
Int. J. Mol. Sci. 2002, 3, 570–578
International Journal of

Molecular Science
ISSN 1422-0067

www.mdpi.org/ijms/

On the Estimation of the Remainder Term in
Møller-Plesset MP2 Theory from Limited Config-
uration Interaction

I. Hubac† and S. Wilson§‡

† Department of Chemical Physics, Faculty of Mathematics and Physics, Comenius University,

842 15 Bratislava, Slovakia. E-mail: hubac@fmph.uniba.sk
§Insitute of Physics, Silesian University, 74601 Opava, Czech Republic. E-mail: s.wilson@rl.ac.uk
‡ Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 0QX, England.

Received: 27 September 2001 / Accepted: 9 January 2002 / Published: 31 May 2002

Abstract: In a previous paper, we have avoided an infinite order perturbation expan-

sion and obtained a closed expression which consists of the second-order Møller-Plesset

energy component together with a remainder term. The applicabilty of second-order

many-body perturbation theory with a Møller-Plesset reference hamiltonian then rests

upon the magnitude of this remainder term rather than the behaviour of the higher

order terms on the perturbation series. In the present work, we show how this remain-

der term can be estimated by limited configuration interaction.
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1 Introduction

Many-body perturbation theory with a Møller-Plesset reference hamiltonian is the most widely

used approach to the correlation problem in atomic and molecular systems. Second-order theory,

which is often designated “MP2” and which incidentally was the order of theory originally pre-

sented by Møller and Plesset [1], is computationally efficient and facilitates the use of very large

basis sets which allows basis set truncation errors to be reduced to a level where other effects, and

in particular relativity, are more significant [2-4].

By employing a hybrid partitioning scheme based on both the Rayleigh-Schrödinger and the

generalized Brillouin-Wigner approaches, it has been shown [5] that the electron correlation en-

ergy expression arising in the second-order many-body perturbation theory with a Møller-Plesset

reference hamiltonian can be written as part of a closed expression consisting of the MP2 ap-

proximation to the correlation energy together with a remainder term, R. The utility of the MP2

theory therefore rests not on the behaviour of the individual higher order terms in the perturbation

expansion but on the magnitude of the remainder term.

In this work we obtain an estimate of the remainder term, R, from limited configuration inter-

action and, in particular, from the method most often designated CISD, configuration interaction

with single and double excitations. In section 2, we define the remainder term in Møller-Plesset

second-order theory for the energy. In section 3, we used Brillouin-Wigner perturbation theory

to analyse the limited configuration interaction expansion for a non-degenerate ground state and

obtain an estimate for the remainder term R. This is followed by a brief discussion.

2 The remainder term in MP2 theory

Let the time-independent Schrödinger equation be written in the form

H |Ψ〉 = (H0 + λH1) |Ψ〉 = E |Ψ〉 (1)

with the usual normalization condition 〈Ψ | Ψ〉 = 1. Approximations to the eigenvalues of (1) are

developed with respect to the solutions of a model eigenproblem

H0 |Φi〉 = Ei |Φi〉 (2)

with 〈Φi | Φj〉 = δij. H1 is the perturbation operator and λ is the perturbation parameter. Define

the projector

P = |Φ0〉 〈Φ0| (3)

and its orthogonal complement Q = I − P . Assuming the intermediate normalization condition,

〈Φ0 | Ψ〉 = 1, we have

|Φ0〉 = P |Ψ〉 (4)
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Following the partitioning approach pioneered by Löwdin [6-18] , we can use (1) and (3) and write

Heff |Φ0〉 = E |Φ0〉 (5)

where the effective hamiltonian is given by

Heff = PHP + PHQ (E − QHQ)−1 QHP (6)

The exact energy is then E = 〈Φ0|Heff |Φ0〉. Different types of perturbation theory may then be

obtained by expanding the denominator in (6) using the operator recursion

(X − Y )−1 = X−1 + X−1Y (X − Y )−1 (7)

In our previous work [5], we point out that equation (7) can be written in the more general

form

(X − Y )−1 = X−1 + X−1Y (X ′ − Y ′)−1
(8)

where, in general, X �= X ′ and Y �= Y ′ but

X − Y = X ′ − Y ′ (9)

and in the application of (8) to the effective hamiltonian (6)

X − Y = X ′ − Y ′ = E − QHQ (10)

Putting

X = E0 − QH0Q (11)

and

Y = QH1Q − ∆E0 (12)

where ∆E0 = E − E0, yields the Rayleigh-Shcrödinger perturbation series, whilst the choice

X ′ = E (13)

and

Y ′ = QHQ (14)

leads to the generalized Brillouin-Wigner expansion, which was introduced by Löwdin in Parts

II and XII of his studies of perturbation theory [6-18] and re-examined recently by the present

authors[19].
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Employing both the Rayleigh-Schrodinger choice for X and Y , that is (11) and (12), and the

generalized Brillouin-Wigner choice for X ′ and Y ′, that is (13) and (14), in the recursion (8) gives

(E − QHQ)−1 = (E0 − QH0Q)−1 +

(E0 − QH0Q)−1 (QH1Q − ∆E0) (E − QHQ)−1 . (15)

The exact energy eigenvalue is given by

E = 〈Φ0|Heff |Φ0〉
= 〈Φ0|H |Φ0〉 + 〈Φ0|HQ (E − QHQ)−1 QH |Φ0〉 (16)

which upon the substitution of (15) gives

E = 〈Φ0|H |Φ0〉 + 〈Φ0|HQ (E0 − QH0Q)−1 QH |Φ0〉 + R (17)

where the first term on the right-hand-side is the sum of the zero-order and first order energies

〈Φ0|H |Φ0〉 = 〈Φ0|H0 |Φ0〉 + 〈Φ0|H1 |Φ0〉
= E0 + ε

(0)
1 (18)

which in Møller-Plesset theory is just the Hartree-Fock energy. The second term on the right-

hand-side of equation (17) is the second-order Møller-Plesset energy

〈Φ0|HQ (E0 − QH0Q)−1 QH |Φ0〉 =
∑
k �=0

〈Φ0|H1 |Φk〉 〈Φk|H1 |Φ0〉
E0 − Ek

= ε
(0)
2 (19)

Unlike the usual perturbation expansions, (17) is not an infinite series, but a closed expression

containing a remainder term which we designate R and which has the form

R = 〈Φ0|HQ (E0 − QH0Q)−1 (QH1Q − ∆E0) (E − QHQ)−1 QH |Φ0〉 (20)

or

R = 〈Φ0|HQ (E0 − QH0Q)−1 (QH1Q − (E − E0)) (E − QHQ)−1 QH |Φ0〉 (21)

The approximation to the total energy of an atomic or molecular system given by MP2 theory

can thus be written in the form

E = E0 + ε
(0)
1 + ε

(0)
2 + R (22)

The utility of the method rests on the requirement that the remainder term satisfies

R < τ (23)

for some arbitrarily chosen small τ . Specifically, the use of the MP2 method does not depend on

the behaviour of the individual higher order terms in the Møller-Plesset perturbation expansion.
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3 Estimation of the remainder term from limited configuration interaction

In this paper, we consider the use of limited configuration interaction in obtaining an estimate for

R. We restrict our attention to a non-degenerate ground state and employ the Brillouin-Wigner

perturbation expansion [20-23] in our analysis. The energy of such a system is given by

E = 〈Φ0|H0 |Φ0〉 + 〈Φ0|H1 + H1B0H1 + ... |Φ0〉 (24)

where B0 is the Brillouin-Wigner resolvent

B0 =
∑
k �=0

|Φk〉 〈Φk|
E − Ek

(25)

Introducing the reaction operator, VB, as

VB = H1 + H1B0H1 + ... (26)

we can write (24) as

E = 〈Φ0|H0 |Φ0〉 + 〈Φ0| VB |Φ0〉 (27)

VB can also be written as

VB = H1 + H1B0VB (28)

which is a Lippmann-Schwinger-like equation [24]. The wave operator [25-27] is defined by

|Ψ〉 = Ω |Φ0〉 (29)

so that, since from (1) and (4) we have

E = 〈Φ0|H |Ψ〉
= 〈Φ0|H0 |Φ0〉 + 〈Φ0|H1 |Ψ〉 , (30)

we can compare with equation (27) and write

VB = H1Ω. (31)

Furthermore, using (28), we can write

Ω = 1 + B0H1Ω. (32)

Substituting (31) into (27) gives

E = 〈Φ0|H0 |Φ0〉 + 〈Φ0|H1Ω |Φ0〉 (33)
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and then, by introducing (32) into (33) we get

E = 〈Φ0|H0 |Φ0〉 + 〈Φ0|H1 |Φ0〉 + 〈Φ0|H1B0H1Ω |Φ0〉 (34)

Equations (32) and (34) together define the infinite order Brillouin-Wigner perturbation expansion.

In principle, the wave operator, Ω, is an n-particle operator and so we can write

Ω = Ω(0) + Ω(1) + Ω(2) + ... + Ω(i) + ... + +Ω(n) (35)

where Ω(n) involves n particles only. Without loss of generality, we can always put Ω(0) = 1.

Substituting (35) into (34) gives

E = 〈Φ0|H |Φ0〉 + 〈Φ0|H1B0H1 |Φ0〉 + 〈Φ0|H1B0H1Ω
(1) |Φ0〉

+ 〈Φ0|H1B0H1Ω
(2) |Φ0〉 + ... + 〈Φ0|H1B0H1Ω

(i) |Φ0〉
+... + 〈Φ0|H1B0H1Ω

(n) |Φ0〉 (36)

or

E = 〈Φ0|H |Φ0〉 + εBW
2 + R′ (37)

where εBW
2 is the second order Brillouin-Wigner energy component

εBW
2 = 〈Φ0|H1B0H1 |Φ0〉 (38)

and the remainder term, R′, is given by

R′ =
n∑

i=1

〈Φ0|H1B0H1Ω
(i) |Φ0〉 (39)

Introducing the sum-over-states form of the Brillouin-Wigner resolvent (25), we have for the second

order energy

εBW
2 =

∑
k �=0

〈Φ0 |H1|Φk〉 〈Φk |H1|Φ0〉
E − Ek

(40)

and for the remainder

R′ =
n∑

i=1

[∑
k �=0

〈Φ0 |H1|Φk〉
〈
Φk

∣∣H1Ω
(i)

∣∣ Φ0

〉
E − Ek

]
(41)

The matrix elements
〈
Φk

∣∣H1Ω
(i)

∣∣ Φ0

〉
are obtained by using (32)

〈Φk |H1Ω|Φ0〉 = 〈Φk |H1|Φ0〉
+

∑
l �=0

〈Φk |H1|Φl〉 〈Φl |H1Ω|Φ0〉
E − El

(42)
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Equation (42) is the working equation for Brillouin-Wigner based configuration interaction.

In order to recover an approximation for the total energy in the form given in (22), we use the

identity

(E − Ek)
−1 = (E0 − Ek)

−1 − (E0 − Ek)
−1 ∆E0 (E − Ek)

−1 (43)

to write (37) as

E = 〈Φ0|H |Φ0〉 + 〈Φ0|H1R0H1 |Φ0〉
−

∑
k �=0

〈Φ0|H1 |Φk〉 〈Φk|H1 |Φ0〉∆E0

(E0 − Ek) (E − Ek)

+
n∑

i=1

〈Φ0|H1B0H1Ω
(i) |Φ0〉 (44)

where R0 is the Rayleigh-Schrödinger resolvent

R0 =
∑
k �=0

|Φk〉 〈Φk|
E0 − Ek

(45)

The first and second terms on the left-hand-side of (44) are just the Møller-Plesset series through

second order in the energy and so we have

E = E0 + ε
(0)
1 + ε

(0)
2 + R′′ (46)

where the remainder term R′′ is

R′′ = −
∑
k �=0

〈Φ0|H1 |Φk〉 〈Φk|H1 |Φ0〉∆E0

(E0 − Ek) (E − Ek)

+
n∑

i=1

〈Φ0|H1B0H1Ω
(i) |Φ0〉 (47)

Now we expect one- and two-body effects to be most significant and we, therefore, make the

approximation

Ω ≈ 1 + Ω(1) + Ω(2) (48)

Furthermore, if we restrict our attention to single and double replacements with respect to Φ0 in

equation (42), then equations (40), (41) and (42) provide a computational scheme which realizes

the limited configuration interaction method in its CISD form. In this approximation the evalua-

tion of the remainder term R′′ has roughly the same computational complexity as the MP2 energy

itself. It provides information about the the validity of MP2 in cases where single and double

substitutions play a dominant role.
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4 Discussion

In previous work [28,29] we have shown how Brillouin-Wigner perturbation theory can be used

to obtain a posteriori corrections to the method of limited configuration interaction which allow

for the non-linear scaling with electron number. A posteriori corrections were obtained for both

the single reference [28] and the multireference [29] case. We have also discussed the use of

multireference Brillouin-Wigner methods for many-body systems [30].

In the present work, an analysis of the limited configuration interaction CISD method using the

Brillouin-Wigner expansion has been used to obtain an estimate of the remainder term in MP2.

The computational complexity associated with this estimate of the remainder term is roughly

comparable with that of the MP2 energy expression itself.

We note that the Brillouin-Wigner coupled cluster expansion could also be used to obtain an

estimate of the remainder term R′′.
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7. Löwdin, P.O. J. Molec. Spectros. 1963, 10, 12.
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18. Löwdin, P.O.; Goscinski, O. Intern. J. Quantum Chem. 1971, 5, 685.
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