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pansion (CMX). Approximate Coupled Cluster (CC) wave functions are used as refer-
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usual Hamiltonian. Numerical results are given for some model systems that show the

superiority of the latter approach.
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1 Introduction

Coupled cluster (CC) theory [1-3] continues to be one of the most important theoretical tools in

the many-body problem, providing relatively accurate, size extensive wave functions and energies

even at the level of singles (S) and doubles (D) (CCSD) [4], using a conceptually simple single

reference approach (SR-CC). In spite of the fact that in the latter model a substantial part

of the electron correlation effects of triply and quadruply excited determinants is included via

disconnected clusters, it is well documented by now that inclusion of higher connected excitation

clusters is necessary to obtain highly accurate and reliable data. This holds especially if one aims

to study reactive potential energy surfaces. Though full inclusion of triples (T) via CCSDT [5, 6]

or quadruples (Q) via CCSDTQ [7, 8] is possible, they are very expensive to compute. Even more

expensive are the configuration interaction (CI) based CC algorithms that can treat basically any

excitations up to full CI [9-12]. Approximate inclusion of triples [13-15] or quadruples [16] into

the CC equations allows more favorable algorithms. These are, however, still too demanding for

an iterative procedure to be applied when solving the CC equations. Experience shows that these

approximate iterative solutions are not clearly superior to computationally much more effective, so

called non-iterative corrections, which can be applied after some given CC equations were solved.

Adjective “non-iterative” reflects the fact that approximate amplitudes of higher excitations are

determined in a single step, without solving the nonlinear CC equations. Those amplitudes are

used subsequently to correct the energy and/or properties.

The most popular corrections due to triples are certainly those based on CCSD, namely

CCSD[T]1 [14] or the slightly different CCSD(T) [17]. Those two approximations are formally

correct up to the fourth order of Many Body Perturbation Theory (MBPT) for closed shell

Hartree-Fock (HF), or an unrestricted HF (UHF) reference. The latter criterion was also ful-

filled in a similar treatment suggested independently in order to correct the CCD energies for

contributions from singles and triples, i. e. CCD+ST(CCD) [19]. However, because of the supe-

riority of CCSD basically for the same price, this CCD+ST(CCD) approximation has not found

a wide use.

During the last 15 years several non-iterative corrections have been suggested and implemented,

including those used for open shell systems or excited states [12, 21-35]. Initial argumentation for

these corrections was based on the analysis of the energy in terms of perturbation theory. The CC

energy has been corrected either to include all contributions up to a certain order, or to include

at least those terms of MBPT up to a certain order, that were present in the higher variant of

the coupled cluster approach. For non-degenerate cases, approaches correct to 4th order work

well, while to include non-dynamical correlation one often needs fifth or higher order corrections.

1Originally denoted as CCSD+T(CCSD). Abbreviation CCSD[T] was introduced for simplicity in [18].
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Unfortunately, there is no unique prescription which fifth or higher order corrections need to be

included. Though, one naturally expects that contributions due to connected quadruples (which

are missing in MBPT(4)) would be of great importance, there are several other contributions that

are of similar magnitude [36], and moreover, there is usually a substantial cancellation between

the fifth-order corrections [21, 28, 36, 37]. This, with the fact that MBPT with Møller-Plesset

splitting of the Hamiltonian can (surprisingly) diverge even for non-degenerate cases [38], is cer-

tainly a drawback for high precision predictions, and at the same time a challenge for alternative

treatments. Indeed, such alternative approaches have appeared very recently.

One class is represented by “renormalized” or “completely renormalized” non-iterative correc-

tions suggested by Kowalski and Piecuch [31] which are based on the method of moments of CC

equations (MMCC). Following the formalism of β nested equations (β-NE) [39], Kowalski and

Piecuch formulated and derived the so called Fundamental Theorem of the Formalism of β Nested

Equations [30], which has been an inspiration for MMCC. The principal idea was to provide an

explicit formula for a non-iterative correction to the energy obtained by an approximate SR-CC

method to recover the FCI result. The authors have also shown that the general formula for the

renormalized CC corrections can be as well derived by using “standard” argumentation of the CC

theory, hence avoiding the formalism of β-NE. Recently, MMCC approach has been extended to

excited states [32], as well as to multireference wave operator formalism [33].

Analogous type of corrections can be derived by explicitly considering the coupling between

the energy and CC amplitudes in all “a posteriori” approaches [35]. At the level of renormalized

CCSD[T] or CCSD(T) the corrections are identical with those using MMCC argumentation.

Schematically, the renormalized corrections can be expressed as:

∆ER =
∆E

1 + S
, (1)

where ∆ER is the renormalized energy correction, ∆E stands for the standard non-iterative correc-

tion [such as CCSD[T], CCSD(T), CCSD(TQ) . . .], while the “renormalization term” S depends

on the chosen variant. From the point of view of single-reference perturbation expansion, S con-

tains at least second-order contributions. Hence, despite the corrections in various approximate

variants may not be size extensive, the inextensivity error can be considered small for single-

reference situations. Moreover, if quasi-degeneracy increases, “overshooting” of ∆E is reduced

by the increasing denominator. As a result renormalized non-iterative corrections offer a promis-

ing way of extending the applicability of the standard corrections to a larger range of molecular

geometries, as documented by recent works [40].

A different class of corrections to CC energies is offered by a hierarchy of corrections based

on the perturbative expansion of the similarity-transformed Hamiltonian [12, 34] which directly

follows from ideas addressed earlier [25, 41].
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In this paper we sketch yet another possibility for non-iterative corrections that are based

on the so called connected moments expansion (CMX) of the energy. For the use in molecular

ab initio calculations, CMX was suggested in the late eighties by Cioslowski [42], and initially

used within the framework of a single reference theory [42, 43] with medium success. The way

of constructing CMX expansions is, however, not unique [44-46]. As demonstrated on a few

examples, the expansion termed as CMX-LT [44, 45], could be superior in molecular calculations.

For simple molecular systems, the idea of connected moments expansion has been also applied in

variational Monte Carlo method [47].

The CMX approach was criticized by Wolinski and Pulay [48], claiming that such an approach is

inappropriate for computing potential energy surfaces. According to our numerical experience with

CMX, the above criticism is only relevant if one starts the CMX expansion with a single reference

configuration. As soon as one has a multiconfigurational framework the problem disappears [49].

In the next section we shall briefly recapitulate the CMX theory in general and subsequently

we discuss the theory within the CC framework. Finally, in Sec. 4 we present some numerical

examination of the possible CMX-CC models.

2 The Connected Moments Expansion

The CMX expansion is derived from the Horn-Weinstein function [50]

f(η) =
〈Φ|Ĥe−ηĤ |Φ〉
〈Φ|e−ηĤ |Φ〉 (2)

where H is the Hamiltonian, while Φ is an arbitrary reference function having a nonzero overlap

with the true ground state of H. This function possesses the following properties:

i) f(0) is the expectation value of Ĥ with the reference function

ii) it is monotonically decreasing

iii) its Taylor expansion coefficients are the connected moments of Ĥ

iv) f(∞) is the exact ground state energy.

We note that if one used the full Hamiltonian in the Hilbert space, than the exact solution of

the Schrödinger equation would be recovered at f(∞), while if dealing with the second quantized

Hamiltonian that corresponds to a finite basis set, f(∞) gives the full CI solution.

Based on the above properties of the Horn-Weinstein function, some time ago Cioslowski pro-

posed a successive approximation to the ground state energy [42] termed the connected moments

expansion:

ECMX−HW = I1 − I2
2

I3

− A2
6,1

I3A8,1

− (A10,1A6,1 − A2
8,1)

2

I3A8,1(A12,1A8,1 − A2
10,1)

− . . . (3)
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A2m,i = Im+iIm−i − Im+i−1Im−i+1 (4)

A2m+1,i = Im+i+1Im−i − Im+iIm−i+1 (5)

where Ik are the connected moments of the Hamiltonian given as

f(0) = I1 = 〈Ĥ〉 (6)

−
(

df

dη

)
η=0

= I2 = 〈Ĥ2〉 − 〈Ĥ〉2 (7)

−
(

d2f

dη2

)
η=0

= I3 = 〈Ĥ3〉 − 3〈Ĥ2〉〈Ĥ〉 + 2〈Ĥ〉3 (8)

−
(

d3f

dη3

)
η=0

= I4 = 〈Ĥ4〉 − 4〈Ĥ3〉〈Ĥ〉 − 3〈Ĥ2〉2 + 12〈Ĥ2〉〈Ĥ〉2 − 6〈Ĥ〉4 (9)

−
(

d4f

dη4

)
η=0

= I5 = 〈Ĥ5〉 − 5〈Ĥ4〉〈Ĥ〉 − 10〈Ĥ3〉〈Ĥ2〉 + 20〈Ĥ3〉〈Ĥ〉2

+ 30〈Ĥ2〉2〈Ĥ〉 − 60〈Ĥ2〉〈Ĥ〉3 + 24〈Ĥ〉5. (10)

We use 〈Ĥk〉=〈Φ|Ĥk|Φ〉. One easily recognizes that

Ik = 〈Ĥk〉 −
k−2∑
i=0

(
k − 1

i

)
Ii+1〈Ĥk−i−1〉 = 〈Ĥk〉C (11)

where subscript “C” stands for connected. According to [44], we shall denote the CMX variant

given by Eq. (3) as “HW”. Truncation after the first, second, etc. terms defines CMX-HW(1),

CMX-HW(2), etc. approximations.

The expansion Eq. (3) can be also derived using the theory of standard Padé approximants,

while the above mentioned CMX-LT can be obtained using the theory of generalized Padé ap-

proximants. The latter procedure is equivalent to a derivation based on considering the Lanczos

basis [51] for the Hamiltonian matrix [45]. Elegant recursive formulas are given in the latter paper

for both CMX-HW and CMX-LT series. Explicitly, the first four terms in the CMX-LT expansion

read:

ECMX−LT = I1 − I2
2

I3

− A2
6,1

I3A8,1

− A6,1(A9,1A6,1 − A8,1A7,1)
2

I3A8,1[A8,1(A10,2A6,1 − A8,1A8,2) − A9,1(A9,1A6,1 − A8,1A7,1)]
− . . . (12)

Clearly, CMX-HW(n) and CMX-LT(n) are identical up to n=3.
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We intend to investigate
i) whether the above expansion of the true energy is feasible if Φ is an approximate CC wave

function, say CCSD; and

ii) whether a modification of the original Horn-Weinstein function, replacing the expectation

values by non-symmetric matrix elements in the spirit of CC theory, provides meaningful

results.

3 CMX Using a Coupled Cluster Reference State

The reference function Φ in Eq. (2) and (3) is arbitrary, hence it can also be taken as an approx-

imate CC wave function:

|Φ〉 = eT |HF 〉 (13)

where |HF 〉 is the single determinantal reference state (Fermi vacuum), typically chosen as the

leading configuration in |Φ〉. Intermediate normalization is assumed, i. e. 〈HF |Φ〉 = 1. The

global excitation cluster operator T is restricted only to certain excitations with respect to |HF 〉,
most frequently T = T1 + T2. Let us recall that in traditional CC approach, energy and the

amplitudes of T are obtained from:

ECC = 〈HF |ĤeT |HF 〉 = 〈HF |ĤeT |HF 〉C , (14)

0 = 〈HFn|(Ĥ − E)eT |HF 〉 = 〈HFn|ĤeT |HF 〉C , (15)

|HFn〉 denoting determinants created by T .

Due to the aforementioned definition of the connected moments one arrives at:

〈Ĥk〉C = 〈HF |eT †
ĤkeT |HF 〉C . (16)

Clearly, 〈Ĥ〉 is not a coupled cluster energy calculated in a traditional way. Though already in the

original coupled cluster papers it is proven that an expectation value of the Hamiltonian (or any n-

electron operator) in terms of the CC wave function is a connected expansion [3], such an approach

is not widely used. The reason is simply that evaluation of such matrix elements is substantially

complicated due to the occurrence of the (deexcitation) operator eT †
in the bra functions. This

results in a non-terminating, though factorizable, expansion of the expectation value. Thinking

in this way, one meets the problem of determining where to terminate this expansion, since

unfortunately, it consists of many mutually (almost) canceling terms [52]. An alternative way

is to compute these matrix elements by determining the CC wave function, converting the CC

amplitudes to CI-type coefficients. In principle the procedure involves letting the Hamiltonian act

on the eT |HF 〉, and taking the scalar product of the two vectors. This is certainly very demanding

computationally, but easy to apply as soon as a general CI program is available. We used the

latter approach in obtaining the testing numerical examples reported below.



Int. J. Mol. Sci. 2002, 3 514

3.1 Modified CC-CMX formulas

In CC theory it appears to be challenging to investigate a possibility of using a non-symmetric

modified form of the Horn-Weinstein function, in analogy with the non-symmetric energy formula

Eq. (14). Function

f̃(η) =
〈HF |Ĥe−ηĤeT |HF 〉
〈HF |e−ηĤeT |HF 〉 (17)

shares several properties of the original Horn-Weinstein function of Eq. (2). In particular, f̃(0) =

〈HF |HeT |HF 〉 = ECC is the coupled cluster energy, and f̃(∞) = E0 is the exact (full CI)

eigenvalue. To prove the latter statement, consider the spectral resolution of Ĥ and insert it into

(17):

f̃(η) =

∑
i Eie

−ηEi〈HF |Ψi〉〈Ψi|eT |HF 〉∑
i e−ηEi〈HF |Ψi〉〈Ψi|eT |HF 〉 (18)

If both the numerator and denominator are multiplied by eηE0 (E0 the ground state), all exponents

−η(Ei −E0), but −η(E0 −E0), become negative. Hence, for η → ∞ limit, only the term with the

lowest exponent E0 survives, and we are left with

lim
η→∞ f̃(η) =

E0e
−ηE0〈HF |Ψ0〉〈Ψ0|eT |HF 〉

e−ηE0〈HF |Ψ0〉〈Ψ0|eT |HF 〉 = E0. (19)

Moreover, differentiating f̃(η) with respect to η and taking the derivatives at η = 0 we obtain

−f̃ ′(0) = ICC
2 = 〈HF |ĤĤeT |HF 〉 − 〈HF |ĤeT |HF 〉〈HF |ĤeT |HF 〉

= 〈HF |eT e−T ĤeT e−T ĤeT |HF 〉 − 〈HF |eT e−T ĤeT |HF 〉〈HF |eT e−T ĤeT |HF 〉
= 〈HF |H̄2|HF 〉 − 〈HF |H̄|HF 〉2
= 〈HF |H̄2|HF 〉C . (20)

In the final steps of Eq. (20) we have used H̄ for the similarity transformed Hamiltonian:

H̄ = e−T ĤeT (21)

and, we used the fact that

〈HF |eT e−T = 〈HF |e−T . (22)

Analogously one can show that, denoting the derivatives of f̃(η) by parenthesized superscripts,

−f̃ (k−1)(0) = ICC
k = 〈HF |H̄k|HF 〉C . (23)

In fact, one can now easily see that the function of Eq. (17) is actually equivalent to:

f̃(η) =
〈HF |H̄ exp(−ηH̄)|HF 〉
〈HF | exp(−ηH̄)|HF 〉 (24)
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Table 1: Deviations of the CMX energies (in mEh) from the full CI energies (in parenthesis) for

beryllium atom with different basis sets.

Reference function

CCSD CISDc CCSDT CISDTc

CCa XCCb CCa XCC

3-21G (-14.531444 Eh)

CMX-HW(1) 0.028 0.028 0.048 0.002 0.000 0.023

CMX-HW(2) 0.028 0.003 0.005 0.002 0.000 0.000

CMX-HW(3) 0.032 0.000 0.000 0.001 0.000 0.000

CMX-HW(4) 0.024 0.000 0.000 -0.001 0.000 0.000

CMX-LT(4) 0.018 0.000 0.000 0.000 0.000 0.000

6-311G (-14.632864 Eh)

CMX-HW(1) 0.189 0.190 1.492 0.004 0.001 1.312

CMX-HW(2) 0.189 0.023 0.129 0.004 0.000 0.083

CMX-HW(3) 0.150 0.003 0.054 0.003 0.000 0.036

CMX-HW(4) -0.234 0.001 -0.010 0.002 0.000 0.038

CMX-LT(4) -0.197 0.001 -0.012 0.003 0.000 0.038

6-311G** (-14.633376 Eh)

CMX-HW(1) 0.274 0.274 1.528 0.004 0.002 1.265

CMX-HW(2) 0.274 0.052 0.175 0.004 0.000 0.082

CMX-HW(3) -0.049 0.005 0.069 0.004 0.000 0.036

CMX-HW(4) -0.210 0.001 0.032 0.001 0.000 0.040

CMX-LT(4) -0.207 0.002 0.031 0.002 0.001 0.040

ausing CC moments, Eq. (23), CMX-HW(1) is equal to CCSD or CCSDT.
busing XCC moments, Eq. (16).
c CMX-HW(1) is equal to CISD or CISDT.

which has the same form as the original Horn-Weinstein function of Eq. (2), just with Ĥ replaced

by H̄. Accordingly, now one has connected moments of H̄ defined by Eq. (23), and the CMX

expansion may proceed along the same line as with the symmetric formulas. Although the sim-

ilarity transformed Hamiltonian H̄ is more than a mere two-particle operator, evaluation of the

non-symmetric connected moments is, nevertheless, substantially simpler than (16). The reason
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is that, in opposite to (16), H̄k always consists of finite number of terms, for finite k.

There are some important differences between (2) and (24), however. The most important one is

that while f(η) is monotonically decreasing, this statement does not hold for f̃(η). It may happen

therefore, that estimating f̃(∞) with low order derivatives does not improve the energy. Another

interesting difference is that while the symmetric second moment, f ′(0), being the distribution of

the Hamiltonian, vanishes if and only if Φ is an exact eigenfunction, f̃ ′(0) may be zero due to

several reasons. In particular, one may easily prove that it vanishes for a CCSD wave function

provided that the amplitude equations have been exactly solved. Coming back to Eq. (20) we can

write:

ICC
2 = 〈HF |H̄H̄|HF 〉 − E2

CC

=
∑

i

〈HF |H̄|HFi〉〈HFi|H̄|HF 〉 − E2
CC

=
∑
i�=0

〈HF |H̄|HFi〉〈HFi|H̄|HF 〉 + E2
CC − E2

CC = 0, (25)

because, terms with i≤2 in the last line vanish due to the fulfillment of CC equations Eq. (15),

while for any i>2 the matrix elements 〈HF |H̄|HFi〉 vanish as well.

Consequently, no ’second order’ correction to CCSD appears in this CC-CMX theory. This, on

one hand, underlines the accuracy of the CCSD wave function, on the other hand it makes the

evaluation of correction terms more difficult, as it necessitates going to higher CMX(n).

4 Test Results

For a CC reference we shall use “CC” for CMX-HW or CMX-LT expansions in which connected

moments were calculated according to Eq. (23), whereas by “XCC” (expectation value CC) we

denote results obtained from connected moments of Eq. (16). To test the aforementioned idea we

applied a determinantal approach using the general CC-CI algorithm implemented recently [9].

With very little modifications, the latter code allows to calculate connected moments of all kinds

we need.

In Tables 1 to 3 we display deviations of the CMX energies from FCI for model systems such as

beryllium, H2O, and HF. Though the use of larger basis sets would be welcome, even results with

the small bases used here allow to preliminary asses the performance of various CMX approaches,

and eventually compare them to other recently suggested non-iterative corrections. We have

calculated CMX expansions from CI wave functions as well.

Though Be atom is merely a four electron system, due to the 2s2/2p2 near-degeneracy, triple

and quadruple substitutions are particularly important here. Extending the basis set, the role of

higher excitations rises, of course. Such a trend is seen from Table 1. Unlike CISDT, the CCSDT
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Table 2: Deviations of the CMX energies (in mEh) from the full CI energies for the H2O molecule

(α=104.0 deg).

R=1.01 Å R=1.5 Å R=2.0 Å

Ref. CCSD CISD CCSD CISD CCSD CISD

CC XCC CC XCC CC XCC

STO-3G/FCIa -83.736245 Eh -82.218671 Eh -81.401484 Eh

CMX-HW(1) 0.145 0.117 0.990 0.378 0.175 4.045 0.417 0.119 9.354

CMX-HW(2) 0.145 0.029 0.167 0.378 0.066 0.831 0.417 0.073 2.411

CMX-HW(3) 0.146 0.029 0.071 0.383 0.040 0.319 0.423 0.060 0.922

CMX-HW(4) 0.158 0.030 0.066 0.409 0.034 0.321 0.452 0.063 0.935

CMX-LT(4) 0.189 0.009 0.050 0.505 0.017 0.327 0.565 0.071 0.963

3-21G/FCIa -84.434106 Eh -82.923660 Eh -82.112076 Eh

CMX-HW(1) 1.886 1.670 6.372 3.953 3.511 12.422 7.552 6.584 25.057

CMX-HW(2) 1.886 0.483 1.705 3.953 1.062 4.527 7.552 2.145 10.997

CMX-HW(3) 2.071 0.195 0.813 4.250 0.495 2.519 7.996 1.137 6.209

CMX-HW(4) 1.448 0.168 0.601 2.777 0.463 2.009 5.620 0.975 5.130

CMX-LT(4) 1.034 0.142 0.436 1.694 0.431 1.591 3.853 0.791 4.259

aElectronic energy

covers not only the major portion of triples, but via disconnected T2T2 clusters also the quadruple

excitations. Therefore, results with CCSDT reference are very close to the full CI limit.

As one can see, the superiority of XCC-CMX is obvious, both with respect to CC-CMX and

CMX with a CISD (or CISDT) reference. This has been, in general, expected. The question to

answer was just how much would these approaches differ. The reason is simple. Formally, the

reference function for XCC-CMX includes all possible excited determinants that can be created

with respect to one-electron approximation ground state. Hence, in a sense, one calculates the

full CI like energy already in I1. Let us note that I1 is an upper bound and size extensive

at the same time. With limited CI, one starts with a wave function that is not size extensive

(linked). With such a reference function the moments Ik are actually not strictly connected, and

the approximate energies are not size extensive. Nevertheless, we have included the CI wave

function based CMX energies for curiosity. Despite the aforementioned drawbacks of limited CI,

the convergence towards the FCI limit for beryllium has been better with CISD reference than

using the CC moments (23) from the CCSD reference.
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Table 3: Deviations of the CMX energies (in mEh) from the full CI energies for the HF molecule.

R=1.0 Å R=1.5 Å R=2.0 Å

Ref. CCSD CISD CCSD CISD CCSD CISD

CC XCC CC XCC CC XCC

6-31G/FCIa -104.877215 Eh -103.201083 Eh -102.348497 Eh

CMX-HW(1) 1.233 0.958 5.865 3.379 2.861 11.730 7.545 5.809 24.322

CMX-HW(2) 1.233 0.386 1.234 3.379 1.120 3.610 7.545 2.572 9.615

CMX-HW(3) 1.296 0.110 0.520 3.480 0.477 1.859 7.695 1.745 5.117

CMX-HW(4) 0.933 0.092 0.383 2.287 0.419 1.545 5.620 0.497 4.508

CMX-LT(4) 0.610 0.077 0.231 0.925 0.352 1.179 3.002 -1.941 3.827

aElectronic energy

Unlike CISD, CCSD reference and the CC moments of the Hamiltonian are precisely size

extensive, but the first moments are not strictly upper bound. Consequently, as mentioned in the

previous section, the pattern of f̃(η) (24) may not be monotonic as one would like to have. This

most probably explains the “worst” performance of the CC moments, from the three investigated

approaches for beryllium. As soon as we start from CCSDT wave function —which is almost

“exact”— CMX through CC moments outperforms the CISDT based CMX.

In Tables 2 and 3 we have included H2O and HF with gradually extended bond lengths, i.

e. with higher and higher portion of non-dynamical correlation effects. Also here, one sees the

“best” performance of XCC based CMX. Up to CMX(4), the CMX-HW does not provide results

too different from CMX-LT. Consequently one could hardly prefer any of those two. Anyway, a

computationally practical level of approximation would be more or less CMX(3) at which both

HW and LT expansions are identical.

The relatively large difference between CMX-HW(4) and CMX-LT(4) for HF at 2.0 Å may be

due to the closeness to a singularity. This problem has been analysed by Mancini et al. [46], who

showed that in HW expansion the singularities are canceled out in various orders of CMX. Our

initial experience revealed that the connected moments and any intermediate quantities can differ

in many orders of magnitude, and the numerical precision can be easily affected (not only) due to

the closeness of a singularity.

As to the concluding assessment, let us recall that our test calculations showed that of the

two coupled cluster based CMX approaches only XCC based CMX could be competitive with the

recently proposed non-iterative corrections such as renormalized CCSD(T) [31] or perturbative cor-

rections to coupled cluster energies [12, 34]. The disadvantage of the XCC CMX moments is that
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easily factorizable expansions for the expectation values given by Eq. (16) are non-terminating,

and calculation through a determinantal approach based on the CI type matrix elements is com-

putationally extremely demanding. More numerical experience is needed in order to recommend

further development along the line to truncate the infinite expansions of (16).
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