9927

Atmos. Chem. Phys. Discuss., 9, 9927–9959, 2009 www.atmos-chem-phys-discuss.net/9/9927/2009/ © Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License.

This discussion paper is/has been under review for the journal *Atmospheric Chemistry and Physics (ACP)*. Please refer to the corresponding final paper in *ACP* if available.

Ozone air quality during the 2008 Beijing Olympics – effectiveness of emission restrictions

Y. Wang^{1,2}, J. Hao¹, M. B. McElroy², J. W. Munger², H. Ma¹, D. Chen¹, and C. P. Nielsen³

¹Department of Environmental Science and Engineering, Tsinghua University, Beijing, China ²Department of Earth and Planetary Sciences and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA

³Harvard China Project and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA

Received: 7 April 2009 – Accepted: 7 April 2009 – Published: 20 April 2009

Correspondence to: Y. Wang (yxw@tsinghua.edu.cn)

Published by Copernicus Publications on behalf of the European Geosciences Union.

ACPD

Abstract

A series of aggressive measures was launched by the Chinese government to reduce pollutant emissions from Beijing and surrounding areas during the Olympic Games. Observations at Miyun, a rural site 100 km downwind of the Beijing urban center. show significant decreases in concentrations of O₃, CO, NO_v, and SO₂ during August 2008, 5 relative to August 2006–2007. The mean daytime mixing ratio of O₃ was lower by about 15 ppby, reduced to 50 ppby, in August 2008. The relative reductions in daytime SO_2 , CO, and NO_v were 61%, 25%, and 21%, respectively. Changes in SO_2 and in species correlations from 2007 to 2008 indicate that emissions of SO₂, CO, and NO_y were reduced by 60%, 32%, and 36%, respectively, during the Olympics. Analysis of 10 meteorological conditions and interpretation of observations using a chemical transport model suggest that restrictions on emissions during the Olympics were responsible for about 80% of the observed decreases in O_3 , with natural variations in meteorology accounting for the remaining 20%. Use of the Olympics emissions results in no significant biases between model and observations. The model predicts that emission 15 restrictions such as those implemented during the Olympics can affect O₃ far beyond the Beijing urban area, resulting in reductions in boundary layer O₃ of 2–10 ppbv over a large region of the North China Plain and Northeastern China.

1 Introduction

- Ozone is produced in the troposphere by photochemical oxidation of carbon monoxide (CO) and volatile organic carbon (VOCs), initiated by reaction with OH in the presence of NO_x. In surface air, ozone has an adverse impact on both humans and vegetation (NRC, 1991). Due to its relatively long lifetime, it can be transported over long distances from source regions, making ozone pollution an issue of global concern.
- ²⁵ China's rapid economic growth in recent years has resulted in large increases in pollutant emissions (Zhang et al., 2007; Ohara et al., 2007) with important implications

for ozone on both regional and global scales. Beijing, China's capital, is one of the world's largest metropolises with a population of over 15 million with a vehicle fleet of more than 3 million. Beijing's air quality problems were characterized historically by high concentrations of particulate matter and sulfur dioxides (Hao and Wang, 2005). In

- recent years, due to a rapid increase in vehicular emissions, ozone pollution has drawn increasing attention in Beijing (Hao and Wang, 2005; Wang et al., 2006), especially in the period leading up to the Summer Olympic Games (August 2008) (http://www. nytimes.com/2007/12/29/world/asia/29china.html). The dependence of O₃ production on NO_x and VOCs is significantly different between the so-called NO_x-limited regime and the hydrocarbon-limited regimes (Sillman et al., 1990). Formulating a successful
- strategy to address O_3 pollution poses a difficult challenge as a consequence not only for Beijing but also for other regions of the developed and developing world.

To improve air quality during the Olympics (8–24 August 2008) and the Paralympics (9–17 September 2008), the Chinese government implemented a series of aggressive

- ¹⁵ measures to reduce pollutant emissions in Beijing and surrounding areas for more than two months during the time periods of the Olympics and the Paralympics. From 1 July to 20 September 2008, all vehicles that failed to meet the European No. I standards for exhaust emissions (including light-duty and heavy-duty trucks and inefficient personal vehicles) were banned from Beijing's roads. Mandatory restrictions were implemented
- from 20 July to 20 September for personal vehicles, allowing them on roads only on alternate days depending on license plate numbers (odd-numbered vehicles on oddnumbered days and even-numbered vehicles on even-numbered days). As a result, traffic flows in Beijing urban areas were found to reduce by 22% during the Olympics (Y. Wu, personal communications). In addition to traffic emission controls, other area
- and point sources in Beijing were placed under strict control during the same period. Power plants in Beijing were required to reduce their emissions by 30% from their emission levels in June when they had already met the Chinese emission standard. Several heavily-polluting factories were ordered to reduce their operating capacities or to completely shut down during the Games. All construction activities were placed on hold.

Since it has been shown that Beijing's air quality problems are not completely caused by local emissions (Streets et al., 2007; Wang et al., 2008a), emission controls on large industrial sources were also applied in surrounding provinces (e.g., Inner Mongolia, Shanxi, Hebei, Shandong) and in the city of Tianjin. Traffic restriction measures similar to Beijing's were instituted in Tianjin during the Olympics Games. As a result of these initiatives, one would expect to see significant decreases in emissions of ozone precursors (CO, NO_x, and VOCs) and other key pollutants (SO₂ and particulates, for example) in Beijing.

Wang et al. (2007) and Cheng et al. (2008) demonstrated that the four-day traffic restrictions in Beijing during the Sino-African Summit in early November 2006 resulted in significant temporary reductions in concentrations of NO_x and particulates in the city, but the effect on surface ozone was not characterized. Compared with the Sino-African Summit, the emission reductions during the Olympic Games were more aggressive, affecting more than the transportation sector and lasting much longer. The present study

- will focus on the impact of the Olympics emission restrictions on air quality over Beijing and surrounding regions, particularly on surface ozone in the summertime, using continuous measurements of O₃, CO, NO_y, and SO₂ at a surface site (Wang et al., 2008b) located directly downwind of the Beijing urban area during summer months. Species correlations at the site will be used to infer "top-down" constraints on the magnitude of emission restrictions during the Olympics. The nested-grid version of the GEOS-Chem
- 20 emission restrictions during the Olympics. The nested-grid version of the GEOS-Chem global chemical transport model (Wang et al., 2004a; Chen et al., 2009) will be employed to interpret the observations and to evaluate the reductions in emissions during the Olympics.

The emission restrictions associated with the Olympic Games offer an invaluable opportunity to test our understanding of the chemistry and dynamics affecting ozone and its precursors in a major Chinese urban environment. Ozone production is intrinsically non-linear. The production and transformation of many species depend on meteorology. The ability of chemical transport models (CTMs) to reproduce changes in tropospheric ozone arising in response to these emission changes provides an im-

ACPD 9, 9927-9959, 2009 **Ozone air quality** during the 2008 **Beijing Olympics** Y. Wang et al. **Title Page** Introduction Abstract Conclusions References **Figures** Back Full Screen / Esc **Printer-friendly Version**

Interactive Discussion

portant test of these models.

We begin by introducing the Miyun site and the nested-grid GEOS-Chem model. The paper is organized then in two parts. The first is devoted to observational results. Trace gas concentrations and meteorological conditions measured at the Miyun site in

- ⁵ August 2008 are compared with observations for Augusts of the two preceding years, demonstrating significant decreases in O₃, CO, NO_y, and SO₂ during August 2008. We show that the reduction in pollution levels during the Olympics, far exceeding the magnitude attributed to year-to-year changes in meteorology, reflects most a response to the emission reductions. Using species concentrations and their correlations ob-
- ¹⁰ served at Miyun, quantitative estimates are derived for the magnitude of emission reductions for SO_2 , CO, and NO_x during the Olympics employing a "top-down" approach independent of any modeling or bottom-up information. The latter part of the paper focuses on a model-based analysis. The extent to which the "top-down" estimates on emission reductions improves the performance of the model in simulating the ob-
- ¹⁵ servations at Miyun provides an independent evaluation of the observational analysis conducted in the first part of the paper. Model sensitivity analysis is used to differentiate quantitatively between meteorology- and emission-driven changes in ozone during the Olympics. The impact of the emission reductions on O_3 at a regional scale is also predicted by the model. Concluding remarks are presented in Sect. 5.

20 2 Observations and model

2.1 Surface observations

The Miyun site is located about 100 km northeast of the Beijing urban center. The region surrounding the site is characterized by a mix of agriculture and small villages. The station was established through a collaboration between the Harvard China Project and

²⁵ Tsinghua University. The measurements began in November 2004 and include continuous observations of O₃, CO, CO₂, together with basic meteorological data (temper-

ature, relative humidity, and wind speed and direction). Additional instruments measuring NO, NO_y, and SO₂ were added in 2006, with data collection for these species initiated in early 2007. The present study focuses on measurements of O₃, CO, NO_y, and SO₂ for July, August, and September (JAS) 2008 when the emission restrictions were in place. Mixing ratios of these species measured for the same period in 2006 and 2007 are used for comparison. Figure 1 shows afternoon wind directions recorded at the Miyun site in August 2006–2008. The prevailing SSW-SW-S winds suggest that the Miyun site is located directly downwind of the Beijing urban area in summer. Miyun observations are representative therefore of plume conditions of Beijing urban pollution

10 in summer.

The O_3 and CO instruments and the site details are discussed in Wang et al. (2008b). The NO_y and SO_2 instruments are outlined here. The NO_y mixing ratio is measured by the chemiluminescence method (Thermo Environmental Instruments 42C-Y). Sample air is drawn first into an inlet 6 m above the ground and then split into two parallel channels. The NO_y channel uses a heated molybdenum converter to reduce all forms

- ¹⁵ channels. The NO_y channel uses a heated molybdenum converter to reduce all forms of NO_y to NO. The catalyst is preceded by as short a section of Teflon tubing as practical to minimize loss of HNO₃ and other surface active compounds on tubing walls before they reach the catalyst. The instrument response and catalyst efficiency are calibrated every 6 h by introducing NIST traceable standard NO and n-proply nitrate
- ²⁰ into the sample air in sequence. The SO₂ mixing ratio is measured by a pulsed fluorescence method (Thermo Environmental Instrument 43CTL). Sample air is drawn from the same inlet as CO and O₃, and a mass flow controller upstream of the instrument maintains constant flow in the system. The instrument zero is determined every 2 h by passing sample air into a denuder coated with sodium carbonate. A calibration
- sequence is implemented every 6 h by introducing NIST traceable SO₂ standard into sample air. The mixing ratio is computed by subtracting the zero offset from ambient signal voltage and multiplying by the instrument gain.

Printer-friendly Version

Interactive Discussion

2.2 Model description

The nested-grid GEOS-Chem model developed by Wang et al. (2004a) and Chen et al. (2009) is employed in the present study. The GEOS-Chem global 3-D model for tropospheric chemistry is driven by meteorological data assimilated by the Goddard

- Earth Observing System (GEOS) at the NASA Global Modeling and Assimilation Office (GMAO). The present study uses GEOS-5 meteorology covering the period from Dec 2004 to present. The meteorological data include 3-D fields updated every 3 h for surface fluxes and mixing depths and every 6 h for other variables. The horizontal resolution is 0.5° latitude by 0.667° longitude, with 72 levels in the vertical extending
 from the surface to 0.01 hPa. The lowest 2 km is resolved into 14 layers with midpoints
- at altitudes of 70, 200, 330, 460, 600, 740, 875, 1015, 1157, 1301, 1447, 1594, 1770, 2000 m for a column based at sea level. For inputs to the global GEOS-Chem model, the horizontal resolution of the meteorological fields is degraded to 2°latitude×2.5° longitude or 4°latitude×2.5° longitude due to computational limitations. Details of the de-15 grading process are provided by Wang et al. (2004a).

The structure of the nested-grid GEOS-Chem model involves a window with a uniform horizontal resolution of 0.5°×0.667° embedded in a low-resolution (4°×5°) global background. The nested-grid GEOS-Chem retains the generic high horizontal resolution of the GEOS-5 data over the nested regional domain. For the present study, the nested domain is set at 70° E–150° E and 11° S–55° N and includes all of China, its neighboring countries, and a significant portion of the northwestern Pacific (Wang et al., 2004a, b; Chen et al., 2009). The high-resolution regional simulation is coupled dynamically to the low-resolution global model through lateral boundary conditions that are updated every three hours.

²⁵ The GEOS-Chem model includes a detailed tropospheric O₃-NO_x-hydrocarbonaerosol simulation. The aerosol and oxidant chemistry are coupled through the formation of sulfate and nitrate, heterogeneous chemistry, and aerosol effects on photolysis rates. Photolysis frequencies are computed using the Fast-J radiative transfer

ACPD 9, 9927-9959, 2009 **Ozone air quality** during the 2008 **Beijing Olympics** Y. Wang et al. **Title Page** Introduction Abstract Conclusions References **Figures** ►I. Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

algorithm (Wild et al., 2000) which allows for Rayleigh scattering as well as for Mie scattering by clouds and aerosols. Simulation of wet and dry deposition follows the schemes developed by Bey et al. (2001). Application and evaluation of the model over China have been described by Wang et al. (2004a, c). Anthropogenic emissions of NO_x, CO, SO₂, and VOCs over the nested East Asia domain were taken from Zhang et al. (2009) for the year 2006. Since our analysis focuses on the differences in model results over Beijing between 2007 and 2008, 2007 is chosen as the base year with which to represent emissions from Beijing. Anthropogenic emissions for Beijing in 2007 are taken from detailed inventory work carried out by researchers at Tsinghua University (S. X. Wang, personal communication).

3 Air quality improvement during the Olympics

As summarized in the introduction, some emission-reduction measures started later than others, although all were in place during the time period of the Olympics (8–24 August, 2008). Therefore, in order to evaluate the aggregate effects of the emission-¹⁵ reduction policies, most of the analysis below will focus on pollutant concentrations for August 2008. We showed in a previous study that O₃ peaks in June at Miyun and that mean daytime O₃ in August is on average 10 ppbv lower than that in June (Wang et al., 2008). Other observations for Beijing have shown similar seasonal patterns in surface O₃ (Ding et al., 2007; Lin et al., 2008). To minimize the compounding effects of this natural seasonal variability of O₃ and other species, our analysis compares trace gas levels in August 2008 to the same periods in 2006 and 2007, rather than comparing August to June of 2008.

3.1 Trace gas concentrations

25

Figure 2 presents mean daytime mixing ratios of O_3 (2a) and CO (2b) as observed at Miyun in summer (July-August-September; JAS) 2006–2008. In JAS 2008, mean day-

ACPD 9, 9927-9959, 2009 **Ozone air quality** during the 2008 **Beijing Olympics** Y. Wang et al. **Title Page** Introduction Abstract Conclusions References **Figures** ►T. Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

time mixing ratios of CO and O_3 dropped significantly compared to the same months in 2006 and 2007. The mean daytime mixing ratio of CO was 350 ppbv in August 2008, about 150 ppbv (or 30%) lower than for August in 2006 and 2007. The mean daytime mixing ratio of O_3 decreased by about 15 ppbv between August 2006–2007

and August 2008, from 65 ppbv to 50 ppbv. During the Olympics (4 August–24 August 2008), daytime O₃ averaged 42 ppbv. The decreases in O₃ and CO, compared to the same months in 2006–2007, are larger than the magnitude of interannual variations observed at Miyun. In 2006 and 2007, mean O₃ in August was found to be comparable to or even greater than that in July, while in 2008 the pattern was reversed, with O₃ much lower in August.

Figure 2c presents hourly mixing ratios of O_3 observed at Miyun in August 2006–2008. It is clear that O_3 was lowest in 2008 for almost every single day in August (only exceptions being the few days at the beginning of the month). The decreases in August 2008 were most significant in the afternoon when photochemical production of O_3 is most active. Mixing ratios of CO peak in the afternoon in summer, similar to O_3 , indicating the arrival of urban pollution plumes (Wang et al., 2008). The decrease in afternoon mixing ratios of O_3 in August 2008 indicates reductions in chemical production of O_3 in urban pollution plumes. The reduction in O_3 was not only reflected in mean concentrations but also in peak concentrations. The number of hours with 1-hr average concentrations of O_3 exceeding 100 ppbv decreased from an average of 25 h in August 2006 and 2007 to only 3 h in August 2008.

Figure 3 displays afternoon mixing ratios of O₃, CO, NO_y, and SO₂ observed at Miyun in August 2006–2008 as a function of wind direction. For NO_y and SO₂, data are available only 2007–2008. Lower mixing ratios of all the species were observed for all wind directions in August 2008. Largest reductions in trace gas concentrations were observed for air masses arriving from SW, SSW and S, i.e. from the Beijing urban area. Table 1 compares mean afternoon mixing ratios of the trace gases associated with SSW-SW-S winds observed at Miyun between August 2007 and 2008. For these air masses, the relative reductions in mixing ratios of SO₂, CO, NO_y, and O₃ from

August 2007 to August 2008 are 61%, 25%, 21%, and 26%, respectively.

3.2 Meteorological conditions

Production and transformation of O_3 depend critically on meteorology and weather patterns. In this section we compare the meteorological parameters measured at Miyun

for Augusts of the three years investigated in this study. As illustrated in Fig. 1, the prevailing winds were from SSW and SW in August 2007 and 2008 and from S and SSE in August 2006. However, mixing ratios of O₃ and CO associated with S and SSE winds in August 2006 were comparable to those associated with SW and SSW winds (c.f. Fig. 3a and b), with both representing polluted air masses from urban areas to the south of the site. Therefore, we conclude that there were no significant changes in the characteristics of air masses associated with the prevailing winds arriving at the site over Augusts of the three years.

Figure 4 presents temperature and RH observed at Miyun in August 2006–2008 as a function of wind direction. Northeasterly winds (NNE, NE, ENE) were sampled 10% of the time in August 2008, more frequently than in either August 2006 or 2007 (2% and 4% of the time, respectively) (Fig. 1). As shown in Fig. 3, the mean mixing ratio of O_3 in NNE-NE-ENE air masses dropped from 50 ppbv in August 2006–2007 to 35 ppbv in August 2008, with relatively smaller or no changes for CO, NO_y, and SO₂, suggesting that the reductions in O_3 may be attributed to differences in meteorological factors such as temperature and relative humidity (RH) rather than in precursor emissions. For

- air masses from the NNE-NE-ENE directions, the mean temperature was 4°C lower in August 2008 as compared to August 2006–2007, while RH was higher by 15% (Fig. 4). Since lower temperature and higher RH are normally considered meteorological conditions that are not conducive to photochemical production of O_3 , this meteorological
- ²⁵ difference could account for reduced O₃ levels in NNE-NE-ENE air masses sampled in August 2008 relative to those in 2006 and 2007. However, winds from NNE-NE-ENE sector are infrequent at the site in August, and lower O₃ mixing ratio for this sector can only account for 2 ppbv of the reduction in mean O₃ for August 2008. The effect

on other species is even smaller. Therefore, the large decreases observed for O_3 and other species in August 2008 (e.g., a 15 ppbv reduction in O_3) would have to be related to the majority of air masses from SSW-SW-S-SE directions, where significant reductions in emissions took place in the Beijing urban area during the Olympics.

- ⁵ For SSW-SW-S-SE air masses, mean temperature and RH in August 2008 were not significantly different during Augusts of 2006 and 2007. For these air masses, mean temperature was 27° C in August 2008, as compared to 26° C and 29° C in August 2006 and 2007, respectively. Average RH's in August 2006, 2007, and 2008 were 70%, 50%, and 60%, respectively. The difference in the mean mixing ratios of O₃ between August
- ¹⁰ 2006 and 2007 is -4 ppbv, corresponding to a difference of -3° C in mean temperature and +20% in RH. By comparison, the difference in mean O₃ between August 2008 and 2007 is -15 ppbv, despite only a -1° C difference in mean temperature and a +10% difference in RH. This suggests that inter-annual variations in temperature and RH had only a minor effect on the unusually low concentrations of O₃ and other species observed at Miyun in August 2008.

We showed in a previous study that optically thick clouds associated with summer monsoonal rainfall have a significant radiative impact on O₃ at Miyun (Wang et al., 2008). Since local precipitation and cloud properties are not observed at the Miyun site, monthly surface rainfall was taken from the TRMM data set (Tropical Rainfall Mea-²⁰ suring Mission; a 0.5°×0.5° gridded monthly product comprised of mean hydrometeor profiles from the TRMM Microwave Imager (TMI) instrument on board the TRMM satellite). The TRMM data indicate that monthly rainfall over Beijing for August 2008 was 133 mm, more than the 110 mm and 88 mm observed in August 2006 and 2007, re-

spectively. Despite greater rainfall in 2008, cloud optical depth (COD) retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Aqua satellite (Platnick et al., 2003; MYD08_M3, MODIS level-3 monthly global product at 1°x1° resolution) showed slightly lower COD for August 2008 (COD=17.7), as compared to August 2007 (COD=22.6). Therefore, interannual variations in precipitation and COD were ruled out as the key factors responsible for lowering O₃ as observed in

ACPD 9, 9927-9959, 2009 **Ozone air quality** during the 2008 **Beijing Olympics** Y. Wang et al. **Title Page** Introduction Abstract Conclusions References **Figures** Back Close Full Screen / Esc

Printer-friendly Version

Interactive Discussion

August 2008. Through independent model analysis, we will show in Sect. 4.2 that only 20% of the observed O_3 reductions in August 2008 can be explained by the year-to-year changes in the meteorology discussed here.

3.3 Species correlations and "top-down" estimates of emission reductions

In this section, we employ an observation-based approach to derive quantitative estimates on the magnitude of emission reductions for SO₂, CO, and NO_x during the Olympics. First, the relative reduction in emissions of SO₂, the shortest-lived chemical species of the three, is estimated from observations. The reductions in emissions of CO and NO_x, relative to SO₂, are inferred subsequently using the dCO/dSO₂ and dNO_y/dSO₂ correlation slopes observed at Miyun.

Due to the relatively short lifetime of SO_2 (a few hours in summer considering both gas phase and aqueous phase reactions), background SO_2 concentrations at Miyun are lower than concentrations of CO and NO_y . As illustrated in Fig. 3, for the relatively clean air masses from the northeast sampled at Miyun, mean mixing ratios of SO_2 ,

- ¹⁵ NO_y, and CO are about 0.5 ppbv, 5 ppbv, and 200 ppbv, respectively. Given the negligible background level for this gas, the difference in SO₂ mixing ratio from the urban pollution plumes between August 2007 and 2008 can be assumed to be caused by changes in emissions and variations in the chemical lifetime of SO₂. One can expect that the chemical lifetime of SO₂ and its transport time from the Beijing urban area to
- the site depend on meteorological conditions. To separate the effects of meteorology on the lifetime of SO₂, the S-SW-SSW air masses sampled at Miyun during August 2007 and 2008 were divided into several data intervals according to their temperature, RH, and wind speed. Under the constraint that each interval contain at least five observational data points for each month to allow for statistical representation, we identified
- $_{25}$ 6 intervals by temperature, 6 by RH, and 4 by wind speed, as illustrated in Fig. 5a, b, and c, respectively. Mean mixing ratios of SO₂ were calculated for each interval as well as the relative difference (RD) in SO₂ between August 2007 and 2008. The mean RD averaged for all the intervals is assumed to indicate reductions in emissions, while the

variance about the mean represents random variations in the chemical lifetime of SO₂ at Miyun. We found that the mean RD in SO₂ was 40% and the variance in SO₂ lifetime was 10%, representing the uncertainty in our estimate of emission reductions. We estimated therefore that during the Olympics period (i.e. August 2008), SO₂ emissions
 ⁵ in Beijing were reduced by 60% (±10% uncertainty) compared with the same month the year earlier.

Figure 6 shows scatterplots of NO_y versus CO (6a), SO_2 versus CO (6b), and SO_2 versus NO_y (6c) observed at Miyun during August 2007 and 2008. As we are interested primarily in pollution from the Beijing urban area, the figure presents only data for the SSW-SW-S air masses sampled at Miyun. Linear regressions for the observations are obtained with the reduced major axis (RMA) method that allows for uncertainty in both variables (Hirsch and Gilroy, 1984). The three species are positively correlated at Miyun, suggesting that they originate from co-located sources. The enhancement ratios between two species (e.g., dCO/dSO_2), derived from the slope of the regression

- ¹⁵ line, provide useful constraints on their emission ratios. Since the Miyun site is somewhat removed from fresh urban emissions, the enhancement ratios measured at the site will be affected also by differences in lifetimes between the species. In the following analysis, focusing on relative instead of absolute changes in enhancement ratios between August 2007 and 2008, we shall assume that the lifetime ratio between the species does not change significantly between the two periods, given that meteorolog.
- ²⁰ species does not change significantly between the two periods, given that meteorological variability influences the lifetime of all the species.

The dCO/dNO_y enhancement ratio at Miyun is 37.5 mol/mol in August 2008, similar to the value of 36.5 mol/mol observed in August 2007, indicating that the fractional reduction of emissions was similar for CO and NO_x in August 2008. In contrast, the dCO/dSO₂ and dNO_y/dSO₂ enhancement ratios in August 2008 are significantly larger than values observed in August 2007. This suggests that the fractional reduction of SO₂ emissions in August 2008 is much greater than that for CO or NO_x, resulting in the observed increases in the enhancement ratio of CO/SO₂ and NO_y/SO₂.

The relative reduction in CO and NO_x emissions can be inferred using the dCO/dSO₂

ACPD 9, 9927-9959, 2009 **Ozone air quality** during the 2008 **Beijing Olympics** Y. Wang et al. **Title Page** Introduction Abstract Conclusions References **Figures** ÞI Back Full Screen / Esc **Printer-friendly Version**

Interactive Discussion

and dNO_y/dSO_2 enhancement ratios observed at Miyun. As shown in Fig. 6, dCO/dSO_2 increased from 54.7 (±3.1) mol/mol in August 2007 to 93.2 (±7.5) mol/mol in August 2008. Given a 60% reduction in SO₂ emissions derived above, this suggests a 32% (±14% uncertainty) reduction in CO emissions during the Olympics. Similarly, dNO_y/dSO_2 increased from 1.7 (±0.1) mol/mol in August 2007 to 2.7 (±0.2) mol/mol in August 2008, suggesting a 36% (±14%) reduction in NO_x emissions. The relative emission reductions derived here using atmospheric measurements can be regarded as "top-down" in contrast to the "bottom-up" method based on analyzing changes in energy consumption or emission factors. Our "top-down" estimate suggests that in Au-

Our results suggest that the emission control on SO_2 was most effective during the Olympics. Emissions of SO_2 originate largely from coal-burning point sources such as power plants and industrial boilers, while sources of CO and NO_x are more diversified.

- ¹⁵ Transportation accounts for a large fraction of emissions for both CO and NO_x, while the power sector is a greater contributor to both SO₂ and NO_x. The flue gas desulphurization (FGD) equipment installed on power plants in Beijing can remove over 95% of SO₂ from smoke stacks, whereas NO_x-control technologies with the same effectiveness such as SCR (Selective Catalytic Reduction) are not widely installed because of
- ²⁰ high cost involved. The low-NO_x burner technology adopted in current Chinese power plants can remove NO_x emissions only by 30% at most (Zhao et al., 2008). Control measures targeted at the power sector would therefore be more effective in reducing SO₂ relative to NO_x, resulting in increases in the NO_x/SO₂ ratio. The traffic restriction during the Olympics would decrease the CO/NO_x ratio because of the strict ban placed
- on old, inefficient vehicles that failed to meet the European No. I standards for exhaust emissions. However, control on power plant emissions would increase the CO/NO_x ratio as power plants are minor sources for CO. As a result, dCO/dNO_y enhancement ratio observed at Miyun did not change significantly from August 2007 to 2008, leading to comparable estimates on emission changes for CO and NO_x .

ACPD 9, 9927-9959, 2009 **Ozone air quality** during the 2008 **Beijing Olympics** Y. Wang et al. **Title Page** Introduction Abstract Conclusions References **Figures** ÞI Back Full Screen / Esc **Printer-friendly Version**

Interactive Discussion

Researchers at Tsinghua University conducted a detailed bottom-up study of Beijing emissions during the Olympics period (S. X. Wang, personal communication). Their estimated emission reductions were 58%, 51%, and 55% for SO₂, CO, and NO_x. Our estimate of the reductions is consistent with the bottom-up estimate for SO₂ but is lower

- for NO_v and CO. The discrepancy may be attributed to certain types of emissions not 5 included in the bottom-up study, such as biofuel combustion in rural areas surrounding Beijing, biological emissions of NO_v from soils, and CO produced from decomposition of VOCs. These types of emissions, which are important sources for CO and NO_v but not for SO₂, are unlikely to have been impacted by measures taken to reduce emissions of pollutants during the Olympics. Allowing for their contributions in the 10
- bottom-up study, the estimated emission reductions for CO and NO_v would have been lower. Our "top-down" estimates are based on observational data, accounting for the composite impact of all the emission sources.

The bottom-up study estimated that VOCs emissions in Beijing were reduced by 59% during the Olympics compared with August 2007. As VOCs species were not measured at Miyun, we adopted the bottom-up estimate in the model simulation discussed below. Emission reductions for other regions were taken from bottom-up estimates by researchers at Peking University (S.Q. Zhang, personal communications). The topdown and bottom-up estimates on emissions of different species combined here are

referred to as the Olympics emissions in what follows. 20

Model analysis 4

25

In this section, we first evaluate the performance of the nested-grid GEOS-Chem in simulating the changes in O_3 and other species observed at Miyun during the Olympics. The model will evaluate the top-down emissions and simulate the impact of emission reductions on the regional atmosphere.

ACPD

9, 9927-9959, 2009

Ozone air quality during the 2008 **Beijing Olympics**

4.1 Model evaluation of emissions

Figure 7 presents day to day variations of afternoon mean mixing ratios of O₃, CO, NO_y, and SO₂ at Miyun in August 2008. Observations are indicated by the red lines. Significant day-to-day variations were observed for all species at Miyun, with higher
⁵ pollution levels during the first five days of August. Since all emission reduction measures had been put in place before 1 August 2008, emissions were expected to stay relatively constant throughout August except on the opening day of the Olympic Games (8 August), which was declared a public holiday for Beijing. Emissions from the transportation and industry sectors were likely lower on that day. Observations at Miyun indicate that mixing ratios of O₃, CO, NO_y, and SO₂ were lower apparently on 8 August compared with the day before, although the impact is expected to have lasted for at most a couple days. Day-to-day variability in mixing ratios at Miyun presumably reflects changes due to variations in meteorological conditions and chemical lifetimes of relevant chemical species.

¹⁵ In Fig. 7, model results computed using the standard emissions for 2007 are displayed in black while those using assumed Olympics emissions are displayed in blue. With the standard 2007 emissions, the model captures well the temporal variability of all four species observed at Miyun, with correlation coefficients (*r*) ranging from 0.56 to 0.8. This suggests that the day-to-day variations in individual species are driven primar-

- ily by changes in meteorology and chemistry, features that are accurately reproduced by the model. However, absolute values of model results obtained using the standard emissions are significantly higher than observational results for all the species, confirming the benefit to air quality of the emission restrictions implemented during the Olympics. The biases between model and observation average are +25 ppbv (+41%)
- for O₃, +70 ppbv (+21%) for CO, 3.5 ppbv (+37%) for NO_y, and 2.7 ppbv (+113%) for SO₂.

Adopting the Olympics emissions in the model results in a significant decrease in the mixing ratios of O_3 , CO, NO_v , and SO_2 simulated for Miyun (Fig. 7), thus reducing the

ACPD 9, 9927-9959, 2009 **Ozone air quality** during the 2008 **Beijing Olympics** Y. Wang et al. **Title Page** Introduction Abstract Conclusions References **Figures** ►T. Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

model bias by more than a factor of two for all species. After implementing the Olympics emission reductions, mean mixing ratios simulated by the model are reduced by 15% (or 12 ppb) for O_3 , 24% (96 ppb) for CO, 36% (4.8 ppb) for NO_v , and 42% (2.1 ppb) for SO₂, compared with those based on the standard emissions, with no significant biases between model and observation for CO, NO_v, and SO₂. The resulting decreases 5 in CO, NO_v and SO₂ mixing ratios simulated by the model correspond very well to the "top-down" estimates of emission reductions derived in the previous section using Miyun observations, e.g., a 32% reduction in CO emissions from Beijing resulting in a 24% reduction in CO mixing ratios at Miyun as simulated by the model, providing an independent evaluation on the observation-based approach. The ability of the 10 model to simulate day-to-day variations in observations is also improved by adopting the Olympics emissions. The correlation coefficients between model and observation for O₃, NO_v, and SO₂ increase to 0.86, 0.75, and 0.65 from their corresponding values of 0.81, 0.56, and 0.54 in the standard simulation. We conclude therefore that the

¹⁵ use of the Olympics emissions significantly improves the performance of the model in simulating the observations at Miyun.

Model sensitivity analysis was conducted to evaluate the relative contribution to air quality improvements in Beijing during the Olympics of local versus regional emission restrictions. We found that 80% of the concentration decreases simulated at Miyun during the Olympics from a reducting in aming the Decima the observer.

²⁰ during the Olympics resulted from a reduction in emissions from Beijing, with regional emission reductions accounting for an additional 20% decrease.

4.2 Influences of meteorology and emissions

Since the model has been demonstrated to reproduce well the variability in meteorology and chemistry, model sensitivity analysis was conducted to quantify the extent to which meteorological conditions were responsible for the improvement in ozone air quality in Beijing during the Olympics. The model was spun up for three months from 1 March 2006, and results for 1 June 2006 were saved to provide the initial conditions for subsequent simulations. The model was run from June to August for each of the three

years (2006–2008), all using the same initial conditions obtained from the spin-up for 1 June 2006 and using the standard emissions for 2007. The Olympics emissions described above were then adopted to drive the model simulation for August 2008 only. Hourly model outputs for the Augusts of the three years were used for analysis.

- ⁵ We define the daily O_3 anomaly in August 2008 as the deviation of afternoon-mean O_3 from its mean values in 2006 and 2007. The daily O_3 anomaly calculated from the model using the same standard emissions for August 2006–2008 can be thought of as representing the change in O_3 during the Olympics that is not related to emission restrictions, and we refer to it as the meteorology-driven anomaly. The O_3 anomaly derived from model results using the Olympics emissions for August 2008 is called the
- ¹⁰ derived from model results using the Olympics emissions for August 2008 is called the composite anomaly as the model in this case takes into account both meteorology and emissions specific to August 2008. The difference between the composite anomaly and the meteorology-driven anomaly is regarded to be the emission-driven anomaly. Figure 8a compares the observed daily O_3 anomaly at Miyun (solid line) with the com-
- posite anomaly simulated by the model (dashed line). The daily anomaly in both model and observation ranges from -60 ppb to 40 ppb. Positive anomalies were observed to occur frequently before 8 August, after which, negative anomalies prevailed. The model was found to reproduce well the daily O₃ anomaly observed at Miyun in August 2008: the correlation coefficient between model and observation is 0.83. The
- ²⁰ mean O_3 anomaly simulated by the model is -11.7 ppb, consistent with the mean of -12.7 ppb reflected in the observational data. With the model reproducing well the observed anomaly, we assume that the model can do a satisfactory job in distinguishing the meteorology-driven anomaly from the emission-driven anomaly, which cannot be separated in observational data.
- Figure 8b presents the meteorology-driven anomaly (solid line) and the emissiondriven anomaly (dashed line) predicted by the model. The meteorology-related anomaly has significant day-to-day variations, ranging from -40 ppb to +40 ppb, corresponding well with the variations in the composite anomaly shown in Fig. 8a. The mean meteorology-driven anomaly is -2.3 ppb, accounting for 20% of the composite

ACPD 9, 9927-9959, 2009 **Ozone air quality** during the 2008 **Beijing Olympics** Y. Wang et al. **Title Page** Introduction Abstract Conclusions References **Figures** ►T. Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

anomaly. The emission-driven anomaly is always negative, ranging from -20 ppb to -5 ppb, confirming the benefit of emission restrictions in reducing O₃ pollution over Beijing. The emission-driven anomaly tends to be larger on days with large positive meteorology-driven anomalies, such as during the first week of August when the atmo-

- sphere was stagnant with weak southwesterly winds and high temperature, suggesting that the reduction in emissions of O₃ precursors during polluted days are likely to be most effective. Compared with the meteorology-driven anomaly, the variability in the emission-driven anomaly is much smaller. The mean emission-driven anomaly is -8.9 ppb, accounting for 80% of the composite anomaly and is larger than the meteorology-driven anomaly by a factor of 4. We conclude that although the day-to-day
- variability in ozone is driven by meteorology, the reduction in emissions of ozone precursors associated with the Olympic Games is primarily responsible for the observed decrease in O_3 during August 2008.

4.3 Regional impact of emission reductions

- ¹⁵ Figure 9a shows monthly mean afternoon O₃ averaged over the planetary boundary layer (PBL; 0–2 km) simulated by the GEOS-Chem model using the standard emissions for August 2008. The model predicts that high ozone levels exceeding 70 ppbv are located over the North China Plain (32°–40° N, 110°–120° E). Ozone mixing ratios are relatively low in south China and northeastern China. Use of the Olympics emissions
- for August 2008 decreases the simulated O_3 mixing ratios. Figure 9b and c displays the spatial distribution of the resulting reduction in O_3 , averaged separately over the PBL and over the free troposphere (2–6 km). As expected, the largest reduction is found over Beijing, averaging about 12 ppbv for August 2008. Because of the control on regional emissions as well as the relatively long lifetime of O_3 , the impact of the
- ²⁵ imposed reduction in emissions is found to extend far beyond the Beijing urban area, covering a large region over the North China Plain and Northeastern China. Both the magnitude and spatial extension of the simulated reductions are larger to the northeast of Beijing than to its southeast, reflecting the direction of the prevailing winds during

this season. Within the PBL, the areas with mean O_3 reductions exceeding 4 ppbv extend northeastward from Beijing to about 45° N in Jilin province and southeastward to about 37° N in Hebei province. The reduction in the FT is about 50% less than in the PBL. The 2 ppb reduction isopleth in the FT extends northeastward from Beijing to about 45° N in Jilin province and southeastward to about 37° N in Hebei province.

5 Concluding remarks

5

To improve air quality during the Olympics (8–24 August 2008) and the Paralympics (9–17 September 2008), a series of aggressive measures was implemented by the Chinese government to reduce pollutant emissions in Beijing and surrounding areas, in place for more than two months during the interval of the two Games. We conclude that the emission restrictions were notably successful in improving air quality over Beijing. In August 2008, significant reductions in mixing ratios of O₃, CO, NO_y, and SO₂ were detected at Miyun, a rural site located 100 km downwind of the Beijing urban center, based on comparison with comparative data for August 2006–2007. The mean daytime mixing ratio of O₃ was reduced by about 15 ppbv in August 2008 from 65 ppbv in August 2006–2007, while daytime O₃ averaged only 45 ppbv during the time period of the Olympics (4 August – 24 August 2008). The decrease in O₃ was most significant in the afternoon when in situ photochemical production of O₃ is most active. The reduction in

 O_3 was reflected not only in mean but also in peak concentrations.

²⁰ In August 2008, the relative reductions in daytime mixing ratios of SO₂, CO, and NO_y observed at Miyun amounted to 61%, 25%, and 21%, respectively as compared to the same month a year earlier. Concentrations of the three species are positively correlated at Miyun, indicating that they originate from co-located sources. While there is no significant change in the dCO/dNO_y enhancement ratio from August 2007 to 2008, the

 $_{25}$ dCO/dSO₂ and dNO_y/dSO₂ enhancement ratios in August 2008 are significantly larger than values for August 2007, suggesting that the relative reduction of SO₂ emissions is much larger than that of CO and NO_x. Control strategies targeting the power sec-

tor reduced emissions of SO₂ most effectively, resulting in increases in the NO_x/SO₂, CO/SO₂ and CO/NO_x ratios, while because of the strict ban placed on old, inefficient vehicles, the traffic restriction tended to decrease the CO/NO_x ratio. The changes in the enhancement ratios, after excluding the impact of the variability of SO₂ lifetime, indicate that the relative reductions in emissions of SO₂, CO, and NO_x in August 2008 correspond to 60%, 32%, and 36%, respectively, as compared with the same month the year earlier. Our "top-down" estimate of the reductions is found to be consistent

5

with the bottom-up estimate for SO_2 but is lower for CO and NO_x . The combination of the top-down and bottom-up estimates on emissions of different species is used to ¹⁰ define the Olympics emissions used to drive the model simulation.

The nested-grid GEOS-Chem model with $0.5^{\circ} \times 0.667^{\circ}$ horizontal resolution over China is found to reproduce well the day-to-day variations in O_3 , CO, NO_y , and SO_2 observed at Miyun but significantly overestimates mixing ratios derived using the standard 2007 emissions. Adoption of the Olympics emission reconstruction in the model

- ¹⁵ leads not only to significant reductions in model biases but also to improvements in the temporal correlations between model and observations. Analysis of meteorological conditions observed at Miyun for the three years covered by the present observations and interpretation of the observations using the model both suggest that the emission restrictions associated with the Olympics were responsible for about 80% of the ob-
- ²⁰ served decreases in trace gas concentrations, with the remaining 20% accounted for by natural variations in meteorology. Because of the controls on regional emissions as well as the relatively long lifetime of O₃, the model predicts that emission restrictions can affect O₃ far beyond the Beijing urban area, resulting in boundary layer O₃ reductions of 2–10 ppbv over a large region of the North China Plain and Northeastern ²⁵ China.

Acknowledgements. This research was supported by the National Science Foundation, grant ATM-0635548, by the Harvard University Smeltzer Fund and by funds from an anonymous private foundation.

ACPD

9, 9927-9959, 2009

Ozone air quality during the 2008 Beijing Olympics

References

30

- Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B., Fiore, A. M., Li, Q., Liu, H., Mickley, L. J., and Schultz, M.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106, 23073–23096, 2001.
- ⁵ Chen, D., Wang, Y., McElroy, M. B., He, K., Yantosca, R. M., and Le Sager, P.: Regional CO pollution in China simulated by the high-resolution nested-grid GEOS-Chem model, Atmos. Chem. Phys. Discuss., 9, 5853–5887, 2009,

http://www.atmos-chem-phys-discuss.net/9/5853/2009/.

- Cheng, Y. F., Heintzenberg, J., Wehner, B., Wu, Z. J., Su, H., Hu, M., and Mao, J. T.: Traffic restrictions in Beijing during the Sino-African Summit 2006: aerosol size distribution and visibility compared to long-term in situ observations, Atmos. Chem. Phys., 8, 7583–7594, 2008, http://www.atmos-chem-phys.net/8/7583/2008/.
 - Ding, A. J., Wang, T., Thouret, V., Cammas, J.-P., and Nédélec, P.: Tropospheric ozone climatology over Beijing: analysis of aircraft data from the MOZAIC program, Atmos. Chem.
- ¹⁵ Phys., 8, 1–13, 2008, http://www.atmos-chem-phys.net/8/1/2008/.
- Hao, J. M. and Wang, L. T.: Improving urban air quality in China: Beijing case study, J. Air Waste Manage, 55, 1298–1305, 2005.
 - Hirsch, R. M. and Gilroy, E. J.: Methods of fitting a straight line to data: Examples in water resources, Water Resour. Bull., 20, 705–711, 1984
- Lin, W., Xu, X., Zhang, X., and Tang, J.: Contributions of pollutants from North China Plain to surface ozone at the Shangdianzi GAW Station, Atmos. Chem. Phys., 8, 5889–5898, 2008, http://www.atmos-chem-phys.net/8/5889/2008/.
 - NRC (National Research Council): Rethinking the ozone problem in urban and regional air pollution, National Academy Press, Washington, D.C., 1991.
- Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and Hayasaka, T.: An Asian emission inventory of anthropogenic emission sources for the period 1980–2020, Atmos. Chem. Phys., 7, 4419–4444, 2007, http://www.atmos-chem-phys.net/7/4419/2007/.
 - Platnick, S., King, M. D., Ackerman, S. A., Menzel, W. P., Baum, B. A., Riedi, J. C., and Frey, R. A.: The MODIS cloud products: Algorithms and examples from Terra, IEEE T. Geosci. Remote Sens., 41(2), 459–473, 2003.
 - Sillman, S., Logan, J. A., and Wofsy, S. C.: The sensitivity of ozone to nitrogen oxides and hydrocarbons in regional ozone episodes, J. Geophys. Res., 95, 1837–1852, 1990.

ACPD

9, 9927–9959, 2009

Ozone air quality during the 2008 Beijing Olympics

Streets, D. G., Fu, J. H. S., Jang, C. J., Hao, J. M., He, K. B., Tang, X. Y., Zhang, Y. H., Wang, Z. F., Li, Z. P., Zhang, Q., Wang, L. T., Wang, B. Y., and Yu, C.: Air quality during the 2008 Beijing Olympic Games, Atmos. Environ., 41(3), 480–492, 2007.

Wang, L. T., Hao, J. M., He, K. B., Wang, S. X., Li, J. H., Zhang, Q., Streets, D. G., Fu,

- J. S., Jang, C. J., Takekawa, H., and Chatani, S: A modeling study of coarse particulate matter pollution in Beijing: Regional source contributions and control implications for the 2008 summer Olympics, J. Air Waste Manage., 58(8), 1057–1069, 2008a.
 - Wang, T., Ding, A., Gao, J., and Wu, W. S.: Strong ozone production in urban plumes from Beijing, China, Geophys. Res. Lett., 33, L21806, doi:10.1029/2006GL027689, 2006.
- ¹⁰ Wang, Y. X., McElroy, M. B., Jacob, D. J., and Yantosca, R. M.: A nested grid formulation for chemical transport over Asia: Applications to CO, J. Geophys. Res., 109, D22307, doi:10.1029/2004JD005237, 2004a.
 - Wang, Y. X., McElroy, M. B., Wang, T., and Palmer, P. I.: Asian emissions of CO and NO_x: Constraints from aircraft and Chinese station data, J. Geophys. Res., 109, D24304, doi:10.1029/2004JD005250, 2004b.
 - Wang, Y. X., McElroy, M. B., Munger, J. W., Hao, J., Ma, H., Nielsen, C. P., and Chen, Y.: Variations of O₃ and CO in summertime at a rural site near Beijing, Atmos. Chem. Phys., 8, 6355–6363, 2008b, http://www.atmos-chem-phys.net/8/6355/2008/.

15

20

Wild, O., Zhu, X., Prather, M. J., and Fast, J.: Accurate simulation of in- and below cloud photolysis in tropospheric chemical models, J. Atmos. Chem., 37, 245–282, 2000.

Zhang, Q., Streets, D. G., He, K., et al.: NO_x emission trends for China, 1995–2004: The view from the ground and the view from space, J. Geophys. Res., D22306, doi:10.1029/2007JD008684, 2007.

Zhang, Q., Streets, D. G., Carmichael, G. R., He, K., Huo, H., Kannari, A., Klimont, Z., Park, I.,

- Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L., and Yao, Z.: Asian emissions in 2006 for the NASA INTEX-B mission, Atmos. Chem. Phys. Discuss., 9, 4081–4139, 2009, http://www.atmos-chem-phys-discuss.net/9/4081/2009/.
 - Zhao, Y., Wang, S. X., Duan, L., et al.: Primary air pollutant emissions of coal-fired power plants in China: Current status and future prediction, Atmos. Environ., 42, 8442–8452, 2008.

ACPD 9, 9927–9959, 2009				
Ozone air quality during the 2008 Beijing Olympics				
Y. Wang et al.				
Title Page				
Abstract				
Absilaci	Introduction			
Conclusions	References			
Tables	Figures			
	►I			
•	•			

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Close

Back

ACPD

9, 9927–9959, 2009

Ozone air quality during the 2008 Beijing Olympics

\odot	٢
	BY

Table 1. Mean afternoon mixing ratios (ppbv) of SO ₂ , CO, NO _v , and O ₃ associated with S	3SW-
SW-S winds observed at the Miyun site in August 2007 and 2008.	

	August 2007	August 2008	Reduction (%)
SO ₂	6.2	2.4	61.3
CO	468	352	24.8
NO_y	11.7	9.2	21.4
O ₃	78	58	25.6

Miyun Afternoon Wind Directions in August

Fig. 1. Wind roses of afternoon wind directions at Miyun in August 2006 (light blue), 2007 (blue), and 2008 (red). The radius indicates the frequency of wind observed in each direction.

ACPD 9, 9927-9959, 2009 **Ozone air quality** during the 2008 **Beijing Olympics** Y. Wang et al. **Title Page** Abstract Introduction Conclusions References Tables **Figures** 14 ►I. ► Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

Fig. 2. Daytime mean mixing ratios of O_3 (a) and CO (b) observed at Miyun for July-August-September of 2006 (blue line), 2007 (black line) and 2008 (red line). The triangles indicate the mixing ratios averaged for the exact time period of the Olympics Games (4–24 August 2008) and the Paralympics Games (6–17 September 2008). (c) Hourly mixing ratio of O_3 observed at Miyun for the period 1 August–17 September of 2006 (blue line), 2007 (black line), and 2008 (red line).

ACPD 9, 9927-9959, 2009 **Ozone air quality** during the 2008 **Beijing Olympics** Y. Wang et al. **Title Page** Introduction Abstract Conclusions References **Figures** .∎. Back Full Screen / Esc **Printer-friendly Version**

Interactive Discussion

9, 9927–9959, 2009

ACPD

Ozone air quality during the 2008 Beijing Olympics

Y. Wang et al.

Fig. 3. Afternoon mixing ratios of O_3 (a), CO (b), NO_y (c), and SO_2 (d) observed at Miyun in August as a function of wind directions. Data for August 2006 are displayed in blue, August 2007 in black, and August 2008 in red. Observations of NO_y and SO_2 were not available in 2006.

ACPD

9, 9927-9959, 2009

Ozone air quality during the 2008 Beijing Olympics

Fig. 4. Air temperature and relative humidity observed at Miyun in August as a function of wind directions. Data for August 2006 are displayed in blue, August 2007 in black, and August 2008 in red.

ACPD

9, 9927-9959, 2009

Ozone air quality during the 2008 Beijing Olympics

Y. Wang et al.

Fig. 5. Mixing ratio of SO_2 observed in SW-SSW-S air masses at Miyun in August as a function of temperature **(a)**, relative humidity **(b)**, and wind speeds **(c)**. Data for August 2007 are indicated in solid black line, August 2008 in dashed black line, and the relative difference (RD) between August 2008 and 2008 in red line.

Fig. 6. (a) NO_y -CO relationship in afternoon observations at Miyun in August 2007 (gray dots) and August 2008 (black dots). Each point refers to hourly mean mixing ratios. Correlation coefficients (*R*) and slopes of the reduced major-axis regression lines are shown in inset; (**b**) same as (a), but for SO₂-CO relationship; (**c**) same as (a), but for SO₂-NO_y relationship.

ACPD

9, 9927–9959, 2009

Ozone air quality during the 2008 Beijing Olympics

Fig. 7. Day-to-day variations in O_3 (a), CO (b), NO_y (c), and SO_2 (d) at Miyun in August 2008. Observations are indicated in red, the GEOS-Chem model results using the standard emissions in black and the model results using the Olympics emissions in blue.

Fig. 8. (a) Daily O_3 anomaly in August 2008 at Miyun. The observed anomaly is shown in solid lines and the modeled anomaly in dashed lines. The daily O_3 anomaly is defined as the deviation of afternoon mean O_3 in August 2008 from the mean values in August 2006 and 2007. (b) The meteorology-driven O_3 anomaly (solid line) and the emission-driven anomaly (dashed line) as simulated by the GEOS-Chem model.

ACPD

9, 9927-9959, 2009

Ozone air quality during the 2008 Beijing Olympics

ACPD

9, 9927-9959, 2009

Ozone air quality during the 2008 Beijing Olympics

Y. Wang et al.

Fig. 9. (a) Monthly mean afternoon O_3 averaged over the planetary boundary layer (PBL; 0–2 km) simulated by the GEOS-Chem model using the standard emissions for August 2008; **(b)** Reductions in PBL O_3 indicated by model results using the Olympics emissions as compared with the standard emissions; **(c)** same as (b), but for O_3 reductions in the free troposphere (2–5 km).