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Abstract

A Positive Matrix Factorization receptor model for aerosol pollution source apportion-
ment was fit to a synthetic dataset simulating one year of daily measurements of
ambient PM2.5 concentrations, comprised of 39 chemical species from nine pollutant
sources. A novel method was developed to estimate model fit uncertainty and bias at5

the daily time scale, as related to factor contributions. A balanced bootstrap is used to
create replicate datasets, with the same model then fit to the data. Neural networks
are trained to classify factors based upon chemical profiles, as opposed to correlat-
ing contribution time series, and this classification is used to align factor orderings
across results associated with the replicate datasets. Factor contribution uncertainty is10

assessed from the distribution of results associated with each factor. Comparing mod-
eled factors with input factors used to create the synthetic data assesses bias. The
results indicate that variability in factor contribution estimates does not necessarily en-
compass model error: contribution estimates can have small associated variability yet
also be very biased. These results are likely dependent on characteristics of the data.15

1 Introduction

Air pollution comprised of particulate matter smaller than 2.5µm in aerodynamic di-
ameter (PM2.5) has been associated with a significant increased risk of morbidity and
mortality (Dockery et al., 1993; Pope et al., 2002; Peel et al., 2005). Existing regula-
tions have focused on average and peak PM2.5 concentrations (µg m−3). To help policy20

makers design more targeted and cost-effective approaches to protecting public health
and welfare, an understanding of the association between PM2.5 sources and morbidity
and/or mortality needs to be developed.

The Denver Aerosol Sources and Health study (DASH) has been undertaken to un-
derstand the sources of PM2.5 that are detrimental to human health. PM2.5 filter sam-25

ples are collected daily from a centrally located site in Denver, Colorado. Speciated
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PM2.5 is quantified including sulfate, nitrate, bulk elemental and organic carbon, trace
metals, and trace organic compounds. These speciated PM2.5 data are used as input
to a receptor model, Positive Matrix Factorization (PMF), for pollution source apportion-
ment. The PMF model fit yields estimates of factors’ contributions to total measured
PM2.5, as well as estimates of the chemical profiles of those factors. Ultimately, an as-5

sociation will be explored between the individual source contributions and short-term,
adverse health effects, including daily mortality, daily hospitalizations for cardiovascu-
lar and respiratory conditions, and measures of poor asthma. For example, historical
records of daily hospitalizations due to respiratory problems might be regressed against
the daily concentrations of PM2.5 pollution from diesel fuel combustion (as estimated10

by PMF) over the same time span. Having measures of uncertainty associated with
the contribution of diesel fuel combustion to PM2.5, at the daily time scale, may lead
to more reliable characterization of the role diesel fuel combustion has in daily health
effects data.

PMF is a factor analytic method developed by Paatero and Tapper in 1994 (Paatero15

and Tapper, 1994) that has been widely used for pollution source apportionment mod-
eling (Anderson et al., 2001; Kim and Hopke, 2007; Larsen and Baker, 2003; Lee et
al., 1999; Polissar et al., 1998; Ramadan et al., 2000). The objective of this paper is to
present a novel method that has been developed to quantify uncertainty and bias in a
PMF source apportionment model as it is applied to speciated PM2.5 data. Uncertainty20

in a PMF solution exists at a number of levels and is important to quantify, especially if
the solutions will inform environmental and health policy decisions.

Uncertainty can stem from the data and from the PMF model itself. With respect to
the data, uncertainty in the solution is imparted through measurement error as well as
random sampling error. For the PMF model, there is generally “rotational ambiguity”25

in the solutions (i.e. solutions are not unique); further, solutions based upon the same
data can vary depending upon how the model parameters are set. Past studies have
considered these aspects, primarily by using the statistical method of the bootstrap to
analyze model fit results. For example, Heidam (1987) considered the uncertainty in
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factor profiles due to receptor model uncertainty by varying the parameters in models
fit to bootstrapped datasets.

The Environmental Protection Agency’s Office of Research and Development dis-
tributes two software products, EPA PMF 1.1 (Eberly, 2005) and EPA Unmix 6.0 (Nor-
ris et al., 2007), which incorporate the bootstrap to analyze receptor model fit results.5

The software can be used to assess uncertainty in factor profile estimates and has
been used by studies such as Chen et al. (2007) and Olson et al. (2007) to charac-
terize sources of PM2.5. Few studies, however, have addressed uncertainty in factor
contribution estimates. Two examples are Nitta et al. (1994) and Lewis et al. (2003),
though the estimates come from different source apportionment models and pertain to10

average contribution variability.
The method presented in this paper estimates at the daily time scale bias and vari-

ability due to random sampling error in factor contribution estimates. Three novel tech-
niques make such estimation possible: the resampling of measurement days using
a balanced bootstrap to create replicate datasets; use of neural networks to match15

factors across results on that data; the tracking of all measurement days resampled
across the replicate datasets. This discussion describes the method in the context of
application to a synthetic PM2.5 dataset, which was designed to simulate DASH data,
fit by the PMF model. Using synthetic data allows assessment of model fit as well as a
way to validate the method itself.20

2 Methodology

Presented here is a method of assessing uncertainty in source apportionment model
results using two different measures: bias and variability due to random sampling error.
The method goes beyond computing these measures in terms of “average values” and
gives estimates at the daily time scale.25

A synthetic time series of PM2.5 measurements is used in which the concentrations
of chemical species are derived from published source profiles and source contribu-
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tions consistent with the Denver area. The solution from applying Positive Matrix Fac-
torization (PMF) can be compared with “known” profiles and contributions, allowing
estimates of bias to be computed.

The first novel aspect of the method is to use a balanced bootstrap to generate addi-
tional data by resampling, with replacement, from the original synthetic measurement5

series. Each new dataset, or replicate, is again fit by the PMF model to apportion the
PM2.5 mass to factors.

The second novel aspect pertains to how factors are sorted between solutions. For
each solution the factors should correspond to the same real-world pollution sources.
The factors need to be aligned such that “factor k” in each solution always refers to the10

same factor. To accomplish this factor alignment, or matching, the standard approach
has been to use scalar metrics like linear correlation to match a factor from one solu-
tion to the “closest” factor in another solution. This is the approach taken by the EPA
PMF 1.1 software, where it is specifically the time series of factor contributions that are
matched between solutions. In contrast, the present work takes the novel approach of15

using Multilayer Feed Forward Neural Networks (NN), trained to perform pattern recog-
nition, to align factors between PMF solutions. Further, using the intuitive notion that
pollution sources are characterized best by the chemical species they emit, the match-
ing is based on factors’ profiles rather than their contributions. The NN approach is a
robust factor matching technique: it avoids the sensitivity to outliers that is problematic20

when using measures such as linear correlation and replaces it with a method that is
capable of capturing linear as well as non-linear relationships.

The third novel aspect in the method presented here is the tracking of the days
resampled in each bootstrapped dataset. Through this bookkeeping it is possible to
arrive at a collection of PMF results for each factor’s contribution on each day. Further,25

because a balanced bootstrap is employed, over the aggregate of all bootstrapped
datasets each original sampling day will be resampled the same number of times.
Accordingly, descriptive statistics for each factor contribution on each day can be com-
puted puted.
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2.1 Positive Matrix Factorization

PM2.5 pollution is typically comprised of dozens of chemical specie emitted from multi-
ple sources. The concentration of each species may be treated as a random variable
observed over time. The statistical technique of factor analysis can be used to explain
the variability in these observations as linear combinations of some unknown subset of5

the sources, called factors. In traditional factor analysis approaches, including Principal
Components Analysis, the variance-covariance matrix of the observations is used in
an eigen-analysis to find the factors that explain most of the variability observed. The
uncertainty in the observations, for all variables, is assumed to be independent and
normally distributed. These assumptions are often not valid in the context of air pol-10

lution measurement data. In contrast, PMF – a receptor-based source apportionment
model – offers an alternative technique that is based upon a least squares method, and
measurement uncertainties can be specific to each observation, correlated, and non-
normal in distribution. Further, the factors resultant from PMF need not be orthogonal,
which is an important quality when trying to associate modeled factors to real-world15

pollution sources that can be highly temporally correlated but are nonetheless impor-
tant to characterize separately (e.g. diesel versus gasoline fuel combustion).

Given a matrix of observed PM2.5 concentrations, X, PMF attempts to solve

X = GF + E (1)

by finding the matrices G and F that recover X most closely, with all elements of G and20

F strictly non-negative. G is the matrix of factor contributions (or “scores” in traditional
factor analysis terminology), where Gik is the concentration factor k contributed to the
total PM2.5 observed in sample i . F is the matrix of factor profiles (or “loadings”), where
Fkj is the fraction at which species j makes up factor k. Finally E is the matrix of
residuals defined by25

Ei j = Xi j −
p∑

k=1

GikFkj (2)
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G and F are found through an alternating least squares algorithm that minimizes the
sum of the normalized, squared residuals, Q

Q =
n∑

i=1

m∑
j=1

(
Ei j

Si j

)2

(3)

where Ei j is weighted by Si j , the uncertainty associated with the measurement of the
j th pollutant species in the i th sample. The ability to weight specific observations with5

specific uncertainties allows PMF to handle data that include heterogenous measure-
ment uncertainty, outliers, values below measurement detection limits, and missing
values. As such, PMF can often yield better results than traditional factor analysis
methods (Huang et al., 1999).

An algorithm for fitting the model to data is available as a commercial software tool,10

PMF2, which is used here. PMF2 has numerous optimization parameters that can be
set by the user, and methods of choosing these values has been published elsewhere
(Paatero, 2000; Paatero et al., 2002; Paatero et al., 2005). Since the focus of this pa-
per is on a method of assessing uncertainty and bias in PMF solutions, the discussion
of fine-tuning the numerous algorithm parameters is kept to a minimum. Two PMF215

parameters are especially important to the PMF model fit and deserve mention. First,
the number of factors in the model, p, must be set by the user. In the present work,
all solutions are based upon nine factors. The other important parameter is FPEAK,
which controls the rotational freedom of the possible solutions. It is advised that FPEAK
values range between −1 and 1, with positive values causing extremes in the F ma-20

trix (values near 0 or 1) and negative values causing extremes in the G matrix. In
the present work, FPEAK=0 for all PMF2 solutions, which corresponds to the default
setting.
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2.2 Synthetic data

Given that the results of pollution source apportionment models may ultimately be used
as critical components of environmental policy and regulatory decisions, it is especially
important to assess their quality. One approach for evaluating receptor models is the
use of synthetic data, which is defined as simulated PM2.5 measurements rather than5

actual observations (Willis, 2000). Predefined sources are used, along with respective
contributions and profiles, to create the G and F matrices in Eq. (2). With G and F
“known”, X can be calculated and then given as input (along with uncertainty estimates)
to the PMF2 software, where the resultant G and F matrices can then be compared with
the actual values to assess model fit.10

The method of creating synthetic datasets followed in this paper is described in detail
in Brinkman et al. (2006) and Vedal et al. (2007)1. Briefly, nine pollutant sources were
used (Table 1), which contributed concentrations of 39 chemical species (Table 2),
over 365 synthetic sampling days. Table 1 also lists the references used to generate
the annual contributions, chemical profile, temporal patterns and variability for each15

source.
Distinct time series for the contributions from each source were generated by starting

with average contribution estimates from preliminary DASH studies and the Northern
Front Range Air Quality Study (Watson et al., 1998), then adding day-to-day variations
reflecting both random variability and hypothesized weekly or seasonal patterns, as ap-20

propriate. Daily totals for the nine source contributions were normalized to match actual
daily PM2.5 levels observed in Denver in 2003. Oxygen was included as a species for
mass closure purposes, assuming that oxygen represented 30% of the organic car-
bon mass fraction. The matrix of data uncertainties, S from Eq. (3), is computed as
follows. Measurement detection limits, detection limit uncertainty, and measurement25

1 Vedal, S., Dutton, S. J., Hannigan, M. P. , Milford, J. B., Miller, S. L., Rabinovitch, N.,
Sheppard, L.: The Denver Aerosol Sources and Health (DASH) Study: 1 Overview, Atmos.
Environ., submitted, December 2007.
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uncertainty associated with typical analytical techniques used to speciate PM2.5 filter
samples (Ion Chromatography, Thermal Optical Transmission, and Gas Chromatogra-
phy/Mass Spectrometry), were incorporated into the PMF input via

Si j =
√(

αjXi j
)2 + (βjDj

)2
(4)

where for species j , αj is the measurement uncertainty, βj is the detection limit uncer-5

tainty, and Dj is the detection limit. These uncertainties were incorporated into the final
data matrix X′ with the following formula

X
′

i j = Xi j + Si jZi j (5)

where Zi j is a random number drawn from a standard normal distribution. If X′
i j was

less than the detection limit associated with measuring species j , then a value of one-10

half the detection limit was substituted in the final data matrix.

2.3 The Bootstrap

The bootstrap is a computationally intensive method for estimating the distribution of
a statistic, the statistic itself being an estimator of some parameter of interest (Efron,
1979). The essence of the method is to create replicate data by resampling, with15

replacement, from the original observations of a random variable. For each replicate
dataset the statistic of interest is computed, and the distribution of these values serves
as an estimate for the random sampling distribution of the statistic. The properties of
this distribution are then used to make inferences about the parameter of interest. In the
present context, each pollutant species’ time series represents realizations of a random20

variable. The F and G matrices resulting from PMF’s fitting of these data are functions
of these random variables, thus, each element of those matrices may be considered
a statistic. Previous studies using PMF have focused on analyzing the F matrix, the
matrix of factor profiles. This discussion takes a different tack, with the statistic of
interest being each element of the G matrix, the matrix of daily factor contributions.25
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2.3.1 Dependent data considerations

Much of bootstrap theory is based upon the assumption that the data are comprised
of observations of independent and identically distributed (iid) random variables. Time
series data, however, are typically serially correlated. Singh (1981) showed that the
bootstrap can be inconsistent in estimating the distribution of statistics based upon de-5

pendent data. Since then, numerous modifications of the original iid bootstrap have
been formulated to better handle dependent data (Carlstein, 1986; Kunsch, 1989; Liu
and Singh, 1992). One approach often used for time series data is to resample blocks
of successive observations. If the blocks are of sufficient length, l , and the series is
only weakly dependent, then the observations within each block may be considered10

independent of the observations within the other blocks. Further, if the series is sta-
tionary then all blocks will share the same l -dimensional joint distribution. These two
conditions allow the blocks to be treated as independent and identically distributed ob-
servations to which the iid bootstrap can be applied. This approach is currently used
by the EPA PMF 1.1 software tool, which uses a 3-day block bootstrap.15

In the EPA’s bootstrap implementation, as well as this study, measurement days are
resampled. In the present case, realizations of a composite random variable comprised
of 39 pollutant species are resampled, with replacement, from the original synthetic
dataset. To investigate an appropriate bootstrap block size the serial correlation of each
pollutant species in the synthetic dataset, as well as total PM2.5 mass, was examined.20

An Auto Regressive (AR) time series model was fit to each species’ series and the
optimal lag parameter, p, was found. Figure 1 shows the distribution of the lag values.

Figure 1: Distribution of the lag dependence parameter, p, for the 39 pollutant
species.

While concentrations for most species were serially correlated with only the previous25

day’s concentration, many species had longer lag-dependence. The aggregate mass
of all species had lag-2 dependence. It has been shown that the consistency of ap-
proximations yielded by the block bootstrap is sensitive to block size, with optimal block
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size critically dependent upon the size of the data as well as the statistic for which the
distribution is being estimated (Hall et al., 1995; Lahiri, 2001). Given these findings,
and that practical methods for choosing block size are based on examining the lag-
dependence in the data (Politis and White, 2004), it seems difficult to choose a single
block size for resampling measurement days of speciated PM data.5

An additional complication in using the block bootstrap with such data is that while all
block bootstrap schemes are designed to handle serial correlation they also assume
the data are from a stationary stochastic process. To the authors’ knowledge, there
are no published results in which a block bootstrap was used on speciated PM time
series data that had tested for, or transformed to, stationarity prior to resampling. It is10

assumed that this difficulty was simply ignored but it deserves consideration in future
applications of the block bootstrap.

The present work takes an alternate approach to bootstrapping the pollutant time se-
ries data and avoids the block bootstrap. Instead, a variant of the iid bootstrap, called
the balanced bootstrap, is employed. The balanced bootstrap ensures that over the15

course of creating numerous replicate datasets all original observations are resam-
pled the same number of times, which can reduce problems of bias and variance in
estimation (Davison et al., 1986), while being only marginally more computationally
expensive than an “unbalanced” bootstrap (Gleason, 1988). In the present context,
use of the balanced bootstrap violates the assumption that the data are an iid sample;20

however, there is evidence that in some settings the iid bootstrap can still yield accu-
rate estimation even when applied to dependent data (Kiefer and Vogelsang, 2005;
Goncalves and Vogelsang, 2007 2). In the present work 500 replicate datasets were
generated.

2 Goncalves, S. and Vogelsang, T. J.: Block Bootstrap HAC Robust Tests: The Sophistication
of the Naive Bootstrap, 2006, work in progress, accessed: 20 August 2007, http://www.msu.
edu/tjv/GVpaper.pdf
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2.4 Record keeping

In the following results an important component in implementing the bootstrap is the
tracking of days resampled in each replicate dataset. Since the essence of bootstrap-
ping is resampling with replacement it is possible that for any given replicate dataset
some synthetic measurement days are included multiple times and other days are not5

included at all (recall that since the balanced bootstrap is used here, over the aggre-
gate of all replicate datasets each measurement day is resampled the same number
of times). By keeping track of which days are resampled in which replicate dataset it is
possible to assess factor contribution uncertainty and bias at the daily time scale.

2.5 Factor matching10

The use of the bootstrap yields a collection of factor contribution matrices, G(k),
k=1,. . . ,B, where B is the number of bootstrap replicate datasets. The collection of
matrices may be considered as a single, three-dimensional matrix G′, with elements

G
′(k)
i j i=0,. . . ,N-1; j=0,. . . ,P-1; k=0,. . . ,B, where N is the number of samples and P

is the number of factors (note that the G matrix associated with the original data and15

“base case” solution is also included in G′). While the nature of the factors that the
PMF2 algorithm finds should be stable across the “bootstrap” solutions, the ordering of
the factors within those solutions may be different. Before computing statistics on the
elements of G′, the dimension indexed by j must be sorted, such that across the B+1
matrices factor j refers to the same real-world pollution source. The typical approach to20

matching and sorting factors has relied on comparisons between the contribution time
series, using linear correlation to match a given factor from a bootstrap solution (or a
factor from another analysis method) to the “closest” factor in a base case solution.

There are several concerns with this approach. First, “closeness” is measured with
a scalar metric that is highly sensitive to outliers. Second, the bootstrap replicate data25

sets will not preserve the temporal patterns seen in the original data when viewed over
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the course of the entire sampling period (although there are block bootstrap methods
that seek to address this). Correlation ceases to be a useful measure once there is
no temporal consistency between the contribution time series being compared. Third,
there are no clear rules for what constitutes sufficient correlation, especially in cases
where two factors in one bootstrap solution are highly (or even poorly but equally)5

correlated with the same factor in the base case solution. The use of this metric invites
“data dredging”, where the practitioner must make ad hoc choices to separate and
match factors.

The present discussion employs an approach that the authors believe to be novel
and robust when applied to aerosol pollution data: neural networks are used to match10

factors between bootstrap solutions and the base case solution based upon their pro-
files. Matching on profiles addresses the second issue noted above, while the use of
neural networks rather than correlation address the first and third issues. The need
to classify a measured spectrum (profile) with a known reference spectrum is a prob-
lem found in multiple scientific settings, most notably in the analysis of stellar spectra15

and data from hyperspectral remote sensing. Findings in these fields may be useful
in the modeling of aerosol pollution data and are considered briefly. Work by van der
Meer (2006) found that a spectral similarity measure based on correlation was more
sensitive to noisy data than other traditional measures based on Euclidean distance
or spectral angle. Further, Shafri, et al. (2007) reported that neural networks were ac-20

curate at classifying spectra from remote sensing of tropical forests, especially when
compared to measures based on spectral angle. Tong and Cheng (1999) found that
using neural networks was superior to using maximum correlation when classifying gas
chromatography mass spectrometry data. Based on these findings, as well as the find-
ings presented herein, the authors are confident that using neural networks to match25

factor profiles allows the bootstrap technique to be better leveraged. The factor match-
ing process can be easily automated, adapted to complex patterns and new, possibly
noisy, data, and can avoid subjective “closeness” thresholds required when using less
robust measures like correlation.
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2.6 Neural Networks

Artificial Neural Networks are statistical modeling methods capable of characterizing
highly non-linear functions, doing so by approximating the behavior of the brain. The
term “artificial” is used to distinguish this numerical approximation of biological, adap-
tive, cognition from those biological systems. In general, this is understood in statisti-5

cal modeling, and Artificial Neural Networks are simply referred to as Neural Networks
(NN). Excellent introductions to the subject can be found in Haykin (1998) and Mu-
nakata (1998).

The specific type of NN used in this study is called a Multilayer Feed Forward Net-
work. This type of network relies on supervised learning, in which the network is given10

inputs and learns how to transform it into desired outputs. The learning is encoded in
numerical weights defining the strength of connection between elements in the net-
work. Weights are found through quasi-Newton optimization incorporated with the
backpropagation method, where “backpropagation” refers to the ground-breaking al-
gorithm developed in the 1970s and 1980s (Rumelhart et al., 1986; Werbos, 1974),15

allowing neural networks to classify linearly inseparable patterns. A trained network,
characterized by its structure and its weights, can then be given novel input and trans-
form it to the correct output. In the present work that transformation is classification:
given a new factor profile, the trained neural networks will classify it as a known type,
or possibly classify it as unknown.20

2.6.1 Neural Network configuration

In the present work, NN software from Visual Numerics’ IMSL® C Numerical Library,
version 6.0, is used. The structure of the network is three fully connected layers, with
39 nodes in the input layer, five nodes in the hidden layer, and two nodes in the output
layer. The values of the two output nodes range between 0 and 1. An output of [1,0]25

indicates a perfect match between an input factor profile and the profile that particular
network was trained to classify as a “Yes”. Likewise, an output of [0,1] indicates a
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perfect non-match between an input factor profile and the learned profile. A “Yes”
match is only possible if the first output node has a value of at least 0.95, with the
second node having a value no larger than 0.05.

The performance of the network depends heavily upon the data used for training. It
is well established that neural networks can be unstable when data used for training5

varies greatly in scale; therefore, transformation and normalization of data are typical
preprocessing steps. In this study, factor profiles are normalized before being learned
by the networks. In “raw” form, the rows of the F matrix correspond to factor profiles and
each row sums to 1. Viewing factor profiles this way can sometimes result in factors
that are difficult to distinguish, since some species will be present in large amounts in10

many factors (e.g. organic carbon and oxygen). To make plots of factor profiles more
visibly distinguishable the following normalization is done,

F
′

kj =
Fkj

P∑
k=1

Fkj

(6)

where F
′

kj is the relative weighting species j has in factor k ’s profile when considering
all other factors. When viewing factor profiles under this normalization, species com-15

mon to many factors are damped and marker species become more pronounced, as
compared to viewing the raw profiles.

2.6.2 Training data

Five datasets were used to train the neural networks. One dataset was the original
synthetic data, with the remaining four being bootstrap replicates. PMF was fit to each20

dataset, with the solution associated with the original dataset being the base case. The
base case factor profiles were normalized (as described above), plotted, and visually
compared to the normalized factor profile plots associated with the bootstrap solutions.
For each bootstrap solution the factors were reordered to match the base case order-
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ing. Figure 2 shows the end result of this process, with the five factor profile plots used
to classify each factor for the neural network training, as well as the actual profile used
to create the original synthetic dataset.

Figure 2: Plots of five normalized profiles for each factor learned by the neural net-
works. The thicker, black line represents the profile associated with the “base case” so-5

lution, while the thicker red line indicates the actual profile used to create the synthetic
data. The remaining four colors correspond to factor profiles for “bootstrap” solutions
based on resampled data.

2.7 Method steps

Having discussed the major components of the method for analyzing factor contribution10

uncertainty and bias, it is helpful to summarize their relationship in the following steps:

Step 1: Using the synthetic PM2.5 data and measurement uncertainties, com-
pute a base case PMF model fit that has P factors. In the present work, P=9.

15

Step 2: Create T bootstrap replicate data matrices, with corresponding uncer-
tainty matrices, and fit each set with PMF. These results, in addition to the base case
result, will serve as the neural network training data. In the present work, T=4.

Step 3: For each training replicate dataset, visually compare the normalized20

bootstrap factor profiles versus the normalized base case profiles, and define the
factor matching between the results. Reorder the factors to be consistent with the
base case factor ordering.

Step 4: For each factor, train a neural network to learn its normalized profile, as25

well as what is not its profile (thus, there will be P networks). For each factor there will
be T+1 profiles to be learned as “Yes” patterns. The remaining P-1 profiles associated
with the base case results are learned as “No” patterns.
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Step 5: Create B new bootstrap replicate datasets and fit each one with PMF.
These results will be used to assess PMF model fit uncertainty. In the present work,
B=500.

5

Step 6: For each bootstrap solution, allow each of the P neural networks to ex-
amine each of the P normalized factor profiles. Each network should identify a unique
factor profile as a “Yes”, with all others classifying the profile as “No”. Reorder the
factors in the bootstrap solution accordingly.

10

Step 7: Parse the factor contribution data by day-factor combination. For exam-
ple, consider examining the bias and variability in the PMF solutions for the 3rd factor
on day 126. All B+1 datasets would be searched for where the original day 126 was
resampled. This collection of indices would be used to index into the 3rd column of
the corresponding solutions’ G matrix to get factor 3’s contribution on day 126. The15

distribution of values is then compared with the actual contribution used to create the
original synthetic dataset.

Note that Step 3 is what establishes the supervisor for the supervised learning al-
gorithm used to train the neural network. The role of the neural network is to learn20

the classification defined by an expert human observer, such that when new factor
profiles are analyzed, they are classified as would the expert. In Step 6, it is possi-
ble that a bootstrap factor can be matched with more than one base case factor, or,
perhaps, it cannot be matched to any base case factor. In either case, that particular
solution is excluded from the collection of other solutions. In this way, after the last25

replicate dataset has been fit by PMF, the collection of solutions all correspond to the
case where bootstrap factors were matched uniquely to base case factors.
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3 Results

Eight and nine factor PMF models fit to the original synthetic data were comparable, in
terms of sums of the normalized, squared residuals, Q, the residuals associated with
specific species, and the physical interpretability of the factors. Seven and ten factor
solutions were judged less optimal with respect to these same measures. Accordingly,5

descriptive statistics are presented for both eight and nine factor simulations (Table 3).
However, to facilitate comparison of model fitting results with the contributions of the
nine sources used to create the synthetic data, additional results pertain to the simu-
lation using a nine factor solution. For the eight factor solutions, it was found that the
meat cooking and wood combustion factors were collapsed into a single factor. Fig-10

ure 3 presents plots of factor contribution time series for all nine factors. Each plot
shows the base case series, the actual series, and two bands defined by empirical
quantiles of the simulation results: the interquartile range and the 5th–95th percentile
range. The plots show the data and quantiles smoothed by a 5-day moving average,
in the hopes of focusing attention on the gross features of the series and not the daily15

fluctuations in contribution. Figure 4 is a histogram showing the distribution of contri-
butions associated with a specific factor on a specific day, as an example of how the
method allows assessment of contribution uncertainty at the daily time scale.

Figure 3: Comparison of PMF bootstrap solutions for factor contributions versus ac-
tual factor contributions. Each plot corresponds to a different factor, showing the actual20

contribution time series, the time series corresponding to the base case PMF solution,
and two bands based on the empirical quantiles of the bootstrap solutions. The listed
coefficient of correlation is with respect to the base case and actual contribution time
series. The factor ordering is relative to the base case solution.

Figure 4: Histogram of results associated with PMF solutions for factor 7 s contribu-25

tion on day 146. This example represents a “vertical slice” from the contribution time
series in Fig. 3 and can be calculated for any factor-day combination.
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4 Discussion

4.1 Factor contribution plots

The results of applying the method to the synthetic PM2.5 data demonstrate several
types of PMF solutions. The first is exemplified by the contribution time series plots for
factors 0 and 1 (Fig. 3). Here, PMF’s solution, over hundreds of resampled datasets,5

shows low variability and small bias when compared to the actual contribution time se-
ries. Factors 3 and 4 exemplify solutions with moderate variance between resampled
datasets and also moderate bias (positive in the first case, negative in the latter). Fac-
tors 2 and 7 represent solutions in which the temporal structure matches closely with
the actual respective contribution time series, but the bias is quite large. Finally, factors10

5, 6, and 8 have solutions that match poorly against the known contributions.
If the synthetic data is assumed to be a close approximation of data likely to be

actually observed, then the first two cases (factors 0, 1, 3, and 4) represent pollution
sources well-modeled by PMF. On the other hand, factors 2, 5, 6, 7, and 8 might rep-
resent pollution sources for which the PMF model is suspected to provide biased or15

generally poor fit. Thus, the presented method could also serve as a way of qualify-
ing future PMF solutions. Factors corresponding to sources not well-modeled in the
synthetic data solutions could be given additional scrutiny when identified in solutions
corresponding to real data.

4.2 Uncertainty, variability, and bias20

Application of the method yields estimates of variability and bias in daily factor contri-
butions, which can be used in an uncertainty analysis of the PMF model fit. However,
the uncertainty in results brought out by fitting PMF to resampled data is likely different
compared to the uncertainty in the results due to model assumptions. For example,
how would the solutions change if seven or eight factors were instead considered; if25

certain pollutant species were added or removed; if different assumptions were made
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about measurement errors; if a different source apportionment model was used alto-
gether? As Chatfield (1995) notes, “It is indeed strange that we often admit model
uncertainty by searching for a best model but then ignore this uncertainty by making
inferences and predictions as if certain that the best fitting model is actually true.” In
the present work, as much as possible, model assumptions have been avoided. Input5

data was not filtered after seeing preliminary output, and PMF2 parameters were set
to avoid assumptions about the distribution or “quality” of the data. Still, the use of
PMF as the receptor model, the chemicals included in the analysis, and the number of
factors to be characterized, were all choices and are clearly subjective. The present
work seeks to offer a method for assessing uncertainty in model fit when it is assumed10

that the model is valid, and this distinction should be kept in mind.

4.3 Eight versus nine factor solutions

In simulations using nine factor solutions, the rate at which the neural network factor
matching method failed to uniquely match bootstrapped factors to base case factors
was generally close to 30%. Typically this was just one bootstrap factor matching with15

two base case factors for a given bootstrap solution, with the remaining bootstrap fac-
tors having a unique match. Specifying only eight factors allowed PMF to collapse
two similar factors–meat cooking and wood combustion–leading to generally more dis-
tinguishable results, thus unique factor matching failed at approximately the 5% rate.
The nine factor solutions are presented in Figs. 2 and 3 to allow easy comparison with20

the actual factor information. It is important to note that, when using the traditional
factor matching method based on the maximum linear correlation between the contri-
bution time series, the nine factor bootstrap solutions were difficult to interpret and sort.
Consider Fig. 3d and e for the contribution time series plots for factors 3 (diesel fuel
combustion) and 4 (paved road dust), respectively. If linear correlation alone was used25

as the metric for matching, it is easy to imagine how often factor 3 might be labeled
4 sometimes and vice versa. The time series plots would accordingly show larger in-
terquartile ranges, which would purely be an artifact of the factor matching technique
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“lumping apples with oranges”, misleading the practitioner into inferring that PMF’s fit
was more uncertain than it in fact was. In contrast, the neural network method uses
pattern recognition to classify factor profiles that may differ in some species between
datasets, differences that may be enough to throw off measures like linear correlation,
but not an expert observer.5

4.4 The nonparametric bootstrap

The method used here makes use of a nonparametric bootstrap for creating replicate
datasets. The term “nonparametric” refers to the fact that the bootstrap resamples the
data itself, as opposed to data from a generating process for which parameters would
have to be set. The parametric approach assumes some data generating process is10

an accurate approximation for the data actually in hand. In the present setting, how-
ever, there are often dozens of chemical species comprising PM2.5 data, each likely
characterized by a different probability density function and cross correlation with other
species. Accordingly, the parametric bootstrap does not appear to be a feasible tool un-
less the practitioner was able to formulate a data generating process for each species.15

Another version of a parametric bootstrap resamples residuals from a model fit. In the
present context this approach could be outlined as: Use PMF2 to find a solution given
a data matrix, X; take the resulting residuals matrix, E, and add it to X to create a
new dataset; use PMF2 to find a solution using this dataset; repeat the previous steps
as desired. A fundamental assumption of this approach is that the model is the true20

model, and, given this assumption, residuals should be independent and identically
distributed. For the simulation presented here, however, the base case solution had
associated residuals for eight of the 39 species that failed some basic test of inde-
pendence (for example, runs up, runs below the mean, and length of runs). While it
may be possible to fine tune the PMF2 settings to improve the results, the residuals25

bootstrap rests upon the assumption that the model from which the residuals come is
“true”. The authors believe that this is inappropriate given the level of model uncer-
tainty present. In contrast, the nonparametric bootstrap employed here gives focus to
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the PM2.5 data itself, avoiding assumptions about the validity of the model fit to that
data. The surrounding method for assessing that model’s quality is equally applicable
to PMF results as it is to another source apportionment model, and is applicable to
assessing estimates of source profiles as well as estimates of source contributions.

4.5 Method improvements5

The method presented here can likely be made even more robust, and the authors
propose two options to explore. The first is to consider training the networks on more
information than just the scaled factor profiles. For example, additional input-layer
nodes could encode information about factor contributions or tracer species. The sec-
ond option pertains to assessing replicate datasets before fitting the PMF model. In the10

present discussion replicate datasets generated by bootstrapping were not examined
in any way for being “realistic” prior to the PMF model fit. Heidam (1987) presented a
bootstrap method in which the replicate datasets were first screened by looking at their
associated covariance matrices. If a given covariance matrix was not representative of
the covariance structure assumed to be truly in the data, then the bootstrapped dataset15

was not fit by the source apportionment model. There are numerous accept-reject cri-
teria that could be employed such that non-representative replicate datasets would not
be fit by PMF. For example, if certain marker species or “rare event” sampling days
were deemed critical to the model fit, replicate datasets could be tested for sufficient
representation of those data before use in subsequent analyses. This approach was20

avoided in the present discussion in order to focus on the method’s performance with
as few practitioner-defined assumptions as possible. In certain settings, however, such
assumptions may be warranted.
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Table 1. Synthetic PM2.5 Sources.

Source References

Secondary Ammonium Sulfate Lough, 2004
Secondary Ammonium Nitrate Lough, 2004; McGraw et al., 2004
Gasoline Vehicles Watson et al., 1998; Chinkin et al., 2003;

Cadle et al., 1999; Hildeman et al., 1991;
Rogge et al., 1993a

Diesel Vehicles Watson et al., 1998; Chinkin et al., 2003;
Hildeman et al., 1991; Rogge et al., 1993a;
Schauer, 1998

Road Dust Watson et al., 1998; Chinkin et al., 2003;
Hildeman et al., 1991; Rogge et al., 1993b

Wood Combustion McGraw et al., 2004; Watson et al., 1998; Fine et al.; 2004
Meat Cooking Watson et al., 1998; Schauer et al., 1999
Natural Gas Combustion McGraw et al., 2004; Hildeman et al., 1991;

Hannigan, 1997; Rogge et al., 1993d
Vegetative Detritus Hildeman et al., 1991; Hannigan, 1997;

Rogge et al., 1993c
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Table 2. Synthetic PM2.5 Species.

1 Elemental Carbon (EC) 20 n-Hexadecanoic acid
2 Organic Carbon (OC) 21 n-Octadecanoic acid
3 Nitrate 22 Acetovanillone
4 Sulfate 23 Coniferylaldehyde
5 Ammonium 24 Syringaldehyde
6 n-Tricosane 25 Acetosyringone
7 n-Tetracosane 26 Retene
8 n-Pentacosane 27 Alkylcyclohexanes
9 n-Hexacosane 28 Benzo[k]fluoranthene
10 n-Heptacosane 29 Benzo[b]fluoranthene
11 n-Octacosane 30 Benzo[e]pyrene
12 n-Nonacosane 31 Indeno[1,2,3-cd]pyrene
13 n-Triacontane 32 Indeno[1,2,3-cd]fluoranthene
14 n-Hentriacontane 33 Benzo[ghi]perylene
15 n-Dotriacontane 34 Coronene
16 n-Tritriacontane 35 Cholestanes
17 n-Tetratriacontane 36 Hopane
18 Oleic acid 37 Norhopane
19 n-Pentadecanoic acid 38 Homohopanes

39 Oxygen
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Table 3. Simulation Statistics for 8 and 9 Factor Solutions.

8 Factors 9 Factors

Number of bootstrap replicate datasets: 500 500

Number of datasets for which PMF2 failed to converge to a solution: 1 2
Number of datasets for which factors could not be uniquely matched: 31 158
Q-value Statistics
Sample Size: 468 340
Mean: 3700.42 3231.90
Standard Deviation: 84.72 71.54
Skewness: 0.38 0.05
Kurtosis: 0.61 −0.31
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Figure 1: Distribution of the lag dependence parameter, p, for the 39 pollutant species. 

 

 

While concentrations for most species were serially correlated with only the previous 

day’s concentration, many species had longer lag-dependence. The aggregate mass of 

all species had lag-2 dependence. It has been shown that the consistency of 

approximations yielded by the block bootstrap is sensitive to block size, with optimal 

block size critically dependent upon the size of the data as well as the statistic for which 

the distribution is being estimated (Hall et al., 1995; Lahiri, 2001). Given these findings, 

and that practical methods for choosing block size are based on examining the lag-

dependence in the data (Politis and White, 2004), it seems difficult to choose a single 

block size for resampling measurement days of speciated PM data.  

 

An additional complication in using the block bootstrap with such data is that while all 

block bootstrap schemes are designed to handle serial correlation they also assume the 

data are from a stationary stochastic process. To the authors’ knowledge, there are no 

published results in which a block bootstrap was used on speciated PM time series data 

that had tested for, or transformed to, stationarity prior to resampling. It is assumed that 

Fig. 1. Distribution of the lag dependence parameter, p, for the 39 pollutant species.
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where F’kj is the relative weighting species j has in factor k’s profile when considering all 

other factors. When viewing factor profiles under this normalization, species common to 

many factors are damped and marker species become more pronounced, as compared 

to viewing the raw profiles.  

 

2.5.2 Training Data 
Five datasets were used to train the neural networks. One dataset was the original 

synthetic data, with the remaining four being bootstrap replicates. PMF was fit to each 

dataset, with the solution associated with the original dataset being the base case. The 

base case factor profiles were normalized (as described in section 2.5.1), plotted, and 

visually compared to the normalized factor profile plots associated with the bootstrap 

solutions. For each bootstrap solution the factors were reordered to match the base 

case ordering. Figure 2 shows the end result of this process, with the five factor profile 

plots used to classify each factor for the neural network training, as well as the actual 

profile used to create the original synthetic dataset. 

 

 

 

 
Fig. 2. Plots of five normalized profiles for each factor learned by the neural networks. The
thicker, black line represents the profile associated with the “base case” solution, while the
thicker red line indicates the actual profile used to create the synthetic data. The remaining four
colors correspond to factor profiles for “bootstrap” solutions based on resampled data.
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Fig. 2. Continued.
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Figure 2: Plots of five normalized profiles for each factor learned by the neural networks. 

The thicker, black line represents the profile associated with the “base case” solution, 

while the thicker red line indicates the actual profile used to create the synthetic data. 

The remaining four colors correspond to factor profiles for “bootstrap” solutions based 

on resampled data. 

 

 

2.6 Method Steps 
Having discussed the major components of the method for analyzing factor contribution 

uncertainty and bias, it is helpful to summarize their relationship in the following steps: 

 

Fig. 2. Continued.
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Figure 2: Plots of five normalized profiles for each factor learned by the neural networks. 

The thicker, black line represents the profile associated with the “base case” solution, 

while the thicker red line indicates the actual profile used to create the synthetic data. 

The remaining four colors correspond to factor profiles for “bootstrap” solutions based 

on resampled data. 

 

 

2.6 Method Steps 
Having discussed the major components of the method for analyzing factor contribution 

uncertainty and bias, it is helpful to summarize their relationship in the following steps: 
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Table 3: Simulation Statistics for 8 and 9 Factor Solutions 

 

   8 Factors  9 Factors 

Number of bootstrap replicate datasets:   500  500 

      

Number of datasets for which PMF2    
failed to converge to a solution:   1  2 
      

Number of datasets for which factors    
could not be uniquely matched:   31  158 
      

 Q-value Statistics    
     Sample Size:   468  340 
     Mean:   3700.42  3231.90 
     Standard Deviation:   84.72  71.54 
     Skewness:   0.38  0.05 
     Kurtosis:   0.61  -0.31 
 
 
     

 

 

  
Fig. 3. Comparison of PMF bootstrap solutions for factor contributions versus actual factor
contributions. Each plot corresponds to a different factor, showing the actual contribution time
series, the time series corresponding to the base case PMF solution, and two bands based on
the empirical quantiles of the bootstrap solutions. The listed coefficient of correlation is with
respect to the base case and actual contribution time series. The factor ordering is relative to
the base case solution.
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Figure 3: Comparison of PMF bootstrap solutions for factor contributions versus actual 

factor contributions. Each plot corresponds to a different factor, showing the actual 

contribution time series, the time series corresponding to the base case PMF solution, 

and two bands based on the empirical quantiles of the bootstrap solutions. The listed 

coefficient of correlation is with respect to the base case and actual contribution time 

series. The factor ordering is relative to the base case solution. 
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Figure 4: Histogram of results associated with PMF solutions for factor 7’s contribution 

on day 146. This example represents a “vertical slice” from the contribution time series 

in Fig. 3 and can be calculated for any factor-day combination. The number of data 

points comprising any such histogram would equal 340. 

 
4 Discussion 
 
4.1 Factor Contribution Plots 
The results of applying the method to the synthetic PM2.5 data demonstrate several 

types of PMF solutions. The first is exemplified by the contribution time series plots for 

factors 0 and 1 (Fig. 3). Here, PMF’s solution, over hundreds of resampled datasets, 

shows low variability and small bias when compared to the actual contribution time 

series. Factors 3 and 4 exemplify solutions with moderate variance between resampled 

datasets and also moderate bias (positive in the first case, negative in the latter). 

Factors 2 and 7 represent solutions in which the temporal structure matches closely 

with the actual respective contribution time series, but the bias is quite large. Finally, 

factors 5, 6, and 8 have solutions that match poorly against the known contributions. 

 

If the synthetic data is assumed to be a close approximation of data likely to be actually 

observed, then the first two cases (factors 0, 1, 3, and 4) represent pollution sources 

well-modeled by PMF. On the other hand, factors 2, 5, 6, 7, and 8 might represent 

Fig. 4. Histogram of results associated with PMF solutions for factor 7 s contribution on day
146. This example represents a “vertical slice” from the contribution time series in Fig. 3 and
can be calculated for any factor-day combination.
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