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Abstract: The folding process of the 20 residue Trp-cage mini-protein was investigated 

using standard temperature replica exchange molecular dynamics (T-RexMD) simulation 

and a biasing potential RexMD (BP-RexMD) method. In contrast to several conventional 

molecular dynamics simulations, both RexMD methods sampled conformations close to 

the native structure after 10-20 ns simulation time as the dominant conformational states. 

In contrast, to T-RexMD involving 16 replicas the BP-RexMD method achieved very 

similar sampling results with only five replicas. The result indicates that the BP-RexMD 

method is well suited to study folding processes of proteins at a significantly smaller 

computational cost, compared to T-RexMD. Both RexMD methods sampled not only 

similar final states but also agreed on the sampling of intermediate conformations during 

Trp-cage folding. The analysis of the sampled potential energy contributions indicated that 

Trp-cage folding is favored by both van der Waals and to a lesser degree electrostatic 

contributions. Folding does not introduce any significant sterical strain as reflected by 

similar energy distributions of bonded energy terms (bond length, bond angle and dihedral 

angle) of folded and unfolded Trp-cage structures.  

 

Keywords: Conformational sampling; molecular dynamics simulation; protein folding; 

Replica Exchange. 
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1. Introduction 

 

Realistic computer simulation of the structure formation process of proteins is a great challenge of 

molecular biophysics and structural biology. The prediction of protein structures and of the folding 

process at an atomic level of detail can help to understand the function of proteins and may allow the 

creation of new macromolecules with desired functions.  

In recent years, molecular dynamics (MD) simulations have been widely used for studying folding 

processes of peptides and small proteins, including the characterization of folding pathways and 

intermediate states [1-5]. However, the currently possible time scales of ~100 ns still limit the 

applicability of MD simulation to small proteins and simulation times that are insufficient to study the 

folding process systematically. Proteins and peptides can adopt numerous locally stable conformations 

that are separated by large energy barriers. At room temperature a standard MD simulation may easily 

be trapped into a locally stable conformation. Conformational transitions between these stable states 

are rare during conventional MD (cMD) simulations [1-6]. A variety of methods like simulated 

annealing [7], potential scaling [8-15], locally enhanced sampling [16], or parallel tempering [17-19] 

have been proposed to overcome the conformational sampling problem during molecular simulations 

(reviewed in [5,6]). A standard method to enhance conformational sampling uses simulated annealing 

(SA-MD), that is, to start with simulations at high temperature to overcome barriers followed by 

gradual cooling (annealing) to reach low energy regimes [20]. Unfortunately, during SA-MD a given 

protein or peptide system may still be trapped in a local energy minimum and the decrease in 

temperature will further lower the escape probability to explore new alternative low energy regions. 

Except for excessively long simulations there is no guarantee that simulated annealing will find a 

global minimum [21].  

Another method used to enhance conformational sampling in both Monte Carlo (MC) and MD 

simulations is the parallel tempering or replica exchange approach [17-19,22-30]. In RexMD 

simulations several copies (replicas) of the system are simulated independently and simultaneously 

using classical MD at different simulation temperatures. At preset intervals pairs of replicas 

(neighboring pairs) are exchanged with a specified transition probability. Typically, temperature is 

used as a parameter to be varied and exchanged among the replicas (T-RexMD). The random walk in 

temperature allows conformations trapped in locally stable states (at a low simulation temperature) to 

escape by exchanging with replicas at higher simulation temperature. An advantage of RexMD 

compared to SA-MD is that exchanges between low and high temperature regimes are possible 

throughout the whole simulation combining efficiently the barrier crossing properties at high 

temperature with the selectivity for low energy structures at low temperature. The RexMD method has 

been successfully applied in folding simulations of several peptides and small proteins [22-30]. A 

drawback of RexMD is, however, the large number of simulations that run in parallel in order to cover 

a desired temperature range. Since efficient exchanges between neighboring replicas require sufficient 

energy overlap between replicas the number of required replicas grows rapidly with the size of the 

simulation system (~with the square root of the number of particles, [31] ). A large number of replicas 

in turn require increased simulation times in order to allow efficient “traveling” of replicas in 

temperature space.   
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As an alternative to the use of temperature as a replica coordinate, it is also possible to use the force 

field or Hamiltonian of the system as parameter that differs between replicas [31-36]. Recently, we 

have proposed a Hamiltonian replica exchange (H-RexMD) method termed biasing potential – Replica 

Exchange (BP-RexMD), that focuses on the protein backbone transitions. The method employs a 

biasing potential to reduce the energy barriers associated with peptide backbone dihedral transitions. 

The level of added biasing is gradually changed along the replicas such that frequent transitions are 

possible at high levels of biasing and the system can escape from getting trapped in local energy 

minima. Since exchanges between replicas depends only on the part of the system that involves the 

biasing potential the method requires fewer replicas for efficient sampling compared with standard 

temperature (T-)RexMD. Indeed, the application of BP-RexMD on small peptides showed improved 

sampling of conformational space with fewer replicas (only 5-7) as compared to standard temperature 

RexMD simulations [37].  

In the current study the BP-RexMD has been applied to the folding of Trp-cage mini protein in 

implicit solvent. The study includes a direct comparison of sampled states with T-RexMD and an 

energetic analysis of driving forces for folding based on a continuum solvent model. The Trp-cage is a 

20 residue mini-protein designed by Neidigh et al. [38] based on the C-terminal fragment of the 39-

residue exendin-4 peptide. The structure of this protein was determined by NMR spectroscopy [38]. 

The Trp-cage protein contains different types of secondary structure and a characteristic well 

structured hydrophobic core where the indole side chain of a Trp residue is buried between the rings of 

two Pro residues. Its folding behavior has been investigated by various experimental methods. Qui et 

al. [39] suggested a two-state folding mechanism based on laser temperature jump spectroscopy 

whereas Ahmed et al. [40] using UV- resonance Raman spectroscopy measurements suggested a more 

complicated folding mechanism through an intermediate molten globule state. The study also provided 

evidence for α-helical structure even in the denatured state of the Trp-cage protein. Recently, Mok et 

al. [41] found extensive hydrophobic contacts, even in the unfolded state, employing photochemically 

induced dynamic nuclear polarization (CINDP)-NMR pulse-labeling experiments. It needs to be 

emphasized that the force field accuracy is an additional factor which limits the ability of current 

simulation approaches to reproduce protein folding events. Furthermore, the present simulation study 

employed an implicit (Generalized Born-type) solvation model. Nevertheless, such models have 

already been used successfully for simulating the folding of the Trp-cage protein during either 

conventional MD simulations [42-45] or T-RexMD [46]. However, an analysis of energetic 

contributions to the folding process has so far not been provided. 

 

2. Materials and Methods 

 

For all MD simulations the Sander module of the AMBER9 package [47] was used in combination 

with the parm03 force field [48] and an advanced Generalized Born implicit solvent model (GB-

option=5 in Sander) according to Onufriev et al. [49]. An initial extended structure for the Trp-cage 

protein was generated using the xleap module of the Amber9 package [47]. The simulation system was 

subjected to energy minimization (1,000 steps) using the sander module. During MD simulation, the 

protein was initially harmonically restrained (25 kcal mol-1Ǻ-2) to the energy minimized start 

coordinates, and the system was heated up to 300 K in steps of 100 K followed by gradual removal of 
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the positional restraints and a 0.5 ns unrestrained equilibration at 300 K. The resulting system was used 

as starting structure for both BP-Rex MD and T-Rex MD and all conventional MD simulations. A time 

step of 2 fs were used for the BP-RexMD simulations whereas for T-Rex MD simulation it was 

necessary to reduce the time step to 1 fs. 

In standard temperature T-RexMD, copies or replicas of the system are simulated simultaneously at 

a set of temperatures (T0,T1,T2,….TN). Each of the copies evolves independently and after preset time 

intervals exchanges of pairs of neighboring replica are attempted according to a Metropolis  

criterion [18]: 

 

 

 

 

 

 

with β=1/RT (R: gas constant and T: temperature) and E(r) representing the potential energy of system 

for a given configuration. In the current work an exchange was attempted for every 2,000 steps (2 ps). 

It has been recognized that temperature (represented as Boltzmann factor β) and energy (or 

Hamiltonian of the system) are equivalent in the Metropolis criterion. The BP-RexMD method is a 

Hamiltonian RexMD method that employs a biasing potential for the Φ and Ψ peptide backbone 

dihedral angles [37]. The biasing potential is based on a potential of mean force (PMF) for each of the 

two dihedral angles calculated for a model peptide (alanine dipeptide) in explicit solvent [37]. 

Addition of the biasing potential during a simulation lowers the energy barriers for backbone dihedral 

transitions in a peptide or protein. In a BP-RexMD simulation different biasing potential levels are 

applied in each replica (one reference replica runs without any biasing potential) and replica exchanges 

between neighboring biasing levels were attempted every 1,000 MD steps (2ps) and accepted or 

rejected according to a Metropolis criterion [18]:  

 

  

 

 

 

Here, the Metropolis criterion involves only a single β or temperature (in the present study 300K) 

and the energy difference between neighboring configurations using the force field for replica j (Ej) 

minus the same difference using force field for replica i (Ei). An advantage compared to temperature 

RexMD is the fact the energy differences are only affected by the force field term that changes upon 

going from one replica to another replica run.  

For comparison, five conventional cMD simulations (with different initial velocities) were carried 

out starting from the same structure. Both the cMD simulations and the BP-RexMD simulations were 

carried at a temperature of 300 K. For the T-Rex MD simulation a temperature range of 300 K – 460 K 

was used (temperatures in Kelvin: 300, 303, 307, 312, 318, 325, 332, 339, 348, 360, 374, 390, 406, 

422, 440, 460). The exchange acceptance rate for the T-RexMD was between 20-35%. For the BP–
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RexMD simulation five replicas with the same biasing potential and biasing levels as given in Table I 

of reference [37] were used. The complete BP-RexMD simulation required less than two weeks of 

computer time using eight nodes of a cluster computer for each replica. The acceptance probability for 

replica exchanges was in the range of 30-40%. Cluster analysis of sampled conformation was 

performed using the kclust program in the MMTSB-tools [50] base on root-mean-square deviation of 

Ca-atoms (RmsdCa) with a 2 Å cutoff. Structures were visualized using VMD [51]. 

 

3. Results and Discussion 

 

3.1. Comparison of continuous and Replica Exchange MD simulations 

 

Five continuous MD simulations at 300K were started from an extended Trp-cage protein structure 

generated using the Amber leap module and assigning different initial velocities. In addition to the 

simulations started from extended conformations, one 40 ns control simulation run starting from the 

folded structure (first entry of pdb1L2Y) was also performed. The deviation of the sampled structures 

for this simulation remained mostly to within ~2 Å (heavy atom Rmsd: Rmsdheavy) from the 

experimental structure (not shown).  

 

Figure 1. Root-mean-square deviation (Rmsd of Cα-atoms) of sampled Trp-Cage 

conformations from the native structure (1st entry of pdb1L2Y) vs. simulation time. (A) 

Rmsd of five independent cMD simulations starting from an extended Trp-cage structure 

with different initial atomic velocities. (B) Rmsd of conformations sampled during the T-

RexMD started from the same extended conformation (for the reference replica run). (C) 

same as in (B) but for the BP-RexMD (for the replica run with the original force field). 
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None of the five independent simulations starting from the unfolded conformation resulted in 

structures with a backbone RmsdCα < 2.5 Å or Rmsdheavy < 4 Å within the 40 ns simulation time 

(Figure 1a). Even an extension to 100 ns of two of the cMD simulations did not result in 

conformations in closer agreement with the experimental structure (not shown). In addition to cMD 

simulations a BP-RexMD simulation (five replicas including always one simulation that runs without a 

biasing potential) and a T-RexMD simulation (16 replicas) were carried out starting from the same 

initial unfolded conformation. The BP-RexMD method employs a specific biasing potential to promote 

peptide backbone transitions as a replica coordinate. The purpose of the biasing potential is to reduce 

the energy barriers associated with peptide backbone dihedral transitions [37]. Note, that the same 

biasing potential was used for all backbone dihedral angles in the Trp-cage protein (except Gly and the 

Pro Φ angle). The derivation of the biasing potential has been described in reference [37] and the same 

biasing levels were used as given in Table I of reference [37]. The T-RexMD simulations were 

performed using 16 replicas with temperatures ranging from 300 K to 460 K (see Methods). 

Exchanges were attempted for both RexMD methods at every 2 ps between neighboring replica and 

extended to up to 40 ns (20,000 attempted exchanges).  

In contrast to the continuous MD simulations in both the replica exchange simulations the deviation 

of the sampled conformations from the native structure (in the reference replica) dropped to RmsdCα < 

1 Å within the first 10 ns of simulation time (Figures 1b,c). However in the T-Rex MD simulation 

conformations close the folded structure disappeared and started to accumulate again after ~20 ns time 

period (Figure 1b). Structures < 1.5 of RmsdCα and ~2 Å Rmsdheavy from the native structure were 

sampled as the dominant state in the reference replica of both the RexMD simulations during the final 

10-15 ns time period. The near-native structures also showed very good agreement with NMR-derived 

proton distances in the folded state (not shown).  

 

Figure 2. Superposition of the cluster centroids (structure closest to the average structure 

of the cluster) from the most populated cluster during the final part (last 10 ns) of the BP-

RexMD (A) and T-Rex MD (B) simulations (red structures) on the native Trp-cage 

structure (first entry of pdb1L2Y; in blue). The protein backbone is in tube representation 

and residues Tyr3, Trp6, Asp9, Pro12, Arg16, Pro17, Pro18 and Pro19 are shown as stick model. 
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The centroid (conformer closest to the center of a cluster) representing the most populated state of 

the final phase of both BP-Rex MD and T-Rex MD simulation had an RmsdCα of 0.9 and 1.1 Å, 

respectively, from the experimental structure (Figure 2a,b). However, structures with an RmsdCα as 

close as 0.4 Å from the experimental structure were sampled during the final phase of the  

both simulations.  

 

3.2. Comparison of conformational sampling during T-RexMD and BP-RexMD 

 

Both the BP-RexMD as well as the T-RexMD simulations resulted in structures with similar Rmsd 

form experiment at the final stage of the simulations (Figure 1). Note, that the BP-RexMD method 

achieved this at a fraction of the computational cost of the T-RexMD method (five vs. 16 replicas). In 

addition, cluster analysis of the sampled structures indicated that near native structures of the Trp-cage 

protein form in both cases the most dominant cluster at the final part of the simulations. The 

population of the cluster representing near native Trp-cage structures reached 45% and 40% in the BP-

Rex MD and T-RexMD simulations, respectively. 

The mechanism of enhanced sampling of the two RexMD methods differs due to the use of 

temperature or scaling of specific force field terms as replica parameter. Although both approaches 

preserve detailed balance during exchanges between neighboring replicas and therefore should achieve 

a canonical sampling of all relevant states for sufficiently long simulations it is of significant interest if 

both methods also sample similar intermediate states during the relatively small (40 ns)  

simulation time.  

To further compare the sampling efficiency of BP-RexMD and T-RexMD simulations, principal 

component analysis was carried out for the positional co-variation of both types of simulation (for 

reference replica runs). The structures that were sampled during the BP-Rex MD simulation were used 

for calculating principal components (PCs). The complete trajectories from the reference replica of 

both the replica simulations were projected onto 2D planes spanned by combinations of soft PCs (with 

largest eigenvalues or largest contribution to conformational fluctuations). It should be mentioned that 

the soft PCs calculated from the BP-RexMD showed significant overlap with the corresponding PCs 

from the T-RexMD simulation. Projection of the three softest PCs from the T-RexMD onto the 

subspace spanned by the first five softest PCs from the BP-RexMD (or vice versa) indicated an overlap 

of > 80 %. The correlation graphs between different PCs were converted into 2D free energy contour 

maps (logarithm of the probability distributions in units of RT). As illustrated in Figure 3, the 

projected distribution of sampled conformers in 2D contour maps of most relevant principal 

components looks very similar for both the BP-RexMD and T-RexMD simulations. Also, very similar 

plots were obtained when using the T-RexMD trajectory for calculating the PCs or when plotting 

distribution projected onto PCs with smaller eigenvalues (not shown).  

In order to further characterize the folding free energy landscape of the Trp-cage protein it is also of 

interest to compare the probability distribution of sampled conformers (in the reference replica) for 

both types of RexMD as a function of reaction coordinates relevant for folding. Figure 4 shows 2D 

free energy contour maps (logarithm of the probability distributions in units of RT) using the sampled 

fraction of native contacts (nc), total RmsdCα, RmsdCα of the α-helix and radius of gyration (Rg) as 

folding coordinates. Native contacts are defined as Cα-Cα atom pairs within 6.5 Å and the amino acids 
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separated by more than 2 amino acids within the sequence. Again the results obtained by the BP-

RexMD are very similar to the 2D plots derived from the T-RexMD indicating that both methods 

sample similar conformational states during the folding simulations.  

 

Figure 3. Projection of sampled states (in reference replicas) on 2-dimensional planes 

spanned by PC 1 (x-axis) and PCs 2-4 (y-axis). The PCs were obtained from the analysis of 

the BP-RexMD simulations (reference replica). The projected distribution is shown as the 

free energy contour plot (logarithm of density, blue color indicates favorable regions). 
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Figure 4. Free energy landscape for the Trp-cage conformations sampled in the reference 

replica during BP-RexMD and T-Rex MD simulations projected onto various combinations 

of the number of native contacts (nc), backbone Rmsd (RmsdCα), radius of gyration (Rg) 

and RmsdCα (in Å) of the residues 2-8 from an α-helical structure. The logarithm of 

sampling density (low free energy) increases from red to blue. 

 

As expected there is a clear correlation between total RmsdCα and fraction of native contacts (Figure 

4 top left corner in both cases). Interestingly, both simulations indicate a fraction of sampled 

conformers with approximately 80 % native contacts but an RmsdCα of 3-4 Å from experiment 

separated from the sampled near native structures (with almost 100 % native contacts and an RmsdCα 

of ~1 Å. There is also free energy barrier between the region near the native states and unfolded 

structures with RmsdCα > 2 Å or fraction nc < 60%. The barrier is also observed in the other maps (e.g. 

nc vs. Rg or Rg vs. RmsdCα).  

Interestingly, most of the sampled non-native structures have an Rg = 7-9 Å, only slightly larger 

than the native structure (Rg = 7 Å), but larger rmsd ( > 4 Å) compared to the native structure. This 

clearly shows that the collapsed form of the structure occurs early in the simulation and agrees well 

with recent experiments by Mok et al. [41] which indicate a mostly collapsed unfolded state with 

average hydrodynamic radius of 8 Å (only slightly higher than the hydrodynamic radius of the native 

state ~7 Å [41]). The map for the RmsdCα of the α-helix (residues 2-8) vs. total RmsdCα clearly shows 

that structures were sampled with almost perfectly formed α-helix, low Rg but without formation of 

the complete native tertiary structure (total RmsdCα < 2 Å). However, conformations without the α-

helix but a total RmsdCα not too far from the folded state were also populated in both simulations 

(Figure 4 bottom right corner).  
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To further understand some of the interesting structural characteristics of Trp-cage folding, we 

looked at structures representing populated regions in the 2D plane spanned by the first two softest 

PCs (Figure 5). The most populated cluster (lowest free energy region colored blue in Figure 5) 

represents the native fold. Conformational changes associated with the softest PC correspond to an 

opening of the folded structure and partial disruption of the α-helix (a similar softest principal 

component was obtained by Paschek et al. in explicit solvent simulations [52,53]). The second PC 

represents a lateral screw type motion of the C-terminal part of the structure with respect to the α-helix. 

Interestingly, most of the significantly populated states are compact structures with some secondary 

structure elements already correctly formed (Figure 5). 

 

Figure 5. Mapping of representative Trp-cage conformations on populated regions in the 

2D plane spanned by the two principal components with largest eigenvalue of the Cα 

positional covariance matrix (obtained from the BP-RexMD simulation). Trp-cage 

structures are shown as cartoon representation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Analysis of potential energy contributions to folding of Trp-cage protein 

 

Although the projection of sampled states on PCs and various coordinates relevant for protein 

folding can give interesting hints on which physical and structural features are changing during 

structure formation the plots do not reveal information on the energetic driving forces for folding. To 

compare the sampling efficiency of BP-Rex MD and T-Rex MD simulation in terms of sampled 
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potential energies the energy distribution was analyzed (Figure 6). Both simulations overall sample 

very similar total potential energies (distribution in Figure 6 includes all folded and unfolded structures 

sample during the entire simulations at the reference replica).  

 

Figure 6. Distribution of the total potential energy of all sampled conformations from the 

BP-Rex MD simulation (continuous line) and T-Rex MD simulation (dashed line). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Besides of analyzing the total potential energy of the entire simulations it is of interest to look at 

force field energy contributions and comparing folded vs. unfolded Trp-cage conformations. This 

analysis is shown in Figure 7 for the BP-RexMD results (very similar plots were obtained for the T-

RexMD, not shown). Two types of energy analysis were performed: In the first case (Figure 7a) the 

energy contributions of conformations sampled during the final 5 ns were compared with the energy 

contributions obtained for the first 5 ns simulation time (after a 0.5 ns equilibration run, see Methods). 

It is important to note, that even during the first 5 ns the simulations sampled to a large extend 

collapsed states with already significantly reduced surface area. However, only during the last 5 ns 

near native structures were sampled as dominant states (but not exclusively). In the second analysis 

(Figure 7b) only structures within 2 Å (RmsdCa) of the native state were considered as folded 

conformations (black line in Figure 7b) and were compared to unfolded states with an RmsdCa at least 

4.5 Å from experiment. Both types of energy analysis give overall very similar trends and results. 

Interestingly, the distribution of the bonded energy contributions (bond length, bond angles and 

dihedral angles) are almost indistinguishable for both the folded and unfolded conformations. This 

indicates that folding does not involve any sterical strain of the sampled states. As expected the van der 

Waals energy (Lennard-Jones energy of the force field) distributions of the folded states (or structures 

sampled at the final stage of the simulation) is shifted to more negative (favorable) energies with 

respected to the unfolded states (Figure 7b) or structures sampled at the first 5 ns (Figure 7a). The van 

der Waals contribution favors folded states by 10-15 kcal mol-1 if one compares the maxima of the van 
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der Waals distributions in Figures 7a or 7b. The van der Waals contribution is a measure of the sterical 

fit and overall compactness of the sampled structures. However, in the context of the present implicit 

solvent description it partially also represents hydrophobic contributions since van der Waals 

interactions with the solvent are not explicitly considered. The Coulomb part of the electrostatic 

energy strongly favors folding presumably due to hydrogen bond formation (α-helix and loop structure 

formation) and the salt bridge contact between residues Asp9 and Arg16. However, this contribution to 

the electrostatic energy is largely offset by an unfavorable electrostatic solvation upon going form 

folded to unfolded states. The electrostatic solvation is represented by the generalized Born (EGB) term. 

The calculations predict that overall the total electrostatic energy favors the folded states by an amount 

of ~6 kcal mol-1. One should keep, however, in mind that this contribution may depend on the exact 

definition of the boundary between protein and solution and on the parameters of the GB model. The 

energy analysis indicates that the folding transition shifts the total potential energy of the sampled 

states by ~18 kcal mol-1 (lower right panel in Figures 7a and 7b). 

 

Figure 7. (A) Distribution of potential energy components to the force field comparing the 

first 5 ns (red line) and the last 5 ns (black line) of the BP-RexMD simulation (reference 

replica under control of original force field). Ebonded includes all energy contributions due to 

bond length, bond angles and dihedral angles in the protein. Evdw represents the Lenard-

Jones part of the force field energy. The Eelectrostatic corresponds to the sum of Coulomb 

energy (ECoulomb) and electrostatic solvation based on a Generalized Born model (EGB). (B) 

same as in (A) except for conformations with a minimum RmsdCα of 4.5 Å from the native 

structure representing unfolded structures (red line) or maximum RmsdCα of 2.0 Å from the 

native structure representing folded structure (black line). 

 

4. Conclusions 

 

In order to systematically study structure formation processes of proteins it is necessary to 

overcome the limited conformational sampling on currently accessible time scales. Although the 
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standard T-RexMD method is widely used to enhance conformational sampling it is limited to peptides 

or small proteins due to the rapid increase in the number of required replicas and increasing simulation 

time (to allow for sufficient exchanges among all replicas) with increasing system size. In the present 

study we have demonstrated that the recently developed BP-RexMD method [37] achieves very 

similar sampling quality as standard T-RexMD on the Trp-cage protein but at a fraction of the 

computational demand. It is expected that for larger systems especially including explicit solvent this 

advantage will be even more pronounced. An advantage of BP-RexMD compared to temperature 

RexMD is the fact the energy differences are only affected by the force field term that changes upon 

going from one replica to another replica run. Hence, the exchange probability is only affected by the 

backbone dihedral angle terms and not affected by solvent-solvent and solute-solvent (and many other 

solute-solute) contributions. The number of required replicas should only grow with the number of 

dihedral angles involved in application of the biasing potential. In both RexMD simulations 

conformations very close to the native state (RmsdCα of the cluster centroid that represents the average 

structure of the most dominant conformational cluster sampled during the final part of the simulation 

in the reference replica was < 1.0 Å with respect to the native structure) were sampled after 20-30 ns. 

In contrast, in none of the five independent conventional MD simulations folding to near native 

structures was observed during 40 ns.  

The simulation results on the mechanism of Trp-cage folding are in good qualitative agreement 

with available experimental results and with previous simulation studies. During the simulations an 

initial collapse at an early stage of the simulation was observed (during cMD as well as RexMD 

simulations). The analysis of the distribution of sampled conformers with respect to various possible 

folding coordinates revealed a conformational barrier (a region with reduced sampling) that separated 

the initially collapsed states from the fully folded native structure. Experimental studies using CINDP-

NMR spectroscopy [41] suggested unfolded Trp-cage structures with hydrodynamic radius of ~8-9 Å 

similar to the range of Rg (7-10 Å) we found for the fraction of unfolded conformations. Experimental 

studies employing UV-resonance Raman spectroscopy [40] suggested the presence of α-helical 

structure even in the unfolded Trp-cage structures which agrees with the present simulation results of a 

significant fraction of helical segments even in the absence of a fully folded native structure.  

The potential energy analysis of folded and unfolded protein structures indicated that both van der 

Waals and to a smaller extend electrostatic interactions favor folded Trp-cage conformations. As 

expected the change of the total potential energy upon Trp-cage folding by ~-18 kcal mol-1 is 

significantly larger than the free energy of folding which has been determined experimentally as ~-2.1 

kcal mol-1 at 300 K [38]. Interestingly, the calculated change in potential energy corresponds quite 

well to the measured change in enthalpy upon folding of ~-13.5 kcal mol-1 based on differential 

scanning calorimetry [54]. The difference represents the conformational entropy that disfavors folding 

and needs to be outbalanced by the favorable change in internal energy of the Trp-cage protein. The 

study demonstrated that the BP-RexMD method allows for an efficient sampling of Trp-Cage 

conformations with fewer replicas compared to T-RexMD simulations and opens the possibility to use 

this method to study systematically the folding process of larger protein systems. However, it should 

be emphasized that the application to larger and more diverse proteins may require also further 

improvements in the force field and solvation model. 
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