
some foodstuffs of agricultural origin, has caused concern about food safety and impacts on food 
commodity trade. Binding of OTA with fairly high affinity to complex plasma proteins means that 
much of the circulating toxin is temporarily excluded from direct toxicological significance. Only the 
small proportion that is free in plasma at any one moment is available for renal excretion. However, 
variations in dissociation constants for plasma albumins in different types of animal will determine the 
extent to which free OTA is available for excretion in glomerular filtrate and accessible to whatever 
mechanisms facilitate absorption into tubule epithelia. Such absorption of toxin is hardly advantageous 
to an animal, but may be an inevitable consequence of one moiety of the OTA molecule being 
‘recognisable’ as the essential amino acid phenylalanine, and the whole molecule potentially being an 
organic anion for which trans-membrane transporter proteins occur in renal tubules [3, 6]. 

Although glomerular filtration would seem to be the most obvious direct way in which a small 
organic xenobiotic such as OTA is eliminated via rat kidney, there have been several publications 
invoking activity of organic anion transporter proteins (OATs), demonstrable in tissue-cultured cells 
and in tissue cryosections and thought to function in vivo by transporting OTA from renal parenchyma 
interstitium into proximal tubule cells. However, it is difficult to envisage free OTA in circulating 
blood plasma leaking into renal interstitium and crossing the basement membrane more easily than to 
flow directly through the fenestrations of glomerular capillary endothelia. Arterial blood in kidney 
cortex flows primarily to glomeruli before returning as peritubular capillaries to collect vital low 
molecular weight nutrients scavenged from glomerular filtrate. 

In the present context the important consideration is whether expression of OATs in adult rat kidney 
varies between sexes; notably OAT 1 and OAT 3, proposed as OTA transporters, was expressed 
similarly in kidney of pre-pubertal Sprague Dawley males and females [6] but OAT 2 mRNA 
expression increased significantly in females relative to males after 35 days old. In older adults OAT 1 
was expressed a little more in males than females, and OAT 2 was expressed much more in females 
than males [7]. In other studies in adult Wistar rats [8], greater constitutive expression of OAT 1 and 
OAT 3 in male cortical tubule epithelia was illustrated, and shown to be influenced by androgens. 
However, over an OTA dose range of 50-500 µg/kg per os on alternate days for 10 days, lower doses 
up-regulated expression of OAT 1 and OAT 3 but higher doses down-regulated expression in cortical 
tubules [9]. Correspondingly, when compared with controls, no significant change in expression of 
genes associated with organic anion transporters was detected in kidney of male Fischer rats during the 
first year of continuously ingesting OTA-contaminated feed and potentially leading to carcinogenesis 
[10]; the dose was in the middle of the above range. Comparative studies on renal cortical 
homogenates from pig, mouse, rat and human did not reveal involvement of any common binding 
component, such as a known organic anion transporter protein [11]. Thus the role of cortical OATs in 
rat renal elimination and toxicology of traces of OTA that can cause renal cancer remains uncertain. . 
Perhaps this explains why a recent review [12] makes only brief and unclear mention of the role of 
OATs in OTA elimination in vivo. 

In any case, rather little free OTA is excreted directly in urine, recognisable elimination being 
mainly in the form of OTA’s isocoumarin moiety, released by peptide cleavage of the toxin to give 
ochratoxin alpha. Some of these processes have been studied in vitro, but the pharmacodynamics of 
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renal handling of traces of OTA in glomerular filtrates of animals ingesting traces of the toxin in feed 
remains unclear [13]. 

Another putative mechanism for rat gender difference in OTA renal carcinogenesis was proposed 
[14] involving different degrees of expression of some cytochrome P450 enzymes. However, the 
analyses were made on kidney from the 2-year end-point in an OTA carcinogenicity study [15] and it 
is not stated whether any of the organs contained neoplastic tissue. It is difficult to relate any 
differential enzymology findings in the kidneys of rather elderly and questionably carcinomatous rats 
to the situation in dynamic adults during the first year of life. The first year is the period during which 
dietary OTA exposure can programme sufficient tumour initiation and promotion for tumours to 
develop later in the second year [16]. Thus we conclude that there is yet no plausible mechanism to 
explain gender response differences seen in young adults.  

Recent lifetime studies on rat renal tumours [16,17 and our unpublished data] have generated 
material and experimental context for fresh study of the marked gender difference in carcinogenic 
response first emphasised in the classic NTP study [4]. Involvement of binding of OTA to androgen-
dependent α2u-globulin, with consequent putative involvement of a specific α2u-globulin-
nephropathy, exemplified by d-limonene [18], has been discounted in rat OTA nephrotoxicity though 
by indirect experiment [19] , The finding has been generally accepted [20,21,22]. Alpha2u-
nephropathy is typified by the binding of d-limonene so tightly in a pocket within the protein structure 
that, when absorbed into proximal tubule epithelia, the cells are unable to recycle the protein. 
Consequently, it accumulates. Cellular proliferation to replace consequent morbidity is thought to 
account for ensuing nephropathy. However, generalised application of this hypothesis has recently 
been questioned [23],  

α2u-globulin, synthesised in male rat liver, is rapidly excreted via glomerular filtration and 
therefore has a very short half-life in plasma [18]. If dietary protein is not abundant the small proteins 
are reabsorbed rather efficiently into proximal tubule epithelium so that they remain rather cryptic and 
internalised in the male rat. However, on standard laboratory rat diet, there is less need for stringent 
protein economy and traces of globulins can be found in adult urine, allowing detection and 
recognition as in the present pilot study. 

2. Materials and Methods 

Experimental urine samples 

A male Fischer rat, age 14 months and 500 g body weight, was given a large dose of OTA (6 mg) 
dissolved in dilute sodium bicarbonate by oral gavage. The OTA was from the same preparative batch 
as was supplied to some partners in a recent EU-sponsored research programme and the quality of 
which had been independently verified [24]. Urine, collected into 1 ml 1% sodium azide in a 
metabolism cage overnight after 2 days and stored at -20 ºC, was selected for analysis of response to 
this acutely toxic insult. Another male rat, a cross between a Sprague-Dawley female and a Fischer 
male, was selected because this hybrid avoids the inherent tendency of Fischers to develop a 
spontaneous mononuclear leukaemia, was given OTA as a 5 ppm dietary component (20 g feed;  
100 µg OTA daily) for 250 days from pubescence. Similarly, urine was collected overnight in a 
metabolism cage for analysis of response to a well-tolerated chronic exposure, typical of that used for 
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recent lifetime renal tumour studies [17]. Urine from a female litter-mate of the above Sprague-Dawley 
x Fischer hybrid, similarly given OTA, was also available. 

A few µl of urine was collected a few hours after delivery by the supplier (Harlan) from each 
animal in two weight-matched groups of three pubescent Sprague-Dawley males from the same 
delivery group and of similar age but with weight in the ranges 180-184 g and 186-192 g. Urines in 
each group were combined for analysis. Urine was also collected from an adult male mouse (strain 
IL4/13K0), currently resident in the animal facility. 

Sample preparation and SDS gel electrophoresis 

Urine samples from rats showing oligouria were concentrated ten-fold using the Micron ultra-
centrifugal filter units (Millipore, Watford, UK) following the manufacturer’s instructions. We wished 
to ensure that sufficient α2u-globulin, likely to be occurring only in trace amount in urine and possibly 
including some molecules carrying OTA, could be available for electrophoretic resolution in the <1 µl 
applied to a mini-gel. 

SDS gel electrophoresis and Western blotting was carried out using the GE Healthcare (Amersham, 
UK) Phast system. Protein samples obtained from the concentrator were diluted to the desired 
concentration in Phast gel loading dye and heated at 85 oC for 5 min. Then, 2.5 μl of each sample were 
loaded on 8-25 % gradient precast Phast-gels. Gels ran for 20 min, according to the manufacturer’s 
instructions, and were stained with Imperial colloid coomassie stain (Pierce, Rockford, IL, USA) and 
imaged by the Syngene (Cambridge, UK) Dyversity imaging system. Immunoblotting used OTA 
primary antibody purchased by special arrangement from R-Biopharm Rhone Ltd., Glasgow. The 
controls were male rat α2u-globulin (courtesy of Dr M. Dobrota, University of Surrey) diluted to an 
appropriate concentration, or α2u-globulin mixed with OTA of similar molarity, incubated at RT for 
10 min and then loaded on the SDS page gel. The secondary antibody was Sigma anti-mouse 
(polyclonal). Western blots were visualised using the ECL plus kit from GE Healthcare (Amersham, 
UK) and imaged on the Syngene (Cambridge, UK) Dyversity imaging system. 

3. Results 

Mini-gel electrophoresis and coomassie staining showed the two major isoforms of α2u-globulin in 
the reference sample (Figures 1 and 2), resolved into the 18.8 and 18.1 kDa compounds previously 
described [25,26] and designated isoforms A and B, respectively. Molecular biology evidence showed 
[26] that in adult Sprague-Dawley and Fischer males the isoforms A and B are synthesised in a ratio of 
1:4. Thus the mature adult hybrid male used in the present study is likely to have had similar synthetic 
potential and it is concluded that the two isoforms are present on the gel. In contrast, analysis of the 
urine of a female litter-mate, collected concurrently, revealed no evidence of the globulins (gel not 
shown), consistent with the well-established androgen dependence of gene expression for these 
proteins [17]. 
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Figure 1. Matched gradient-gel electrophoretograms comparing resolution of urinary 
proteins of a mature Fischer male rat after acute OTA intoxication and a hybrid male rat 
after chronic OTA exposure with a reference sample of male rat α2u-globulins with and 
without added OTA. Left, stained with coomassie blue, right after immunoblotting with 
OTA antibody. Molecular marker in kDa. 
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Figure 2. Coomassie-stained gradient-gel electrophoretic resolution of urinary proteins of 
male Sprague-Dawley rats (groups of three, mean ~183 g and ~ 189 g; ranges 180-184g 
and 186-192g) and of an adult male mouse (25 g).  
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Figure 3. Comparative illustration of the contrast between maximum expression of renal 
carcinoma in response to chronic OTA exposure in male and female rats. A, Extensive 
carcinomatous nodules on abdominal serosal surfaces of male rat including diaphragm and 
prostate, but notably excluding bladder, metastatic from unilateral renal carcinoma 
(hidden); B, median section through one of the larger metastasising renal carcinomas 
illustrated by that of the animal in A, bearing two tangential patches of residual kidney 
tissue; C, LS kidney of female rat given the high OTA dose regime of the NTP study 
(Boorman 1989) showing the largest carcinoma, only discovered in situ at the end of the 2 
year study (section courtesy of NTP Archives). 

 
 

Mini-gel electrophoresis and immunoblotting with OTA antibody revealed binding of OTA to the 
reference sample of α2u-globulin after simple mixing of an aqueous solution of both components 
(Figure 1). Also, clear evidence of a similar association was evident in urine of the mature male rats 
given OTA either as a single acute dose or after many months of continuous ingestion (Figure 1). 
Incidentally, the urine from the rat given a large acute OTA dose also contained a notable content of a 
protein of ~ 50 kDa, partially reflecting the tubular epithelial damage from the acute insult that was 
evident also by an approximately 20-fold increase in total urinary protein and concomitant marked 
temporary glucosuria and haematuria. In contrast, the Sprague-Dawley x Fischer hybrid given dietary 
OTA showed no excessive proteinuria or other abnormality. However, the narrow resolution of the two 
main isoforms of α2u-globulin in the mini-gel limited definitive matching of the immunoblot with the 
coomassie-stained small proteins to identify which globulin isoform close to the 20 kDa molecular 
marker was involved. 



Int. J. Mol. Sci. 2008, 9 725

 

 

Figure 4. Micrographs of H & E sections of NTP female high OTA dose Fischer rats. A-C, 
detail of section in Figure 4C. A, representative carcinoma. B, carcinoma infiltrating renal 
medulla. C, prominent karyomegaly in the renal papilla. D, another example of a small 
renal carcinoma with necrotic centre, located at the corticomedullary junction. 

 
 

First occurrence of the 18.8 kDa isoform of α2u-globulin in urine of pubescent male rats was shown 
to be during the 180-190 g transition in Sprague-Dawley males (Figure 2). Electrophoresis of urine 
from a mature male mouse also revealed a pair of proteins of a size similar to those of the rat α2u-
globulins (Figure 2). 

4. Discussion 

From the present analyses, we perceive a role for probably just one α2u-globulin as an OTA-carrier 
protein, augmenting other OTA-uptake mechanisms in male rat nephrons, with effect increasing 
through puberty according to the well-established sharp increase in synthesis of the globulins in liver 
between 70 and 100 days of age [26]. 

By providing an exclusively male mechanism for enhanced rate of transfer of some circulating OTA 
to proximal tubules, the concept should result in relatively increased plasma OTA concentration in 
females if they lack any androgen-dependent mechanism for elimination. Conversely, females might 
sustain a lower OTA concentration in kidney during its temporary passage through the organ. 
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Notably, therefore, markedly higher plasma OTA concentration was measured in female adults 
(Sprague Dawley x Fischer hybrids) after 8 months of continuous dosing [27]. Also, Fischer female 
rats achieved higher plasma concentration following a single dose of OTA [28]. Even in Dark Agouti 
rats (constitutively with a much shorter plasma half-life than Fischers [27]), dietary OTA for 4 weeks 
resulted in a higher plasma concentration in females [31]. 

The concept of a specific OTA-delivery system augmenting proximal tubule exposure to the 
mycotoxin in the male rat could explain the greater histopathological response of male rats to OTA (1 
mg) given once daily by oral gavage for 5 days than when the same amount was consumed in diet [29]. 
Relatively rapid delivery to proximal tubule epithelia of some of the OTA bound to the readily-
filterable globulin could give a surge of toxic insult, whereas delivery to tubule epithelia from dietary 
absorption would give a less acute peak of daily insult. It is predicted that this would more readily 
cause nephropathy than the trickle feed of traces of free OTA in plasma that escapes from circulating 
blood by glomerular filtration during natural, more protracted, feed intake even with concomitant 
trickle feed via the globulin.  

The present findings can similarly explain the significantly fewer male renal carcinomas in response 
to 2-year continuous dietary OTA [17] than to the intermittent oral gavage administration adopted in 
the NTP protocol [4], in spite of giving about twice the gavaged dose via diet. 

There is apparently no human analogy of the male rat urinary globulins. Thus, extrapolation from 
dose-response data for experimental rat renal carcinoma to human risk assessment may only be 
appropriate for the female data, for which evidence is relatively sparse. OTA-attributed renal 
carcinomas in female rats have so far been limited, in the highest similar doses used, to three Fischer 
rats out of 50 in the NTP study, discovered only at the end stage [4,30], and to a single animal out of 
20 Lewis females, similarly discovered only at the end of a 2-year study [14,15]. Further, in the latter 
study, there were no tumourous kidneys in 40 Dark Agouti females. However, karyomegalic nuclei 
were abundant in the cortico-medullary region of all Dark Agouti males, but only observed in ~ 10% 
of females. Applying the present concept, the Dark Agouti findings are consistent with gender 
differential of toxic insult to tubule epithelia, which can now be attributed to an androgen-dependent 
OTA-carrier protein. Detail on the single renal tumour in a Lewis female is obscure [15, 42,43], but 
NTP has extensive archives. 

Courtesy of NTP Archives, we have been able to review H & E sections of the tumourous kidneys 
of Fischer females from the OTA study and study all the benign and malignant hyperplasias. 
Comparison with the more obvious tumours in male rats, reported in the NTP study and also illustrated 
from recent experiments [16,17], can be made from the example shown in Figure 3AB. In contrast, 
Figure 3C shows the magnitude of the largest (4mm diameter) carcinoma in female rats of the NTP 
study, and which did not even distort the kidney. Nevertheless, detailed histopathology shown in 
Figure 4A,B illustrates that there was typical disorganised carcinoma with many enlarged nuclei with 
prominent nucleoli, infiltrating surrounding renal parenchyma and reminiscent of that of male rat renal 
carcinomas in which DNA ploidy distribution has been measured as consistently aneuploid [16]. A 
surprising observation was extensive kayomegaly focused within the renal papilla of all female rat 
tumour-bearing kidneys of the high OTA dose group, where the section passed though the papilla 
(Figure 4C). This does not seem to have been reported before, but in the present context is interpreted 
as consequential in the female of a smaller proportion of excreted OTA, being transported into 
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proximal tubule epithelia than in the male. Some free OTA in glomerular filtrate may then have been 
available to affect epithelia in the loop of Henle. Since the carcinomas were all unilateral and 
microscopic, and were discovered only at the end of the study, they were most unlikely at that stage to 
have significantly affected health. Another, even smaller carcinoma is shown in Figure 4D. None of 
the three carcinomas had metastasised. 

Since illustration of female renal tumour histopathology ascribed to OTA has not previously been 
published, location of a small cortical neoplasm is illustrated in Figure 5 to show its origin close to 
innermost glomeruli, but karyomegalies typically caused by OTA are nearby. 

Figure 5. NTP female (105 weeks, high OTA). Focal adenoma sited just inside the 
innermost glomeruli. Karyomegalic nuclei are located between tumour and glomeruli.  

 
 
Another example has karyomegalic nuclei already located amongst proliferating epithelial cells 

(Figure 6). The other few small solitary renal neoplasms in females at or near the 2 year endpoint of 
the NTP study seemed all to be located in the corticomedullary region (e.g. Figures 7 and 8). 

To be inclusive of all published experimental female rat renal carcinoma data, the unilateral 
carcinoma discovered in the NTP mid-dose OTA group only at 46 weeks should be mentioned. It was 
unique in occurring very much earlier in life than all others, even in male rats in that and in all other 
subsequent lifetime studies which were only found from 75 weeks onward. Although spontaneous 
renal tumour is extremely rare even in Fischer females, caution should be exercised in placing undue 
significance on this single atypical finding. 
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Figure 6. NTP female (91 weeks, high OTA). Small cluster of renal tubules with epithelial 
proliferation, constituting adenoma containing several karyomegalic nuclei.  

 

Figure 7. NTP female (104 weeks, high OTA). Prominent karyomegalic nuclei and mitosis 
in cytomegalic epithelium of inner-cortical tubule. Karyomegalic nuclei also in some 
surrounding tubules. Possibly a very early tumour. 
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Figure 8. NTP female (104 weeks, high OTA). Nuclear proliferation in an inner-cortical 
tubule with karyomegalic nuclei in adjacent and nearby tubules. Probably an early 
adenoma. 

 
 

In a very recent full-lifetime experiment with Dark Agouti male rats at Imperial College, more than 
3 months of continuous exposure to dietary OTA (5 ppm) was necessary to cause renal cancer later in 
life; much of this period coincides with the period of maximum synthesis of α2u-globulin in liver 
[25,26]. 

In determining the structure of the α2u-globulin in its complex with, for example, the hyaline drop 
inducer d-limonene, a binding cavity was observed, of dimensions appropriate for that small aromatic 
molecule [32]. In the present study, immunological recognition of OTA bound to an α2u-globulin 
isoform will have required access of the antibody to recognise the chlorinated toxin, utilising the 
antibody’s high specificity for OTA as opposed to its deschloro-analogue ochratoxin B. However, the 
OTA-α2u-globulin binding is obviously not so strong as to make the complex function like those in 
which the globulin binds with several small molecules to cause typical α2u-globulin nephropathy [18]. 
Thus it is deduced that both intracellular release of the toxin and normal degradation of the globulin 
would occur within proximal tubules after uptake of the complex in vivo.  

Predictably, intestinally-absorbed OTA travels within seconds to the liver where α2u-globulin is 
synthesised in the male rat and where binding to the virgin protein in blood can occur. The globulin 
has a very short half-life in blood, consequent on the hepatic product’s opportunity for passage via ~ 
50,000 glomeruli. Hence there will be rather little remaining subsequently in blood flowing to the 
intestines and in the hepatic portal vein. The known daily yield of hepatic α2u-globulin in a male rat 
[18] could predictably alone accommodate molar binding of ~1mg OTA, during its slow acquisition 
daily from feed. Rapid glomerular filtration could then deliver much of the bound OTA to target 
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epithelia, complementing some of the small amount of freely-filtered OTA that is in competing 
dissociation equilibrium with serum albumins. Binding to the large serum proteins may vary between 
species and gender of experimental animals [11]. 

Gender difference in renal tumourigenic response to OTA in the mouse seems to be absolute, the 
male only being susceptible [33,34], and unexplained. Mouse urinary protein(s) [e.g. 35] obviously 
deserve study to see if there is any similar binding with OTA. As with rats, focus should be on small 
proteins circulating in blood that, for reasons of physiological economy might be undetectable in urine 
because of efficient scavenge from glomerular filtrate by tubular epithelia. 

The present new concept was first proposed at the 2007 IUPAC Mycotoxins Symposium (41), 
where also a poster presentation reported rather similar kinetics of OTA in plasma and kidney in 
prepubertal Fischer rats given a single oral dose of the toxin in dilute sodium bicarbonate [36]. In that 
report, toxin reached maximum plasma concentration within 2 hours and was maintained for at least 
another day. By using aqueous oral administration there was even more opportunity for any 
glomerulus-filterable, male carrier protein to operate than would be expected if OTA had been 
absorbed slowly from the vegetable oil used in both the NTP study and another [15]. The report [36] 
provides a firm basis for expecting no fundamental gender difference in renal pathology response to 
OTA in juveniles of the Fischer rat strain commonly used in NTP studies to detect worst-case 
sensitivities to xenobiotics. However, it would not be surprising that renal tumourigenic sensitivity of 
males and females could diverge if exposure to OTA occurs during puberty and subsequent sexual 
maturation. Therefore it is logical that the marked gender difference in both frequency of occurrence 
and in magnitude of expression of renal tumourigenesis (and most significantly in carcinogenesis) in 
response to OTA administered after puberty in well-replicated experiments [4,15] could arise from a 
subtle change in physiological biochemistry caused in the male rat by hepatic synthesis of an 
androgen-dependent globulin to which OTA can bind. 

Focus on the male rat renal carcinoma data from the NTP study has been a significant element in 
assessing the risk to human health of traces of OTA in some human foods. Such assessment remains 
hypothetical because OTA has not been proved to cause any human disease, although for some 
researchers it is a plausible aetiological factor for the Balkan endemic nephropathy and/or associated 
urothelial tumours [37]. However, it is important to note that the Balkan nephropathy tumours occur in 
the transitional cell tissues of the urinary tract and are not renal cell carcinomas. Nevertheless, silent 
early processes of urological carcinogenesis remain unclear, and extrapolation from the latter part of a 
standardised 2-year ‘lifetime’ of an experimental rat to any of the mainly-idiopathic human urinary 
tract tumours is particularly difficult. Experimental highest-dose/response findings for male rats in the 
NTP study recorded renal carcinomas in 60% of animals, which could be adjusted by Cox regression 
analysis to 77 % to account for the unscheduled leukaemia mortalities in Fischer rats [4]. The data 
gave powerful evidence of OTA’s malignant potential, and with the data from other dose groups has 
recently been seen as a perfect fit of an exponential dose-response relationship for a thresholded 
carcinogen based on thermodynamic principles in biology [38]. We calculate that the threshold thereby 
deduced from the NTP study data can be equated to a continuous dietary OTA content of ~ 250 ppb, 
and a recent study at Imperial College in Dark Agouti males (n=20) exposed for 2 years showed a 
zero-tumour threshold at 400 ppb. The thermodynamic principle should also apply to the NTP female 
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data, modest as it is, thereby offering an even higher experimental threshold that might otherwise have 
been applied from male rat data to human risk assessment.  

The aforementioned experimental findings relate to continuous 2-year ‘lifetime’ exposure to OTA, 
dosed either to maintain intake related to body weight in the NTP study [4] (although equivalent to a 
mean daily intake of ~ 150 µg/kg) or on a constant daily intake of ~ 100 µg in the recent study with the 
smaller Dark Agouti strain. The latter equates to about twice the NTP study dose on a body weight 
basis throughout most of adult life. 

A recent review [39] based firmly on histopathological evidence from experimental rat tumours 
placed OTA in the category of ‘chemicals inducing renal tumours through direct interaction of the 
parent compound or metabolite with renal DNA’. Other indirect evidence has led some authors to 
conclude that OTA is not genotoxic [e.g. 44, 45] and this assumption was adopted in the latest EFSA 
review of OTA toxicity [46]. It has also been postulated that OTA’s carcinogenicity in male rats is 
non-thresholded [47], but this seems an unfortunate deduction in view of the direct evidence from all 
lifetime rat studies, as far as their statistical power permits. However, since we are aware of recent 
direct structural data proving involvement of OTA in DNA adducts, we must view the present concept 
in the context of OTA being genotoxic however that term is defined. Further, a more severe attitude to 
OTA from the point of view of human risk assessment may arise when the structural data is published. 
Given that OTA directly damages rat renal DNA, but that incidence of DNA adducts falls below the 
limit of detection within a few weeks of toxic insult, it must not be assumed that repair is always total 
and perfect. Considering the relatively few genetic loci in which persistent damage is potentially 
tumourigenic, it is not surprising that several months of continuous genotoxic insults to renal tubule 
DNA are necessary to secure a critical genetic defect in one tubular cell in one kidney. Our 
unpublished data with Dark Agouti rats given continuous dietary exposure with OTA (5 ppm) showed 
that 6 months of a continuous barrage of renal tubule DNA damage was necessary to raise tumour 
probability above threshold. That the critical damage might be in one of the karyomegalic nuclei, that 
are well known to persist through life, has already been suggested [16]. The dose dependence of the 
incidence of renal carcinomas in male rats and in the frequency of bilateral tumour occurrence is 
consistent with dose dependent increase in probability of causing a critical genetic defect. 

It is not clear from the JECFA and EFSA reports [20,46] that panels considered qualitative rat 
tumour characteristics in addition to the quantitative dose-response incidence data. However, as is the 
case in human renal carcinoma, tumour proliferation stage has considerable bearing on the outcome of 
that morbidity. Amongst all experimental male rat renal carcinomas caused by OTA, there were 
several that were not only adversely affecting animal health by disabling a kidney but also by causing 
distant metastatic disease, of particular terminal consequence in lungs. In the case of the Fischer strain, 
leukaemia caused some renal tumours to be discovered earlier than their impact on animal health 
would otherwise have caused. Thus in rat strains that are less notable for their sensitivity to toxic 
agents, age distribution at tumour discovery could have been further extended into the ageing period 
and even more renal tumours could have become a health hazard. In contrast, the cryptic female 
carcinomas (exclusively from the NTP study), already set right at the end of the study, seemed to have 
little or no pathological significance within the standard 2-year experimental period that extended well 
into old age. Thus it would seem prudent to consider this in attempting to apply the female tumour data 
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to human risk assessment, especially since there is no clear indication that OTA has ever caused 
human renal carcinoma. 

In view of the present new concept of a glomerular-filterable male rat carrier protein for OTA, 
interpretation of all evidence in the experimental toxicology literature for OTA needs careful 
reappraisal if predictions for human exposure risk are sought on best available evidence [40]. 
Replication of gel electrophoretic data across more animals with different doses of OTA and periods of 
exposure was desirable, and would have been provided from our extensive archive of experimental 
materials if human resource had been available. Similarly, irrefutable structural proof of OTA binding 
to α2u-globulin would have been provided by mass spectrometric data from available instrumentation 
at Imperial College London if the necessary dedicated research assistance had been available. It is 
hoped that the present publication will stimulate debate and facilitate investment of the necessary 
resources to confirm the present concept. Of course the present concept needs consolidation from 
further proteonomic study, and our archived samples from in vivo experiments are already in place for 
analysis when other research resources become available.  

Acknowledgements 

We thank Dr M. Dobrota, University of Surrey for a reference sample of α2u globulin from adult 
rats, and NTP Archives for histology preparations of female rat renal tumours.  

References 

1. Chu, F.S. A comparative study of the interaction of ochratoxins with bovine serum albumin.  
Biochem. Pharmacol. 1974, 23, 1105-1113. 

2. Krogh, P. Causal associations of mycotoxic nephropathy. Acta Pathol. Microbiol. Scand. Sect A 
(Suppl.) 1978, 269, 28pp. 

3. Schwerdt, G.; Freudinger, R.; Silbernagl, S.; Gekle, M.. Ochratoxin A-binding proteins in rat  
organs and plasma and in different cell lines of the kidney. Toxicology 1999, 135, 1-10. 

4. Boorman, G.A. Toxicology and Carcinogenesis Studies of Ochratoxin A (CAS No. 303-47- 9) in 
F344/N Rats (Gavage Studies). 1989 National Toxicology Program. Technical Report 358. 

5. IARC Monographs on the evaluation of carcinogenic risks of chemicals to humans. Vol. 59. 
Some naturally occurring substances: some food items and constituents, heterocyclic amines and 
mycotoxins. IARC, Lyon. (1993). 

6. Buist, S.C.N.; Cherrington, N.J.; Choudhuri, S.; Hartley, D.P.; Klaassen, C.D. Gender-specific 
and developmental influences on the expression of rat organic ion transporters. J. Pharmacol. 
Exp. Ther. 2002, 301, 145-151. 

7. Buist, S.C.N.; Cherrington, N.J.; Klaassen, C.J. Endocrine regulators of rat organic anion 
transporters. Drug Metab.Dispos. 2003, 31, 559-564. 

8. Ljubojevic, M.; Herak-Kramberger, C.M.; Hagos, Y.; Bahn, A.; Endou, H.; Burckhardt, G.; 
Sabolic, I. Rat renal cortical OAT1 and OAT3 exhibit gender differences determined by both 
androgen stimulation and estrogen inhibition. Am. J. Renal Physiol. 2004, 287, F124-F138.  



Int. J. Mol. Sci. 2008, 9 733

 

 

9. Zlender, V.; Ljubojevic M.; Balen, D.; Breljac, D.; Anzai, N.; Fuchs, R.; Sabolic, I.  Expression 
of renal organic anion transporters OAT1 and OAT3 in ochratoxin-treated rats. Toxicol. Lett. 
2006, 164 (Supplement 1), S81. 

10. Marin-Kuan, M.; Nestler, S.; Verguet, C.; Bezencon, C.; Piguet, D.; Mansourian, R.; Holzwarth, 
J.; Grigorov, M.; Delatour, T.; Mantle, P.; Cavin, C.; Schilter, B. A toxicogenomics approach to 
identifying new plausible epigenetic mechanisms of ochratoxin A carcinogenicity in rat. Toxicol. 
Sci. 2006, 89, 120-134.  

11. Heussner, A.H.; O’Brien, E.; Dietrich, D.R. Species- and sex-specific variations in binding of 
ochratoxin A by renal proteins in vitro. Exp.Toxic. Pathol. 2002, 54, 151-159. 

12. Pfohl-Leszkowicz, A.; Manderville, R.A. Ochratoxin A: An overview on toxicity and 
carcinogenicity in animals and humans. Mol. Nutr. Food Res. 2007, 51, 61-99. 

13. Bow, D.A.J.; Perry, J.L.; Simon, J.D.; Pritchard, J.B. The impact of plasma protein binding on 
the renal transport of organic anions. J. Pharmacol. Exp.Ther. 2006, 316, 349-355. 

14. Pfohl-Leszkowicz, A.; Pinelli, E.; Bartsch, H.; Mohr, U.; Castegnaro, M. Sex- and strain-specific 
expression of cytochrome P450s in ochratoxin A-induced genotoxicity and carcinogenicity in 
rats. Mol. Carcinog. 1998, 23, 76-85. 

15. Castegnaro, M.; Mohr, U.; Pfohl-Leszkowicz, A.; Esteve, J.; Steinmann, J.; Tillmann, T.; 
Michelon, J.; Bartsch, H. Sex- and strain-specific induction of renal tumours by ochratoxin A in 
rats correlates with DNA addiction. Int. J. Cancer 1998, 77, 70-75. 

16. Brown, A.; Odell, E.W.; Mantle, P.G. DNA ploidy distribution in renal tumours induced in male 
rats by dietary ochratoxin A. Exp. Toxic. Pathol. 2007, 59, 85-95. 

17.  Mantle, P.; Kulinskaya, E.; Nestler, S. Renal tumourigenesis in male rats in response to chronic 
dietary ochratoxin A. Food Add. Contam., Supplement 1 2005, 58-64.     

18. Swenberg, J.A.; Lehman-McKeeman, L.D. α2-urinary globulin-associated nephropathy as a 
mechanism of renal tubule cell carcinogenesis in male rats. In: Species differences in thyroid, 
kidney and urinary bladder carcinogenesis workshop. IARC Scientific Publication 1999, 147, 95-
118. 

19. Rasonyi, T.; Schlatter, J.; Dietrich, D.R. The role of alpha2u-globulin in ochratoxin A induced 
renal toxicity and tumours in F344 rats. Toxicol. Lett. 1999, 104, 83-92.  

20. JECFA. 2001. Safety Evaluation of Certain Mycotoxins in Food. WHO, Geneva. 
21. Gautier, J.-C.; Richoz, J.; Welti, D.H.; Markovic, J.; Gremaud, E.; Guengerich, F.P.; Turesky, 

R.J. Metabolism of ochratoxin A: absence of formation of genotoxic derivatives by human and 
rat enzymes, Chem. Res.Toxicol. 2001, 14, 34-45. 

22. Rached, E.; Pfeiffer, E.; Dekant, W.; Mally, A. Ochratoxin A: apoptosis and aberrant exit from 
mitosis due to perturbation. Toxicol. Sci. 2006, 92, 78-96.  

23. Doi, A.M.; Hill, G.; Seely,J.; Hailey, J.R.; Kissling, G.; Bucher, J.R. α2u-globulin nephropathy 
and renal tumours in national toxicology program studies. Toxicol. Path. 2007, 35, 533-540.  

24. Mally, A.; Pepe, G.; Ravoori, S.; Fiore, M.; Gupta, R.C.; Dekant, W.; Mosesso, P. Ochratoxin A 
causes DNA damage and cytogenetic effects but no DNA adducts in rats. Chem. Res. Toxicol. 
2005, 18, 1253-1261. 

25. Chatterjee, B.; Motwani, N.M.; Roy, A.K. Synthesis and processing of the dimorphic forms of 
α2u-globulin. Bioch. Biophys. Acta 1982, 698, 22-28. 



Int. J. Mol. Sci. 2008, 9 734

 

 

26. Roy, A.K.; Nath, T.S.; Motwani, N.M.; Chatterjee, B. Age-dependent regulation of the 
polymorphic forms of α2u-globulin. J. Biol. Chem. 1983, 258, 10123-10127. 

27. Mantle, P.G. Interpretation of pharmacodynamics of ochratoxin A in blood plasma of rats, 
during and after acute or chronic ingestion. Food Chem. Toxicol. 2008, 46, 1808-1816. 

28. Zepnik, H.; Volkel, W.; Dekant, W. Toxicokinetics of the mycotoxin ochratoxin A in F344 rats 
after oral administration. Toxicol. Appl. Pharmacol. 2003, 192, 36-44. 

29. Miljkovic, A.; Pfohl-Leszkowicz, A.; Dobrota, M.; Mantle, P.G. Comparative responses to mode 
of oral administration and dose of ochratoxin A or nephrotoxic extract of Penicillium polonicum 
in rats. Exp. Toxic. Pathol. 2003, 54, 305-312. 

30.  Boorman, G.A.; McDonald, M.R.; Imoto, S.; Persing, R. Renal lesions induced by ochratoxin A 
exposure in the F344 rat. Toxicol. Path. 1992, 20, 236-245. 

31. Castegnaro, M.; Canadas, D.; Vrabcheva, T.; Petkova-Bocharova, T.; Chernozemsky, I.N.; 
Pfohl-Leszkowicz, A. Balkan endemic nephropathy: role of ochratoxins A through biomarkers. 
Mol. Nut. Food Res. 2006, 50, 519-529. 

32.  Chaudhuri, B.N.; Kleywegt, G.J.; Bjorkman, J.; Lehman-McKeeman, L.D.; Oliver, J.D.; Jones, 
T.A. The structures of α2u-globulin and its complex with a hyaline droplet inducer. Acta Cryst. 
1999, D55, 753-762. 

33. Bendele, A.M.; Carlton, W.W.; Krogh, P.; Lillehoj, E.B. Ochratoxin A carcinogenesis in the 
(C57BL/6J X C3H)F1 mouse. J. Natl. Cancer Inst. 1985, 75, 733-739. 

34. Bocskei, Zs.; Findlay, J.B.C.; North, A.C.T.; Phillips, S.E.V.; Somers, W.S.; Wright, C.E.; 
Lionetti, C.; Tirindelli, R.; Cavaggioni, A. Crystallisation of and preliminary x-ray data for the 
mouse major urinary protein and rat α2u-globulin. J. Molecular Biol. 1991, 218, 699-701.  

35. Derman, E. Isolation of a cDNA clone for mouse urinary protein: age- and sex-related 
expression of mouse urinary protein genes is transcriptionally controlled. Proc. Natl. Acad. 
Sci.USA 1981, 78, 5425-5429. 

36. Vettorazzi, A.; Arbillaga, L.; Gil, A.G.; Gonzalez-Penas,E.; Lopez de Cerain, A. Toxicokinetics 
of ochratoxin A dissolved in bicarbonate in F344 rats after oral administration. Poster abstract 
1086, X11th International IUPAC Symposium on Mycotoxins and Phycotoxins, Istanbul. May 
2007.  

37. Pfohl-Leszkowicz, A.; Manderville, R.A. Ochratoxin A: An overview on toxicity and 
carcinogenicity in animals and humans. Mol. Nutr. Food Res. 2007, 51, 61-99.  

38. Waddell, W.J. Critique of dose response in carcinogenesis. Hum. Exp. Toxicol. 2006, 25, 413-
436. 

39. Lock, E.A.; Hard, G.C. Chemically induced renal tubule tumors in the laboratory rat and mouse: 
review of the NCI/NTP database and categorization of renal carcinogens based on mechanistic 
information. CRC Crit. Rev. Toxicol. 2004, 34, 211-299.  

40. Guzelian, P.S.; Victoroff, M.S.; Halmes, N.C.; James, R.C.; Guzelian, C.P. Evidence-based 
toxicology: a comprehensive framework for causation. Hum. Exp. Toxicol. 2005, 24, 161-201. 

41. Mantle, P.G.; Nagy, J. α2u-Globulin as a transporter of ochratoxin A, enhancing nephrotoxicity 
in male rats. Abstract 1045. X11th International IUPAC Symposium on Mycotoxins and 
Phycotoxins. May 2007, Istanbul.  



Int. J. Mol. Sci. 2008, 9 735

 

 

42. Son, W.-C.; Kamino, K.; Lee, Y.-S.; Kang, K.-S. Strain-specific mammary proliferative lesion 
development following lifetime oral administration of ochratoxin A in DA and Lewis rats. Int. J. 
Cancer 2003, 105, 305-311. 

43. Son, W.-C.; Kamino, K.; Lee, Y.-S.; Kang, K.-S. Lack of effects of sodium 2-mercaptoethane 
sulfonate (mesna) on ochratoxin A induced renal tumourigenicuty following lifetime oral 
administration of ochratoxin A in DA and Lewis rats. Toxicol.Lett. 2003, 142, 19-27. 

44. Mally, A.; Zepnik, H.; Wanek, P.; Eder, E.; Dingley, K.; Ihmels, H.; Volkel, W.; Dekant, W. 
Ochratoxin A: lack of formation of covalent DNA adducts. Chem. Res. Toxicol. 2004, 17, 234-
242. 

45. Turesky, R. J. Perspective: Ochratoxin A is not a genotoxic carcinogen. Chem. Res. Toxicol. 
2005, 17, 1082-1090. 

46. EFSA, Opinion of the scientific panel on contaminants in the food chain on a request from the 
Commission related to ochrotoxin A in food. EFSA J. 2006, 365, 1-56. (www.efsa.eu.int) 

47. Walker, R. Risk assessment of ochratoxin: current views of the European Scientific Committee 
on Food, the JECFA and the Codex Committee on Food Additives and Contaminants. Adv. Exp. 
Med. Biol. 2002,504, 249-255.  

© 2008 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. 
This article is an open-access article distributed under the terms and conditions of the Creative 
Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). 
 


	Abstract
	Introduction
	Materials and Methods
	Results
	Discussion
	Acknowledgements
	References

