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Abstract: Aiming to assess the role of individual molecular structures in the molecular 
mechanism of ligand-receptor interaction correlation analysis, the recent Spectral-SAR 
approach is employed to introduce the Quantum-SAR (QuaSAR) “wave” and 
“conversion factor” in terms of difference between inter-endpoint inter-molecular 
activities for a given set of compounds; this may account for inter-conversion 
(metabolization) of molecular (concentration) effects while indicating the structural 
(quantum) based influential/detrimental role on bio-/eco- effect in a causal manner rather 
than by simple inspection of measured values; the introduced QuaSAR method is then 
illustrated for a study of the activity of a series of flavonoids on breast cancer  
resistance protein. 
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1. Introduction 

Being used in Chemistry during the second half of 20th century as an extended statistical analysis 
[1-8], the quantitative structure-activity relationship (QSAR) method had attained in recent years a 
special status, officially certified by European Union as the main computational tool (within the so 
called “in silico” approach) for the regulatory assessments of chemicals by means of non-testing 
methods [9-15]. 

However, while QSAR primarily uses the multiple regression analysis [6-8], alternative approaches 
as such neuronal-network (NN) or genetic algorithms (GA) have been advanced to somehow 
generalize the QSAR performance in delivering a classification of variables used, in the sense of 
principal component analysis (PCA) and partial least squares (PLS) methodologies; still, the claimed 
advantage of the NN over QSAR techniques is limited by the fact the grounding physical-
mathematical philosophies are different since highly non-linear with basic multi-linear pictures are 
compared, respectively [16-23].  

Actually, the chemical-physical advantage of QSAR stands in its multi-linearity correlation that 
resembles with superposition principle of quantum mechanics, which allow meaningful interpretation 
of the structural (inherently quantum) causes associated with the latent or unobserved variables 
(sometimes called as common factors) into the observed effects (activity) usually measured in terms of 
50%-effect concentration (EC50), associated with various types of bioaccumulation and toxicity [24].  

Nevertheless, many efforts have been focused on applying QSAR methods to non-linearity features 
from where the “expert systems” emerged as formalized computer-based environments, involving 
knowledge-based, rule-based or hybrid automata able to provide rational predictions about properties 
of biological activity of chemicals or of their fragments; it results in various QSAR based databases: 
the model database (QMDB) - inventorying the robust summaries of QSARs that can be appealed by 
envisaged endpoint or chemical, the prediction database (QPDB) - when data from QMDB are used for 
further prediction to be stored, or together towering the chemical category database (CCD) 
documentation [25-31].  

Therefore, although undoubtedly useful, the “official” trend in employing QSAR methods is to 
classify, over-classify and validate through (external or molecular test set) prediction, a gap between 
the molecular computed orderings and the associate mechanistic role in bio-/eco- activity assessment 
remains as large as the QSAR strategy has not turned into a versatile tool in identifying the inter-
molecular role in receptor binding sites through recorded activities by means of structurally selected 
common variables; that is to use QSAR information for internal mechanistic predictions among 
training molecules to see their inter-relation respecting the whole class of observed activities employed 
for a specific correlation. Such an approach will also be helpful for checking the chemical domain 
spanned by training molecules – a feature of the paramount importance also for further external tests. 

The present communication wishes to start filling this gap by deepening the modeling of inter-
molecular activity through extending the main concepts of recent developed Spectral-SAR [32-40], 
developed the fully algebraic version of traditional statistically optimized QSAR picture, targeting the 
quantification of the competition between molecular inter-activity and inter-endpoints records.  



Int. J. Mol. Sci. 2009, 10             
 

 

1195

2. QuaSAR Methodology 
 

Paradoxically, the main problem for QSAR resides not in performing the correlation itself but 
setting the variable selection for it; the mathematical counterpart for such problem is known as the 
“factor indeterminacy” [41-45] and affirms that the same degree of correlation may be reached with in 
principle an infinity of latent variable combinations. Fortunately, in chemical-physics there are a 
limited (although many enough) indicators to be considered with a clear-cut meaning in molecular 
structure that allows for rationale of reactivity and bindings [46,47]. However, the main point is that 
given a set of N-molecules, one can chose to correlate their observed activities Ni
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selected correlation. Now, the Spectral-SAR version of QSAR analysis computes these activities in a 
complete non-statistical way, i.e. by assuming the vectors for both observed (activities) and 
unobserved (latent variables) quantities while furnishing their correlation throughout a specific S-SAR 
determinant obtained from the transformation matrix between the orthogonal (desirable) and oblique 
(input) correlations. Yet, besides producing essentially the same results as the statistical least-square fit 
of residues the S-SAR method introduces new concepts as: 

• endpoint spectral norm  
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allowing the possibility of the unique assignment of a number to a specific type of correlation, i.e. 
performing a sort of resumed quantification of the models [34]; 

• algebraic correlation factor 
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viewed as the ratio of the spectral norm of the predicted activity to that of the measured one, giving the 
measure of the overall (or summed up) potency of the computed activities respecting the observed one 
rather than the local (individual) molecular distribution of activities around the mean statistical yields; 



Int. J. Mol. Sci. 2009, 10             
 

 

1196

thus, it is a specific measure of the molecular selection under study, always with a superior value to 
that yielded from statistical approach [37], however preserving the same hierarchy in a shrink (less 
dispersive) manner being therefore better suited for intra-training set molecular analysis; 

• spectral path, with the distance defined in the Euclidian sense as: 

[ ] ( ) ( )2
'

2
'', llll RRYYll −+−= , Cll ,1)',( =∀  (4)

allows for defining complex information as path distances in norm-correlation space with norms 
computed from Equation (2) while correlation free to be considered either from statistical (local) or 
algebraically (global) – Equation (3) approaches; note that as far as computed activity Yl corresponds 
to the measured activity Al defined as logarithm of inverse of 50%-effect concentration (EC50), see 
bellow, both modulus of Yl vectors and R values have no units so assuring the consistency of the 
Equation (4). 

• least spectral path principle, formally shaped as: 

[ ] ENDPOINTSllllll MkMk :,..., ,...,;0...,,... 11 =δ  (5)

provides a practical tool in deciding the dominant ,...}{α hierarchies along the paths constructed by 
linking all possible k-models (i.e. models with k correlation factors) from (1a) combinations selected 
one time each on a formed path – generating the so called “M-endpoints containing ergodic path on K-
paths assembly” of (1b). However, the implementation of the principle (5) is recursively performed 
through selecting the least distance computed upon systematically application of Equation(4) on 
ergodic paths; if, by instance, two paths are equal there is selected that one containing the first two 
models with shorter norm difference in accordance with the natural least action; the procedure is 
repeated until all C-models where connected on shortest paths; there was already conjectured that only 
the first M-shortest paths (called as Mαα ,...,1 ) are enough to be considered for a comprehensive (and 
self-consistent) mechanistic analysis [34-40]. 

Nevertheless, for present purpose another two quantities are here introduced, namely: 

 inter-endpoint norm difference (IEND),  
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that accounts for norm differences of the models lying on the M-shortest spectral paths linking M- 
from the C-models of Equation (1a);  

 inter-endpoint molecular activity difference (IEMAD), 
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is considered from activity difference between the fittest molecules (i, j), in the sense of minimum 
residues, for the models (l, l’) belonging to the shortest paths Mαα ,...,1  for which the inter-endpoint 
norm difference is given by Equation (6). 
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This way, we can interpret the two fittest molecules (i, j) as reciprocally activated by the models (l, 
l’) through the spectral path whom they belong; put in analytical terms, the difference between 
quantities of Eqs. (6) and (7) may assure the “jump” or transition activity that turns the effect of i 
molecule on that of j molecule across the least spectral (here revealed as metabolization) path 
connecting the models l and l’: 

'
''

1ln ll
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Note that if we rearrange Equation (8) in terms of 50-effect concentrations of Equation (7) one gets 
the wave-like form of molecular EC50 inter-molecular transformation: 
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providing the analytic continuation in the complex plane for the IEND of Equation (6) was assumed, 
i.e. '' llll YiY Δ→Δ  outside the factor 'll

jiq . Remark that although the differences in Eqs. (6) and (7) were 

consider mathematically, along the “arrow” i-to-j, the “quantum transformation” from Equation (9) 
suggests that the bio-chemical-physical equivalence (metabolization) of the concentration effects 
evolves from-j-to-i, revealing a typical quantum behavior with the factor 'll

jiq  playing the propagator 

role as the quantum kernels in path integral formulation of quantum mechanics [48].  
Equation (9) stands as the present “quantum”-SAR equation since: 

o it involves the wave-type expression of molecular effect of concentration, however, for special 
selected molecules (the fittest out of the C-models) and for special selected paths (the least for 
the M-ergodic assembly), being M and C related by Equation (1a); 

o it provides the specific transition or specific transformation of the effect of a certain molecule 
into the effect of another special molecule out from the N-trained molecules, paralleling the 
phenomenology of consecrated quantum transitions; 

o it has the amplitude of transformation driven by the so called quantum-SAR factor of an 
exponential form 
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defining the specific quantum-SAR wave; 
o it allows the identity  

( ) ( )li
l
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when the reverse effects is considered 
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and substituted in the direct one (9), as absorption and emissions stand as reciprocal quantum 
effects; 

o it has a “phase” with unity norm, in the same manner as ordinary quantum wave functions, 
allowing the inter-molecular “real” quantum-SAR transformation 
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exclusively regulated by the quantum-SAR factor of Equation(10), in the same fashion as 
quantum tunneling is characterized by the transmission coefficient;  

o when multiple transformations take place across paths with multiple linked models, say (l, l’, 
l’’), the inter-molecular transformation i→j→t is characterized by the overall quantum-SAR 
factor (10) written as product of intermediary ones 
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in the same way as the quantum propagators behave along quantum paths [48]; certainly, such 
contraction scheme may be generalized for least paths connecting the M-contained k-endpoints 
giving an overall quantum-SAR (“metabolization power”) factor as: 
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o Equation (9) supports the self-transformation as well, with the driven qua-SAR factor given by: 

( )'' exp ll
ll

iji Yq Δ−==  (17) 

during its evolution along the least paths when the same molecule (i=j) is metabolized by 
activating certain structural features (l≠l’) though specific indicators (variables) in correlation 
(bindings with receptor site); this case resembles the stationary quantum case according which 
even isolated (or with free motion), the molecular structures suffer dynamical wave-corpuscular 
or fluctuant transformation along their quantum paths; 

With the present Qua-SAR methodology one can appropriately identify the molecular pairs that 
drive certain bio-/eco- activities against given receptor by means of selected descriptors in a “wave”- 
or “quantum” mechanistic formal way. The ultimate goal will be the computation of quantum-SAR 
factors along the least paths of actions that give the potential information of the conversion power of 
the fittest molecules in their specific bindings.  

However, in order to practically understand the actual Qua-SAR approach all steps above will be in 
next specialized through an application for identifying the most involved polyphenolic molecules for 
their activity related to mammalian breast cancer.  
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3. Application to Flavonoids’ Anticancer Bioactivity  

Although in general considered beneficial for their protective role in many age-related diseases - 
flavonoids (see Figure 1 – with the general scheme in no.0) should be more carefully studied since 
their pharmacokinetics are not entirely elucidated [49-54].  

Figure 1. The studied flavonoids (with basic structure of as no.0 while the others are in the 
Table 1 characterized by associate QSAR data), covering the flavones, isoflavones, 
chalcones, flavonols and flavanones, as they assist the increase of mitoxantrone (MX) 
accumulation in BCRP-overexpressing MCF-7 MX100 breast cancer cells [51]. 
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Table 1. The flavonoids of Figure 1 arranged by their ascending observed activities, 
defined as A= -log10(EC50[μM]) [51], along the associate computed structural parameters 
like the hydrophobicity (LogP), electronic cloud polarizability (POL) and the ground state 
configurationally optimized total energy (ETOT) [55]. 

No. Molecular Name Activity  

A 

Structural parameters 

LogP POL(Å3) ETOT(kcal/mol)
(1) Silybin 3.74 2.03 45.68 -146625.1875 
(2) Daidzein 4.24 1.78 26.63 - 76984.7109 
(3) Naringenin 4.49 1.99 27.46 - 85032.9218 
(4) Flavanone 4.6 2.84 25.55 - 62849.3125 
(5) 7,8-Dihydroxyflavone 4.7 1.75 26.63 - 76982.1328 
(6) 7–Methoxyflavanone 4.79 2.59 28.02 - 73823.8046 
(7) Genistein 4.83 1.50 27.27 - 84380.7578 
(8) 6,2’,3’ -7-Hydroxyflavanone 4.85 1.70 28.10 - 92422.6640 
(9) Hesperetin 4.91 1.73 29.93 - 96003.9921 

(10) Chalcone 4.93 3.68 25.49 - 55450.1093 
(11) Kaempferol 5.22 0.56 27.90 - 91770.5859 
(12) 4’-5,7-Trimethoxyflavanone 5.25 2.08 32.96 - 95768.9062 
(13) Flavone 5.4 2.32 25.36 - 62196.3437 
(14) Apigenin 5.78 1.46 27.27 - 84379.8593 
(15) Biochanin A 5.79 1.53 29.10 - 87961.2812 
(16) 5,7-Dimethoxyflavone 5.85 1.81 30.30 - 84139.4687 
(17) Galangin 5.92 0.85 27.27 - 84376.8359 
(18) 5,6,7–Trimethoxyflavone 5.96 1.56 32.77 - 94976.1875 
(19) Kaempferide 5.99 0.60 29.74 - 95351.3984 
(20) 8-Methylflavone 6.21 2.79 27.19 - 65789.9218 
(21) 6,4’–Dimethoxy-3-hydroxy-flavone 6.35 0.41 31.13 - 92162.7187 
(22) Chrysin 6.41 1.75 26.63 - 76986.1171 
(23) 2’-Hydroxy-α-naphtoflavone 7.03 3.07 33.26 - 82027.8359 
(24) 7,8 – Benzoflavone 7.14 3.35 32.63 - 74634.5234 

 
For instance, recently, it was inferred that for certain flavonoids such as chrysin, nbiochanin A and 

apigenin a very low micromolar concentration is capable of producing 50% (EC50) of the maximum 
increase in mitoxantrone (MX) inhibitor substrate accumulation (interaction) with breast cancer 
resistance protein (BCRP), helping in reversing the multidrug resistance (MDR) mechanism of 
overexpressing MCF-7 MX100 cancer cells [51-54].  

Therefore, in order to assess the molecular role and structural- related mechanisms for potential lead 
compounds in the drug design for anti-cancer treatment, a series of representative classes of flavonoids 
have been employed, see Figure 1, with their recorded biological activities (A) among the computed 
transport (hydrophobicity-LogP), the electrostatic (polarizability POL), and steric (total energy at 
optimized 3D-configuration ETOT) Hantsch correlation variables [56], see Table 1, to successively 
provide the QSAR, S-SAR and finally to unfold the Qua-SAR analysis.  
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Note that in Table 1 the molecules were displayed in ascendant order of their recorded activities, 
from no. 1 to no. 24, for having present which is superior to which each time they are reciprocally 
quotation. Such an arrangement allows the construction of an activity differences chart, see Table 2, 
with great utility in establishing the inter-endpoint molecular activity differences of Equation (7) 
entering quantum-SAR factor of Equation (10).  

Next, for computing the other influential activity difference in Qua-SAR, namely the inter-endpoint 
norm difference of Equation (6), the C = 10 possible endpoint models with data of Table 1 are in Table 
3 presented. However, worth remarking that the traditional hydrophobicity factor LogP seems to have 
quite little or even no-influence from traditional statistical correlation (model Ia).  

The first conclusion is that flavonoids have practically no exclusive or primarily role in drug 
transporting to BCRP site; still, the electrostatic influence through POL is practically missing as well 
(model Ib), while the stericity through ETOT unfolds some statistically sensitive role in ligand (MX)-
receptor (BCRP) binding (model Ic). The last assertion may also be sustained by going to the two-
correlated parameters endpoint models, when one can see the confirmation of the stericity role through 
ETOT correlation variable: while combination LogP∧POL does not improve the statistical correlation of 
model IIa significantly over single-parameter LogP∨POL correlations, the total energy presence 
provides better and better correlation behavior as it is combined with LogP (the model IIb) and with 
POL (the model IIc), respectively. Instead, when all the Hansch structural variables are taken into 
account the model III is generated with appreciable statistical correlation respecting the other 
computed combinations.  

Overall, it cannot be inferred that LogP and POL does have no influence on correlation only 
because when alone they do not correlate at all with flavonoids’ bioactivity, because their cumulative 
presence in model III highly improves the single ETOT correlation of model Ic as well as mixed 
correlations of bi-variable models IIb and IIc. Therefore, the mechanistic “alchemy” of structural 
features on molecular activity seems complex enough when all hydrophobicity, electrostatic and 
stericity influences combine as they are reciprocally activating one each other with a superior resultant 
in modeling ligand-receptor binding. 

Yet, the algebraic correlation factors in Table 3 deserve special discussion: it is clear that as they 
are not measuring the dispersive character of the local computed (molecular) points against the 
average recorded activity as statistical metrics do, their values are all close to unity and close to each 
other as well; however, they are modeling another reality of computation, being closer to path integral 
approach than to differential analysis, through indexing the global behavior or the total length of the 
computed vector to the recorded one. Still, while between the algebraic and statistical correlations only 
an indirect connection exists [37], the one-to-one hierarchical ordering of models is always recorded 
thus supporting the usefulness of using algebraically scale when the shrink of correlation factors is 
more favorable. For instance, in the present case, as above revealed, according to the statistical 
analysis, there seems that LogP (Ia) and POL (Ib) have no influence on correlation, while when 
combined with ETOT in model III they considerably enrich the single ETOT correlation power of model 
Ic. Such behavior shows that orthogonal, i.e. independent, descriptors may provide better results when 
are combined than when considered apart due to the increase of the (inter) correlation space.  
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Table 2. The anti-symmetric matrix of the inter-molecular activity differences for the working flavonoids of Table 1. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  

0 0.5 0.75 0.86 0.96 1.05 1.09 1.11 1.17 1.19 1.48 1.51 1.66 2.04 2.05 2.11 2.18 2.22 2.25 2.47 2.61 2.67 3.29 3.4 1 

 0 0.25 0.36 0.46 0.55 0.59 0.61 0.67 0.69 0.98 1.01 1.16 1.54 1.55 1.61 1.68 1.72 1.75 1.97 2.11 2.17 2.79 2.9 2 

  0 0.11 0.21 0.3 0.34 0.36 0.42 0.44 0.73 0.76 0.91 1.29 1.3 1.36 1.43 1.47 1.5 1.72 1.86 1.92 2.54 2.65 3 

   0 0.1 0.19 0.23 0.25 0.31 0.33 0.62 0.65 0.8 1.18 1.19 1.25 1.32 1.36 1.39 1.61 1.75 1.81 2.43 2.54 4 

    0 0.09 0.13 0.15 0.21 0.23 0.52 0.55 0.7 1.08 1.09 1.15 1.22 1.26 1.29 1.51 1.65 1.71 2.33 2.44 5 

     0 0.04 0.06 0.12 0.14 0.43 0.46 0.61 0.99 1 1.06 1.13 1.17 1.2 1.42 1.56 1.62 2.24 2.35 6 

      0 0.02 0.08 0.1 0.39 0.42 0.57 0.95 0.96 1.02 1.09 1.13 1.16 1.38 1.52 1.58 2.2 2.31 7 

       0 0.06 0.08 0.37 0.4 0.55 0.93 0.94 1 1.07 1.11 1.14 1.36 1.5 1.56 2.18 2.29 8 

        0 0.02 0.31 0.34 0.49 0.87 0.88 0.94 1.01 1.05 1.08 1.3 1.44 1.5 2.12 2.23 9 

         0 0.29 0.32 0.47 0.85 0.86 0.92 0.99 1.03 1.06 1.28 1.42 1.48 2.1 2.21 10 

          0 0.03 0.18 0.56 0.57 0.63 0.7 0.74 0.77 0.99 1.13 1.19 1.81 1.92 11 

           0 0.15 0.53 0.54 0.6 0.67 0.71 0.74 0.96 1.1 1.16 1.78 1.89 12 

            0 0.38 0.39 0.45 0.52 0.56 0.59 0.81 0.95 1.01 1.63 1.74 13 

             0 0.01 0.07 0.14 0.18 0.21 0.43 0.57 0.63 1.25 1.36 14 

              0 0.06 0.13 0.17 0.2 0.42 0.56 0.62 1.24 1.35 15 

               0 0.07 0.11 0.14 0.36 0.5 0.56 1.18 1.29 16 

                0 0.04 0.07 0.29 0.43 0.49 1.11 1.22 17 

                 0 0.03 0.25 0.39 0.45 1.07 1.18 18 

                  0 0.22 0.36 0.42 1.04 1.15 19 

                   0 0.14 0.2 0.82 0.93 20 

                    0 0.06 0.68 0.79 21 

                     0 0.62 0.73 22 

                      0 0.11 23 

                       0 24 
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Table 3. QSAR equations through Spectral-SAR multi-linear procedure [32-34] for all 
possible correlation models considered from data of Table 1; here 0X  is the unitary 
vector 241...11 , while the structural variables are set as LogPX =1 , POLX =2 , and 

TOTEX =3 ; the predicted activities’ norms where calculated with Equation (2), while the 
algebraic correlation factor of Equation (3) uses the measured activity of 9357.26=A  
computed upon Equation (2) with data of Table 1; RStatistic is the traditional Pearson 
correlation factor [1-8]. 

Model  Variables (Q/S-)SAR Equation PREDICTEDY RAlgebraic RStatistic 

Ia |X0>, |X1> |Y>Ia = 5.39837|X0>+0.0179106|X1> 26.6138 0.988049 0.0175601
Ib |X0>, |X2> |Y>Ib = 5.67735|X0>–0.00834411|X2> 26.61425 0.988065 0.0409922
Ic |X0>, |X3> |Y>Ic = 6.48303|X0>+0.0000124625|X3> 26.6344 0.988812 0.252513 
IIa |X0>, 

1X ,|X2> 
|Y>IIa = 5.64318|X0> 

+0.0178242 1X –0.00833676|X2> 26.614349 0.988069 0.0445618

IIb |X0>, 
|X1>,|X3> 

|Y>IIb = 6.93331|X0> 
–0.120924|X1>+0.0000150708|X3> 26.638 0.988947 0.273909 

IIc |X0>, 
|X2>,|X3> 

|Y>IIc = 4.99884|X0> 
+0.122989|X2>+0.0000376701|X3> 26.6681 0.990063 0.409837 

III |X0>, 
|X1>,|X2>, 

|X3> 

|Y>III = 5.59424|X0> 
–1.05993|X1>+0.400704|X2> 

+0.000117452|X3> 
26.7758 0.994064 0.708509 

 
Having performed the QSAR analysis, the specific Spectral-SAR stage can be unfolded by means 

of the (K = 9, M = 3) ergodic paths with the spectral Euclidian lengths given by Equation (4) in both 
statistical and algebraic frameworks, as shown in Table 4. Next, the least M = 3 paths with the 
dominant M-factors influence are selected by applying the above exposed recursive rule of least path 
principle resumed by Equation (5). Remarkably, there follows that the resulting alpha (α), beta (β), 
and gamma (γ) most influential paths are identically shaped no matter whether statistical or 
algebraically schemes are undertaken. This result, although not necessarily viewed as a general rule, 
shows that in this specific case the algebraically analysis leaves with systematically the same 
mechanistically results as those obtained with statistical tools. However, once more, we stress on that 
algebraically measure may give more realistic inside in the Q(Spectral)-SAR phenomenology since its 
inner vectorial and norm-based algorithm accounting for each individual molecular contribution to the 
whole activity “basin” rather than respecting the average activity. 

Going now to the individual molecular level analysis, Table 5 lists the residual activities between 
computed and observed activities for each of considered models, distributed along the already 
identified least paths. At this instance, the most fitted molecule is outlined out of each endpoint; most 
impressive, the actual research selected the same molecule as the best fitted one along the both α and β 
paths, namely molecule no. 12 (4’-5,7-trimethoxyflavanone) and molecule no. 13 (flavone), 
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respectively. Moreover, these molecules are not among the most potent one respecting the observed 
activity of Table 1, being situated at the middle to second-half panel of the 24 molecules considered.  

 
Table 4. Synopsis of paths connecting the endpoints of Table 3 in the  
norm-correlation spectral-space. 

Path Value 
Algebraic Statistic 

Ia-IIa-III 0.162142 0.710311 
Ia-IIb-III 0.162142 0.713422 
Ia-IIc-III γ0.162142 γ0.713533 
Ib-IIa-III β0.161697 β0.686875 
Ib-IIb-III 0.161697 0.690271 
Ib-IIc-III 0.161697 0.690059 
Ic-IIa-III 0.181617 0.892215 
Ic-IIb-III α0.141579 α0.477638 
Ic-IIc-III 0.141579 0.478416 

 
Such result tells us that the maximum recorded activity is not necessarily that one induced by 

specific chosen structural variables (here as LogP, POL, and ETOT). This is the case of the most fitted 
molecule on the most correlated endpoint (III) appeared to be no.3 (naringenin), with low activity on 
the observed range compared with the no. 25 (7,8-benzoflavone) in Table 1. Consequently, one can 
say that the first half of the observed activities in Table 1 may be attributed to certain physico-
chemical indicators with clear mechanistically roles, while the rest of observed activities may be due 
to other unidentified specific structural descriptors or even to non-specific ones (rooting in the sub-
quantum nature of the particular observer-observed system). Nevertheless, this lower activity 
prescribed by the computational results is in accordance with the so called “homeopathic principle” 
prescribing cure by moderate-to-low active drugs while better monitoring their effects through 
controlled physico-chemical descriptors.  

For the sake of comparison, the actual Spectral(Qua)SAR results are to be compared with the 
consecrated Principal Component Analysis (PCA) [57]. This way, Figure 2 illustrates the graphical 3D 
correlations among the descriptors LogP, POL and ETOT used in this study; it offers a visual way for 
assessing the almost no-correlation of LogP with other concerned variables, POL and ETOT, 
respectively. This lead with conclusion that LogP is almost orthogonal (independent) on (respecting) 
the other two Hantsch variables. Instead, when further performing the factor analysis, the Table 6 is 
obtained while clearly revealing the scarce correlation carried by considering LogP variable alone. 
This is in close agreement with the Spectral-SAR results, see above. In any case, the hydrophobicity 
description and its descriptor cannot be rejected only by factor analysis since it drives (firstly or latter) 
the inter-membrane interaction that is essential for drug-cell binding. Spectral- and Qua-SAR highly 
proved the important role hydrophobicity plays in combination with electrostatic (POL) and steric 
(ETOT) interactions. Moreover, while PCA shows the POL factor influence equals that of ETOT, whereas 
their role in correlation is sensible different in Spectral-SAR analysis (compare model Ib-last column 
of Table 3 with POL-last column of Table 6). However, again, this discrepancy is in the favor of S-
SAR since the PCA results are due to the sensitive degree of POL-ETOT correlation (see Figure 2), 
from where the PCA yield that POL and ETOT display similar correlation power, while S-SAR includes 
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also the orthogonalization of POL and ETOT variables prior correlation takes effect and better 
discriminates among their influence in bonding. 

 
Table 5. Residual activities Ai – Yi

Model of the compounds of Table 1 for the Spectral-SAR 
models of Table 3 ordered according with the alpha, beta and gamma paths of Table 4; that 
residue which is closes to zero in each considered endpoint is marked by a line border. 

No. Models 

α β γ  
 Ic IIb Ib IIa Ia IIc III 

1 -0.915706 -0.738065 -1.5562 -1.55854 -1.69473 -1.35359 -0.785284 
2 -1.2836 -1.31784 -1.21515 -1.2129 -1.19025 -1.13401 -1.09626 

3 -0.933302 -0.921149 -0.958225 -0.959719 -0.944015 -0.682916 -0.0110057 

4 -1.09977 -1.04269 -0.864162 -0.880793 -0.849239 -1.17367 -0.840236 
5 -0.823636 -0.861503 -0.755151 -0.752361 -0.729716 -0.674109 -0.668387 
6 -0.772996 -0.717525 -0.653552 -0.665745 -0.654761 -0.874038 -0.615978 
7 -0.60143 -0.650231 -0.619811 -0.612569 -0.595239 -0.344115 -0.190835 

8 -0.481207 -0.484848 -0.592885 -0.589214 -0.578821 -0.123257 0.653106 

9 -0.376575 -0.367246 -0.517615 -0.514493 -0.519358 -0.153417 0.432251 
10 -0.86198 -0.722625 -0.534663 -0.566265 -0.534284 -1.11502 -0.464907 
11 -0.119334 -0.262529 -0.224554 -0.200562 -0.188403 0.246777 -0.181659 

12 -0.0395047 0.0115343 -0.152333 -0.155471 -0.185627 -0.194929 -0.098518 

13 -0.307904 -0.31541 -0.0657478 -0.0731081 -0.0399254 -0.374895 -0.591958 

14 0.348559 0.294919 0.330189 0.338144 0.355478 0.605851 0.716663 
15 0.403192 0.367358 0.355459 0.362152 0.364224 0.525694 0.488215 
16 0.415563 0.403619 0.425472 0.427166 0.419209 0.294139 -0.0847295 
17 0.488521 0.361109 0.470189 0.489017 0.506403 0.745737 0.209751 
18 0.660616 0.646707 0.556082 0.562214 0.533687 0.508577 0.0433466 
19 0.695292 0.566274 0.560799 0.584065 0.580881 0.925367 0.314017 
20 0.546881 0.605582 0.759522 0.743771 0.761657 0.345406 0.404994 
21 1.01555 0.855242 0.932398 0.959039 0.944284 0.994295 -0.458865 
22 0.886414 0.848557 0.954849 0.957639 0.980284 1.03604 1.04208 
23 1.56925 1.70416 1.63017 1.60938 1.57664 1.03055 0.996681 
24 1.58711 1.7366 1.73491 1.70914 1.68163 0.939523 0.787543 

Table 6. Principal Component Analysis (PCA) for the data of Table 1 within unrotated 
(unnormalized) factor score coefficients [58]. 

 PC1 PC2 PC3 Multiple  
PC1-PC3 
factors’ 

 R2 

Eigenvalue: 1.958158 0.892127 0.149715 
% total variance: 65.27195 29.73757 4.99049 

Variable Factors’ coefficients
LogP 0.232179 -0.997780 0.20467 0.083712 
POL -0.472177 -0.302902 -1.79349 0.716820 
ETOT 0.483556 0.183309 -1.84956 0.728872 
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Figure 2. Quadratic 3D representation of LogP vs. POL vs. ETOT variables’ fit  
employing the data of Table 1 [58]. 

 

Table 7. Determination of the quantum-SAR, see Equation (10) with Eqs. (6) and (7), 
associate with certain couple of molecules involved in activating specific structural 
quantum indices (or their combinations) driving spectral paths of Table 4, by employing 
minimum residue recipe throughout Table 5 for each considered endpoint, as well as the 
associate recorded bioactivity differences of Table 2, respectively. 

Path PATH
llY 'Δ (IEND)# 'll

jiAΔ (IEMAD)♣ PATHll
jiq ;' * PATHq  

α 
α

IIbIcYΔ =0.00364573 IIbIcA 1212 =0 α;
1212
IIbIcq =0.991641  

αq =0.125464 α
IIIIIbYΔ =0.137836 IIIIIbA 312 =-0.76 α;

312
IIIIIbq =0.126521 

β 
β

IIaIbYΔ =0.0000989324 IIaIbA 1313 =0 β;
1313
IIaIbq =0.999772  

βq =0.0848036 β
IIIIIaYΔ =0.161487 IIIIIaA 313 =-0.91 β;

313
IIIIIaq =0.0848229 

γ 
γ

IIcIaYΔ =0.0542592 IIcIaA 813 =-0.55 γ;
813
IIcIaq =0.248737  

γq =0.0847168 γ
IIIIIcYΔ =0.107771 IIIIIcA 38 =-0.36 γ;

38
IIIIIcq =0.340588 

#Inter-Endpoint Norm Difference, Equation (6); ♣Inter-Endpoint Molecular Activity 
Difference, Equation (7); 
*Note that here the basic relation of Equation (10) was considered in decimal base since 
originally, the associated activities in Table 1 were as such defined. 
 

Nevertheless, going ahead with the Spectral-SAR results the Qua-SAR factors may be immediately 
recover by employing the molecular activity differences from Table 2 for the best fitted molecules of 
Table 5 along the models of the most influential paths in molecular mechanism towards MX-BCRP 
binding. The resulted IEND and IEMAD of Table 7 are combined to produce the quantum-SAR factors 
of Equation (10) type for each two-molecules-two-models on specific paths, while the “metabolization 
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power” per path is finally obtained by their couplings, according with multiplicative quantum rule of 
Equation (16). Worth noting that the overall quantum-SAR factors of paths are in total agreement with 
the previous spectral-SAR selected path hierarchy, i.e. the α path is associated with the highest q-SAR 
factor, being followed by that of β path and by that of γ one in last column of Table 7.  

This result may be quite important if such a behavior may be proven to hold in general since it 
would allow the effective quantification of paths according with their metabolization power. However, 
such endeavor exceeds the present communication purpose and will remain as a future challenge in  
Qua-SAR studies. 

Finally, all QSAR, Spectral-SAR and Qua-SAR computational results may be collected and 
resumed by associate “spectral” scheme for evolution of the fittest molecular structures along the 
endpoint models for the (M=)3 selected mechanistic paths of actions, see Figure 3. Note that algebraic 
correlation environment was chose as the “vertical” indicator for the degree with which a certain 
model reaches the observed activity in the vectorial norm sense (equally, the norm themselves could be 
used for ordinate axis [34]).  

Figure 3. Spectral representation of the endpoints employed in designing the bioactivity 
mechanism for the molecules of Table 1, according with the algebraic correlation factors of 
Equation (3) in Table 3, across the shortest (three) paths identified from Table 4, while 
marking the fittest molecules’ orbital 3D-distribution for each considered model, i.e. 
molecule no. 12 (4’-5,7-trimethoxyflavanone) for the models Ic and IIb, molecule no. 13 
(Flavone) for models Ib, Ia, and IIa, molecule no. 8 (6,2’,3’-7-tydroxyflavanone) for model 
IIc, and molecule no. 3 (naringenin) for model III, respectively. 
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Going now to comment upon the “metabolization power” as indicated by the quantum-SAR factors 
on Figure 3, one can firstly observe that for the α path the “first movement” from the Ic (ETOT) to IIb 
(LogP∧ETOT) corresponds to quantum free motion so that the null IEMAD for molecule no. 12 (4’-5,7-
trimethoxyflavanone) is carried; here, the quantum metabolization factor α;

1212
IIbIcq  is consumed only for 

strongly activating the membrane transporter feature (LogP) of the same molecule. Instead, on the last 
passage of the α path the factor α;

312
IIIIIbq  is responsible for converting the electrostatic (POL) influence 

of the flavonoids no. 12 towards no.3 (naringenin) activity as well as for reverse-O-methylation 
(methoxylation) of oxygens in positions 5 and 7 (on ring A) and 4’ (on ring B) respecting the 
molecular pattern no.0 in Figure 1, respectively. Such result is in fully accordance with the reverse 
quantum influence that is at the foreground of quantum-SAR factor conversion prescribed by Equation 
(9), i.e. quantifying the power of back transformation of molecular EC50s respecting the “arrows” of 
IEND and IEMAND in Equation (10). However, the fact that such transformation is the first one 
acting at molecular level is sustained also by optimized 3D configurations of involved molecules no. 
12 and 3, being both with rings A and B spatially bent in Figure 3 respecting the ring C of the planar 
pattern no.0 of Figure 1. 

A somewhat different situation is met for β path in Figure 3; in its first part a higher q-SAR factor 
( β;

1313
IIaIbq > α;

1212
IIbIcq ) is needed for activating the transporter hydrophobicity feature in model IIa (LogP∧ 

POL) starting from model Ib (POL), while in its second part the molecule no. 13 (flavone) is shown to 
be metabolized in molecule no. 3 (naringenin) by a direct hydroxylation in positions 5, 7 (on ring A) 
and 4’ (on ring B), the same as before, respecting the molecular pattern no.0 in Figure 1, by a smaller 
q-SAR factor, β;

313
IIIIIaq << α;

312
IIIIIbq , compared with that involved in the previous alpha path. Despite 

these, the overall quantum factor of beta path is lower than that of alpha, meaning a decrease capacity 
of metabolization since direct addition is involved, contrarily to the ordinary “inverse” Quantum-SAR 
transformation of Equation (9), while stericity (here founded as the most influential QSAR variable) is 
triggered by more steric energy difference consumed between the planar optimized configuration of 
molecule no. 13 on that spatially bended of molecule no. 3 in Figure 3. 

Even more metabolization “operations” take place along the γ path of Figure 3: there is started on 
the same planar configuration of molecule no.13 (flavone); then, the q-SAR factor γ;

813
IIcIaq  turn it into 

molecule no. 8 (6,2’,3’-7-hydroxyflavanone) by hydroxylation on the indicated positions (6 and 7 for 
ring A and 2’ and 3’ for ring B respecting the pattern molecule no.0 of Figure 1) while activating 
electrostatic and steric factors in model IIc (POL∧ETOT) from independent hydrophobicity factor of 
model Ia (LogP) – a complex movement that explain why this molecular path comes at the final, with 
less probability and potency; nevertheless, this path has on its last passage no less complex 
transformation, i.e. turning the molecule no. 8 into no. 3 one by combined reverse hydroxylation in 
positions 2’ and 3’ with direct hydroxylation of position 4’ on B ring and with movement from ortho 
(6) – to – para (5) of hydroxyl group on ring A respecting pattern molecule no. 0 of Figure 1, 
respectively; the transformation efficiency γ;

38
IIIIIcq  is a bit higher than on the first part of the path since 

it require less steric energy consumption to bent the ring C respecting the A-B ones while accounting 
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for electronic delocalization density (orbitals) over them until the configuration of molecule no. 3 is 
reached in Figure 3. 

Overall, it is clear that the Qua-SAR scheme offers a quantification recipe along the most effective 
spectral paths combined with most fitted molecules for a trial basin of analogues compounds and 
structural variables. In the present case there was revealed that the energetic steric factor ETOT seems to 
mainly drive the mechanistic molecular transformation in MX-BCRP binding phenomenology, while 
the molecule no. 3 (naringenin) appears as the best fitted molecules belonging to the most relevant 
endpoint, in clear disjunction with the roughly molecular selection upon initial input observed activity 
data. That is, naringenin (no. 3) is shown to be the best adapted molecule for the actual 
LogP∧POL∧ETOT structural (independent) factors being metabolized from molecules as 6,2’,3’-7-
hydroxyflavanone (no. 8), 4’-5,7-trimethoxyflavanone (no. 12), and flavone (no.13) by specific 
molecular mechanistically paths. However, there appears that these molecules are not linked even 
through the paths with the most active compounds of Table 1; statistically, this can be explained by the 
so called “regression towards the mean” effects, in the sense that the best correlations translated to the 
compounds found in the middle of the mentioned sorted Table 1; from the structural point of view such 
behavior may attributed to the specific parameters used for correlations that best describe molecules 
with specific groups, most favorable for the descriptor’s nature. 

On the other hand, the present study affirms the position 7 of ring A and position 4’ of ring B 
respecting the pattern molecule no. 0 of Figure 1 as the most suitable ones for producing an increase in 
BCRP inhibition activity, given that these positions belong to the α and β paths and being common to 
the rest of spectral paths as well. Instead, the position that does not appear at all in any of the α, β, or γ 
paths, namely position 8 on ring B may present adverse drug interactions.  

Further Qua-SAR studies are necessary and will be developed for exploring other bio- and eco- 
active compounds for their interactions with organs and organisms; they may hopefully lead to a 
coherent analytical picture of chemical-biological bonding focused on selecting the most adapted 
molecules and of the most privileged molecular positions for delivering controlled structural based 
chemical reactivity and biological activity. 

 
4. Conclusions  

 
The modern in silico (computational) chemical analysis respecting the bio- activity and availability 

of analogues substances, potentially beneficial or detrimental for specific interaction in organs and 
organisms, faces with a paradoxical dichotomy: if searching for the best correlation useful for 
prediction of specific molecular bio- or eco- activity QSAR models involving un-interpretable many 
latent variables may be produced, while always remaining the question of correlation factor 
indeterminacy (i.e. the assumed descriptors can be at any time replaced with other producing at least 
the same correlation performances); instead, when restricting the analysis to search for molecular 
design and mechanisms throughout performing SARs by means of special structural indicators for a 
given class of relevant molecules, arises the price of limiting the use of generated models for further 
prediction. The present communication is mainly devoted in developing the second (Q)SAR facet by 
extending the recent introduced notion of spectral-path-linking-endpoints and the associate least action 
principle to spectral path quantification, in terms of the best fitted molecules, along the contained 
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computed models, by means of the introduced q(uantum)-SAR factor within the generally called 
Quantum-SAR (QuaSAR) methodology. 

As an application, for representative flavonoids’ inhibiting activities on breast cancer resistant 
protein there was clearly shown that the newly introduced q-SAR factor offers relevant analytical 
characterization of previously conceptually introduced spectral path hierarchy; moreover, the present 
QuaSAR may allow interpretation inter-conversion of concerned molecules’ towards receptor binding 
since belonging to the same class of analogs, while they certainly undertaking such transformation 
during their interaction with macromolecules, proteins and enzymes present on cellular walls or with 
in vivo environment. 

 Basically, the QuaSAR stands as the first step in assessing the quantum mechanically equivalent of 
wave function to the sample of molecules interacting with a specific organism site; it will eventually 
lead with the hyper-wave function with the help of which the associate hyper-density probability of 
binding (metabolization) is to be computed; the last information may provide the density probability 
map of the ligand-receptor interaction abstracted from the structural Spectral-Qua-SAR correlations; 
with this tool the molecular design of new chemical structures may be appropriately undertaken. 

However, the actual QuaSAR scheme and quantum factor carry the main features of quantum 
dynamical systems and may stimulate future computational and conceptual developments in molecular 
design for structurally controlled activity. Further generalization of the present QuaSAR method to 
modeling all potential inter-conversions of employed molecules involved in correlation as well as for 
establishing their quantum metabolization complete map (through, for instance, hydrophobic, 
electrostatic and steric barrier tunneling) is actually in progress and will be reported in  
subsequent communications. 
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