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Abstract

During the TROCCINOX field experiments in February–March 2004 and February
2005, airborne in situ measurements of NO, NOy, CO, and O3 mixing ratios and the
J(NO2) photolysis rate were carried out in the anvil outflow of thunderstorms over
southern Brazil. Both tropical and subtropical thunderstorms were investigated, de-5

pending on the location of the South Atlantic convergence zone. Tropical air masses
were discriminated from subtropical ones according to the higher equivalent potential
temperature (Θe) in the lower and mid troposphere, the higher CO mixing ratio in the
mid troposphere, and the lower wind velocity and proper wind direction in the upper
troposphere. During thunderstorm anvil penetrations, typically at 20–40 km horizon-10

tal scales, NOx mixing ratios were on average enhanced by 0.2–1.6 nmol mol−1. This
enhancement was mainly attributed to NOx production by lightning and partly due to
upward transport from the NOx-richer boundary layer. In addition, CO mixing ratios
were occasionally enhanced, indicating upward transport from the boundary layer. For
the first time, the composition of the anvil outflow from a large, long-lived mesoscale15

convective system (MCS) advected from northern Argentina and Uruguay was investi-
gated in more detail. Over a horizontal scale of about 400 km, NOx, CO and O3 mixing
ratios were significantly enhanced in these air masses in the range of 0.6–1.1, 110–
140 and 60–70 nmol mol−1, respectively. Analyses from trace gas correlations and a
Lagrangian particle dispersion model indicate that polluted air masses, probably from20

the Buenos Aires urban area and from biomass burning regions, were uplifted by the
MCS. Ozone was distinctly enhanced in the aged MCS outflow, due to photochemical
production and entrainment of O3-rich air masses from the upper troposphere – lower
stratosphere region. The aged MCS outflow was transported to the north, ascended
and circulated, driven by the Bolivian High over the Amazon basin. In the observed25

case, the O3-rich MCS outflow remained over the continent and did not contribute to
the South Atlantic ozone maximum.
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1 Introduction

The knowledge of the lightning-induced nitrogen oxides (LNOx) source is important for
understanding and predicting the nitrogen oxides (NOx=NO+NO2) concentration and
photochemical ozone (O3) formation in the troposphere (Crutzen, 1970; Chameides
and Walker, 1973), among others. NOx in the presence of oxidised products (ROx)5

from NMHC, CO or CH4, acts as a catalyst for the production of O3, which is a major
greenhouse gas in the upper troposphere.

The amount of nitrogen mass induced by lightning annually and globally is still very
uncertain. In spite of more than four decades of research on this topic, reviewed in
detail in Schumann and Huntrieser (2007), typical estimates range at least from 1 to10

14 Tg yr−1, with some clustering of the estimates near 5 Tg yr−1, see, e.g., Huntrieser
et al. (1998, 2002) and Beirle et al. (2006). LNOx has a disproportional large influence
on tropospheric chemistry, since the lifetime of NOx is much longer in the upper tropo-
sphere (UT) (2–5 days) than in the boundary layer (BL) (<1 day) (Jacob et al., 1996;
Schultz et al., 1999). Moreover, the photochemistry in the free troposphere is mostly15

NOx limited (Jaeglé et al., 1999). Hence, the ozone production potential is higher in
the UT than in the BL (Strand and Hov, 1996).

In the past, several dedicated LNOx field experiments have been performed in
Europe and the United States, mainly at midlatitudes (e.g. LINOX, EULINOX and
STERAO) (Luke et al., 1992; Ridley et al., 1994; Poulida et al., 1996; Ridley et al.,20

1996; Huntrieser et al., 1998; Höller et al., 1999; Stith et al., 1999; Dye et al., 2000;
Huntrieser et al., 2002) and partly in the subtropics (e.g. CRYSTAL-FACE) (Ridley et
al., 2004). However, more than 75% of all lightning flashes occur in the tropics and
subtropics between 35◦ S and 35◦ N, mainly over the continents (Christian et al., 1999;
Bond et al., 2002; Christian et al., 2003). It has been suggested that the total source25

strengths of the main UT- and BL-NOx sources in this region, lightning and biomass
burning, are comparable (Smyth et al., 1996). The variability of the tropospheric ozone
column is dominated by these two sources (Martin et al., 2000). However, even for
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5 Tg yr−1 of LNOx production, LNOx is the dominant NOx source in the UT in the trop-
ics and about 30% of tropospheric O3 is formed by enhanced photochemistry due to
LNOx (Lamarque et al., 1996; Smyth et al., 1996; Levy et al., 1996; 1999; Grewe et al.,
2001; Hauglustaine et al., 2001). Therefore, measurements in the tropics are needed
to access the production of LNOx more accurately.5

So far, rather few measurements have been performed near tropical thunderstorms
over the South American continent. In 1982, on a flight from Frankfurt (Germany) to
São Paulo (Brazil), enhanced NOx mixing ratios (∼0.4 nmol mol−1 or ppbv) were for the
first time encountered along the eastern coast of Brazil, which were partly attributed to
production by lightning (Dickerson, 1984). A few years later, during the GTE/ABLE 2A10

mission over the Amazon basin in 1985, mixing ratios up to 0.2 nmol mol−1 NO were
observed in regions of electrically active clouds (Torres and Buchan, 1988). During the
GTE/TRACE-A experiment in September–October 1992 in Brazil (end of dry season)
upper tropospheric NO plumes, that covered horizontal spatial scales between 100 and
1000 km, were observed (Pickering et al., 1996; Smyth et al., 1996). NO mixing ratios15

up to 1.3 nmol mol−1 were found in these plumes that originated from deep convection
(MCS), containing NO emissions from both biomass burning and lightning. On a trans-
fer flight from Panama to Santiago de Chile during the INCA experiment in March–April
2000, elevated NO and NOy mixing ratios (0.8 and 1.8 nmol mol−1) were observed be-
tween 4◦ S and 8◦ S downwind of Brazilian thunderstorms active 8 h before (Baehr et20

al., 2003).
Here we present measurements from the “Tropical Convection, Cirrus, and Nitro-

gen Oxides Experiment“ (TROCCINOX) over the State of São Paulo and surroundings
in Brazil (10◦ S to 28◦ S and 38◦ W to 55◦ W). This tropical-subtropical lightning-rich
region was selected since we wanted to compare our previous observations in mid-25

latitude thunderstorms (Huntrieser et al., 1998, 2002) with measurements in other re-
gions. Two field experimental phases were carried out in February–March 2004 and in
February 2005 (see Sect. 2 and 3). For the first time, detailed airborne measurements
were performed in the anvil outflow of Brazilian thunderstorms in the wet season. We
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mainly analyse meteorological and trace gas measurements carried out with the DLR
(Deutsches Zentrum für Luft- und Raumfahrt) research aircraft Falcon in the outflow of
tropical and subtropical thunderstorms (see Sect. 3, 4 and 5). The meteorological envi-
ronment in which the thunderstorms developed is described in detail and the distinction
between tropical and subtropical environments is defined (Sect. 3–4). We further focus5

our observations on an aged anvil outflow from a large, long-lived MCS system over
northern Argentina and Uruguay, since observations in the vicinity of South American
MCS are rare in comparison to MCS occurring over North America (see Sect. 3 and
5). The results are discussed and summarized in Sect. 6. In a forthcoming paper, the
selected airborne measurements presented here will be combined with lightning and10

radar observations to quantify the amount of LNOx produced by the different thunder-
storm types (Huntrieser et al., 20071). Results obtained with two further aircraft are to
be reported elsewhere.

2 Data and model description

2.1 Airborne instrumentation: Falcon15

The airborne measurements up to 12.5 km altitude were carried out with the DLR Fal-
con aircraft, which was equipped with DLR instruments to measure NO, NOy, O3,
and CO mixing ratios and the photolysis rate J(NO2). The instrumentation has been
used during several field campaigns in the past (Table 1). All instruments are capa-
ble of measuring at high temporal resolution (1–5 s), as necessary for investigating20

the small scale structures in the anvil outflow (Huntrieser et al., 1998; Höller et al.,
1999; Huntrieser et al., 2002). The NO2 (and NOx) mixing ratios are calculated from
the photostationary steady state equation from the measurements of NO, O3, J(NO2),
pressure and temperature. Since O3 is not available during the anvil penetrations for

1Huntrieser, H. et al., in preparation, 2007.
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reasons explained below, ambient O3 mixing ratios outside the anvils are used instead.
In addition, position, altitude, temperature, humidity, pressure, and the 3-dimensional

wind vector (u,v,w) were measured with the standard Falcon meteorological measure-
ment system (Schumann et al., 1995). The outside air temperature is measured by
an open wire PT100 sensor mounted in a Rosemount Type 102 total air temperature5

housing. The humidity data represent a composite derived from three different sensors
(a dewpoint mirror, a capacitive sensor and a Lyman Alpha absorption instrument). All
flight altitude values refer to pressure height and UTC (Universal Time Coordinated)
time. The time difference between UTC and the Brazilian (Summer) Time (BR(S)T) in
the TROCCINOX observation area is 2 h in the austral summer (until 14 February 200410

and 19 February 2005) and 3 h in the austral winter (e.g. 16 BRST=18:00 UTC and 15
BRT=18:00 UTC).

During parts of some Falcon flights, especially when anvils were penetrated, strongly
enhanced O3 mixing ratios were measured (∼100–300 nmol mol−1), which have been
excluded here. The correlation with other trace gases indicated no influence from the15

tropopause or lower stratosphere. Similar ozone-rich transients have been observed
during CARIBIC and MOZAIC flights performed mainly in the tropics (Zahn et al.,
2002). Recently, Ridley et al. (2006) discussed several possible reasons for observed
spikes in O3 (and NO) signals during CRYSTAL-FACE and other airborne field exper-
iments. They suggested that the observed short-term spikes (∼1 s) during CRYSTAL-20

FACE were measurement artefacts caused by discharges on the aircraft fuselage or
inlets. However, during TROCCINOX the excluded O3 signals were much broader and
covered the duration of the anvil penetration (∼20–40 km, ∼several minutes). Meyer
et al. (1991) have reported on water vapor interference for the measurement of O3 by
some of the instruments using the UV absorption technique (same technique as used25

on the Falcon) which may explain our observations. The interference is significant
when the humidity is varying rapidly as in the case of anvil penetrations. The reason
for the interference, as suggested by Meyer et al., could be the varying extinction of UV
light by the windows of the two optical cells in the instrument. Laboratory studies using
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the Falcon ozone instrument are ongoing and will be reported elsewhere.

2.2 LNOx forecasts: ECHAM5/MESSy

For flight planning during the TROCCINOX field phases, a variety of model fore-
casts based on data from the European Centre for Medium-Range Weather Forecasts
(ECMWF) were used. In addition, forecasts of the horizontal LNOx distribution over5

South America were provided using the coupled atmospheric chemistry global circula-
tion model (GCM) ECHAM5/MESSy (preliminary version 0.9, further denoted as E5M0)
(Kurz, 2006). The model uses the latest version 5 of the ECHAM GCM (ECMWF model,
Hamburg version) (Roeckner et al., 2006) together with a chemical submodel MECCA
(Module Efficiently Calculating the Chemistry of the Atmosphere) (Sander et al., 2005).10

Both are coupled using the Modular Earth Submodel System (MESSy) (Jöckel et al.,
2005; 2006). The Tiedke mass flux scheme for deep, mid-level and shallow convection
is implemented. The model was run in a spectral T63 resolution and 19 layers in the
vertical, with the uppermost model layer centred at 10 hPa. The model time step is
20 min. A nudging technique (see e.g. Jeuken et al., 1998) was applied to relax the15

models prognostic variables (divergence, vorticity, temperature, and surface pressure)
towards operational ECMWF model forecasts (available every 6 h). E-folding relax-
ation times of 12 h for temperature and surface pressure, 6 h for vorticity, and 48 h for
divergence were used. The chemical mechanism comprises 104 gas phase species,
including non-methane hydrocarbons and 245 reactions, and heterogeneous reactions20

on polar stratospheric cloud particles. Lightning flash rates and the resulting lightning
NO emissions are parameterized according to Grewe et al. (2001), relating the flash
frequency to the vertical mass flux within a convective clouds updrafts. The ratio of
intra-cloud and cloud-to-ground flashes is calculated following Price and Rind (1993).
The NO emission per flash is scaled to result in a mean annual global emission of25

5 Tg(N). In the vertical, a “C-shape” fit, conserving the shape of the profiles derived by
Pickering et al. (1998), is used to distribute the emitted lightning NO.
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2.3 Transport modelling: FLEXPART

The transport of air masses was simulated with the Lagrangian particle dispersion
model FLEXPART (see http://zardoz.nilu.no/∼andreas/flextra+flexpart.html) (Stohl et
al., 1998; 2005). In the past, the model has mainly been used for studying long-range
air pollution transport from North America to Europe (e.g. Stohl et al., 2003; Huntrieser5

et al., 2005).
FLEXPART was run backward in time from small segments along the flight tracks.

The backward simulation method, described in more detail by Stohl et al. (2003) and
Seibert and Frank (2004), can be used to analyse transport pathways of air masses
from potential source regions to each of the Falcon flight segments. Whenever the10

aircraft changes its position by more than 0.2◦ or its altitude by 50 m below 300 m,
150 m below 1000 m, 200 m below 3000 m, or 400 m above 3000 m, a backward simu-
lation is initiated. Each simulation consists of 40 000 particles released in the volume
of air sampled and followed 20 days backward in time. A potential emission sensitivity
function is calculated which is proportional to the residence times of the particles in a15

particular 3D grid cell. Its value is a measure for the simulated mixing ratio at the recep-
tor that a source of unit strength in the respective grid cell would produce, disregarding
loss processes.

All FLEXPART simulations presented here are based on global operational data from
ECMWF with a horizontal resolution of 1◦, 60 vertical levels and a time resolution of20

3 h (analyses at 00:00, 06:00, 12:00, 18:00 UTC; 3-h forecasts at 03:00, 09:00, 15:00,
21:00 UTC). Wind fields with 0.5◦ resolution, covering the domain 90◦ W to 20◦ E and
40◦ S to 20◦ N, were nested into the global data in order to achieve higher resolution
over the region of main interest. FLEXPART treats advection and turbulent diffusion by
calculating the trajectories of a multitude of particles. Stochastic fluctuations, obtained25

by solving Langevin equations, are superimposed on the grid-scale winds to represent
transport by turbulent eddies, which are not resolved in the ECMWF data. To account
for sub-gridscale moist convective transport, the convection scheme by Emanuel and
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Živcovizc’-Rothman (1999) was implemented and tested by Forster et al. (2006).

3 Field experiment and observations in anvils

3.1 General trace gas, thunderstorm and lightning conditions over Brazil

The TROCCINOX operation area, in the SW-SE part of Brazil, is located within the
range of the South Atlantic convergence zone (SACZ), an important climatological fea-5

ture of the austral summer (Kodama, 1992; 1993; Satyamurty et al., 1998; Carvalho
et al., 2002; 2004). The SACZ is a convective frontal zone originating in the Amazon
basin and extending to southeastern Brazil and the subtropical Atlantic Ocean, which,
however, may exhibit large variability in its geographical extension. The SACZ sepa-
rates tropical and subtropical air masses originating from the Amazon basin and the10

Pacific Ocean, respectively (see Sect. 3.3.4). The formation of thunderstorms over
Brazil depends on local conditions (e.g. orographic initiation), the presence of frontal
zones such as the SACZ and the position of the Bolivian High (Pinto and Pinto, 2003;
Siqueira et al., 2005). Striking is the wide range of time and space scales of the con-
vective systems.15

The anvil outflow from Brazilian thunderstorms may be redistributed over large areas
(mainly between the equator and 20–30◦ S) as it circulates around the Bolivian High,
a persistent upper level anticyclonic flow over tropical South America (Jonquieres and
Marenco, 1998). In the vicinity of the Bolivian High, enhanced CO and NOy mixing
ratios have been observed over extended areas in the UT during several TROPOZ20

II and INCA flights (Jonquieres and Marenco, 1998; Baehr et al., 2003). In the wet
season, the enhancement in NOy is mainly attributed to production by lightning. Bio-
genic emissions from the rain forest in the Amazon basin are the main sources of CO
(80–110 nmol mol−1), which are transported upward by deep convection (Jonquieres
and Marenco, 1998; Gatti et al., 2001). CO is produced by photochemical oxidation25

of isoprene emitted from vegetation (Harriss et al., 1990) and by direct emissions from
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the forest (Jacob and Wofsy, 1990). In contrast, O3 and NO mixing ratios are low in the
BL in the wet season with ∼20 and ∼0.05 nmol mol−1, respectively (Jonquieres and
Marenco, 1998). The Amazon rain forest is an efficient sink for O3 and soil emissions
rates of NO are low (Jacob and Wofsy, 1990).

Depending on season, large mesoscale convective systems (MCS; Houze, 1993;5

2004) and mesoscale convective complexes (MCC; Maddox, 1980) occur rather fre-
quently in the SW part of Brazil (see global distribution of MCS and MCC in Houze,
2004, Fig. 4, and Laing and Fritsch, 1997, Fig. 3). These systems typically move from
northern Argentina and Paraguay to SW Brazil (Velasco and Fritsch, 1987). The MCS
originate in the foothills of the Andes Mountains (Laing and Fritsch, 1997; Nesbitt et al.,10

2000) and are most frequently observed in January. Only sparse information on MCS
over South America is available (Machado et al., 1998; Satyamurty et al., 1998), but
their severity is at least similar to MCS over the central United States (Brooks et al.,
2003). In these South American MCS, the highest flash rates globally occur (>1300
flashes per minute), as observed from space by the Lightning Imaging Sensor (LIS)15

(Cecil et al., 2005). In the subtropical Americas, the worldwide greatest spatial density
of storms with very high flash rates occurs (Zipser et al., 2006).

Brazil is a country with a high lightning activity (50–70 millions CG flashes per year)
and a high flash density (up to 10–15 flashes km−2 yr−1) comparable to Florida (Pinto
and Pinto, 2003). The majority of CG flashes over Brazil are negative flashes (Saba et20

al., 2006). Depending on different wind regimes, varying lightning activity has been ob-
served over the Amazon region. During easterly (dryer) wind regimes at 850–700 hPa,
more CG lightning activity within deeper and more intense thunderstorms were found
than during westerly (more humid) wind regimes (Carvalho et al., 2002; Petersen et
al., 2002).25

3.2 Brief experimental overview

An overview on the project and the flights performed within TROCCINOX, see http:
//www.pa.op.dlr.de/troccinox/, will be given in a forthcoming paper (Schumann et al.,
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in press, 2007). In 2004, the flights were carried out from Gaviao Peixoto (21.8◦ S,
48.4◦ W, ∼560 m a.s.l.). In 2005, the operation base was in Aracatuba (21.1◦ S, 50.4◦ W,
∼360 m a.s.l.). Most of the flights in southern Brazil (10◦ S to 28◦ S and 38◦ W to 55◦ W)
were performed in subtropical air masses south of the SACZ. A few flights were per-
formed in tropical air masses north of the SACZ, e.g. 4–5 February 2005.5

For classification of the thunderstorm environment as tropical or subtropical, a com-
bination of equivalent potential temperature (Θe), wind velocity and wind direction is
used as summarized below (illustrated in more detail in Sect. 3 and 4). The Θe tem-
perature is a suitable “tracer” of air masses, since it is conserved for both dry and
moist adiabatic processes during transport. Tropical air masses are warm and humid,10

and therefore characterised by higher Θe values. Thunderstorms were only defined as
“tropical” when the following criteria were fulfilled simultaneously: 1) SACZ located over
or to the south of the observation area, 2) Θe≥345 K at 850 hPa and ≥332 K at 500 hPa,
3) proximity of the Bolivian High connected to low wind velocities from northerly and
easterly directions in the UT, and no subtropical jet stream in the immediate vicinity.15

The criteria presented here for the separation of tropical and subtropical air masses
are only valid for the investigated TROCCINOX area and period.

For the computation of Θe for a water-saturation pseudo-adiabatic process, the for-
mula developed by Bolton (1980) was used for Falcon and ECMWF data:

Θe = TK

(
1000
p

)0.2854(1−0.28×10−3r)

×exp
[(

3.376
TL

− 0.00254
)
× r (1 + 0.81 × 10−3r)

]
(1)20

where r is the mixing ratio of water vapor (g kg−1), TK is the absolute temperature (K),
p is the pressure (hPa) and TL is the temperature at the lifting condensation level (K):

TL =
1

1
TK−55 − ln(U/100)

2840

+ 55 (2)

where U is the relative humidity (%).
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The general trace gas situation during the TROCCINOX flights is shown in Figs. 1a–
b. CO and NOx data from all local TROCCINOX flights in 2004 and 2005 (25 flights,
except the flight on 5 February 2005 for which no NOx data are available) have been
averaged over 250 m altitude bins (plotted in different colours). The mean profiles from
these single flights were averaged once more and the result (overall mean) is shown5

in white for both CO and NOx. Generally, the vertical CO and NOx profiles indicate
a rather clean BL (<2 km) over the TROCCINOX area (NOx: 0.10–0.25, CO: 90–110
nmol mol−1), since it is located more than 500 km away from larger cities like São
Paulo. Only during one period, 3–4 March 2004, the BL was more polluted (mean NOx

0.3–0.5 and CO 110–160 nmol mol−1), which may have been caused by vegetation10

fires in Paraguay and Uruguay at that time (see Sect. 3.3.2). Between 8 and 12 km
altitude, NOx mixing ratios are enhanced in the anvil outflow region, but on average
stay below 1 nmol mol−1. The pronounced C-shape of the CO profile and the broad
range of mixing ratios in the free troposphere (40–130 nmol mol−1) will be discussed in
more detail in Sect. 3.3.4. Minimum CO mixing ratios of 40 to 60 nmol mol−1 are found15

in the mid troposphere between 4 and 7 km, except in tropical air masses (4 February
2005) where CO is elevated (>70 nmol mol−1) and almost constant throughout the free
troposphere, indicating efficient vertical mixing.

3.3 Airborne measurements in anvils

In the next four subsections, measurements in the anvil outflow region during four20

TROCCINOX flights on 28 February and 7 March 2004, and on 4 and 18 February
2005 are presented. Further flights with anvil penetrations have been described by
Schumann et al. (2004), Chaboureau et al. (2006), and Mari et al. (2006). The flights
mentioned above were selected as representative for the different thunderstorm types
occurring during the field experiments. Furthermore, these flights featured a large25

number of anvil penetrations and exhibited pronounced signals in the trace gas mixing
ratios. In addition to nitrogen oxides, measurements of CO and O3 are discussed since
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they reflect the transport of polluted air masses from the BL into the anvil region and
the downwind photochemistry. The importance of MCS as a major source of elevated
NOx and O3 in the UT over the TROCCINOX area is illustrated in a case study. In
addition, the specific thermodynamic and chemical characteristics of thunderstorms
originating in subtropical and tropical air masses are highlighted in this section and will5

be discussed in further detail together with lightning and radar data in a forthcoming
paper (Huntrieser et al., 20071).

In the next four subsections, the four selected flights are described in more detail
from a set of Figs. (a–d). To avoid repetition in every subsection and too many cross
references, these figures (Figs. 2–5) are in general not mentioned specifically. The10

figure contents are briefly mentioned here. In Fig. 2 Falcon flight tracks and Falcon
wind velocity and direction are presented. The positions of the investigated thunder-
storms relative to the flight track are highlighted. In Fig. 3 GOES IR-images of clouds
are shown together with the Falcon flight track and the position of the SACZ (roughly
indicated along the leading line of the frontal cloud zone). In Fig. 4 and Fig. 5 hori-15

zontal distributions of the Θe temperature and wind at 850 hPa, and stream lines and
the wind velocity at 200 hPa, respectively, based on ECMWF analyses are presented,
which also indicate the position of the SACZ, the subtropical jet and the Bolivian High.

3.3.1 The Falcon flight on 28 February 2004

On 28 February 2004, especially high, average NOx enhancements (compared to the20

background) were observed during repeated penetrations of the anvil of an active,
isolated thunderstorm east of the operation centre (see also Table 2a). The SACZ was
located more than 500 km away to the north and east. The investigated thunderstorm
developed in a subtropical air mass with Θe temperatures between 334 and 344 K at
850 hPa, as calculated from Falcon data. This temperature range agrees well with25

the horizontal distribution of the Θe temperature at 850 hPa for this region, based on
ECMWF data. The Falcon measurements indicate horizontal wind velocities in the UT
between 20 and 30 m s−1 from the SW (∼220◦) influenced by the nearby subtropical jet,
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whereas the Bolivian High was located far away over NW Brazil and Bolivia. In addition,
the main wind direction at 850 hPa was from the SW. In this case, all environmental
parameters, see Table 2a, indicate that the air mass over the TROCCINOX observation
area was purely subtropical. In agreement, CO mixing ratios in the mid troposphere
were low (<50 nmol mol−1), as indicated in Fig. 1b.5

Only a few thunderstorms developed during the afternoon in the investigated area. A
section of the Falcon flight is shown in Fig. 6a, as a thunderstorm with 20–30 km diam-
eter was penetrated three times at different altitudes (10.7, 10.1 and 8.8 km) close to
the thunderstorm centre. Based on brightness temperature, the thunderstorm reached
an altitude of 11.5 km. Mean NOx mixing ratios for the three anvil penetrations were10

about 1.4, 1.6, and 1.0 nmol mol−1, respectively (see Table 2a and footnote1). The
high NO/NOy ratio of 0.7 to 0.8 indicates that NO was recently produced by lightning

(not shown). CO mixing ratios in the anvil outflow were enhanced by 10–20 nmol mol−1

in comparison to the background (∼50 nmol mol−1), due to upward transport from the
CO-richer BL (90–100 nmol mol−1). The contribution from the BL to the measured15

anvil-NOx was probably less than 0.2 nmol mol−1 (see Sect. 3.2, Figs. 1a–b). Thus, the
mean LNOx mixing ratio in the anvil outflow of this subtropical thunderstorm was esti-
mated to ∼1.1 nmol mol−1, contributing to more than 80% of total anvil-NOx. Reliable
ozone measurements are not available for the anvil penetrations for reasons discussed
before (see Sect. 2.1).20

3.3.2 The Falcon flight on 7 March 2004

On 7 March 2004, an exceptionally widespread NOx enhancement was sampled during
∼400 km of the flight (Table 2a). Note that this area was cloud-free during the measure-
ments. The objective of this flight was to sample aged anvil outflow from a large MCS
located 500–1000 km upwind over northern Argentina and Paraguay at the time of the25

flight (Fig. 7b). The convective system developed one day earlier over NE Argentina
and Uruguay (Fig. 7a). Forecasts from the ECHAM5/MESSy model of the horizon-
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tal LNOx distribution at 300 hPa on 7 March indicate an extended area with elevated
LNOx moving rapidly north-eastward between 00:00 UTC and 12:00 UTC (Figs. 8a–b).
Within these 12 h the area moved about 700 km, which corresponds to a velocity of
60 km h−1 and the maximum LNOx mixing ratio decreased from ∼2 to ∼1 nmol mol−1.
At the time of the Falcon flight (11:53:49–15:24:33 UTC) this area extended towards5

the south-western part of the flight track as indicated in Fig. 2b.
On this day, the SACZ was located to the north and east as in the previous case,

however rather close to the observation area (∼100 km). Calculated Θe temperatures
at 850 hPa from Falcon data varied between 338 and 352 K (compare to ECMWF anal-
yses). Elevated horizontal winds of 10 to 25 m s−1 from the SSW (∼200◦) measured by10

the Falcon dominated in the UT (compare to ECMWF analyses). At 850 hPa, the winds
came from the opposite direction (NNE), indicating advection of different air mass types
at different levels. The MCS developed further to the SW, along a transition zone be-
tween northerly and southerly low level winds. The Bolivian High was located far away
over NW Brazil and Bolivia. In this case, the meteorological parameters, see Table 2a,15

indicate that the air mass over the TROCCINOX observation area was predominantly
subtropical, except for the advection of tropical air masses with elevated Θe in lower
levels from the north. In agreement, CO mixing ratios in the mid troposphere were low
(40–50 nmol mol−1), as indicated in Fig. 1b.

Similar situations, with the observation area being located downstream of a large20

MCS, were observed on further days during TROCCINOX, e.g. 1 and 7–8 February
2005. Chemical measurements in the vicinity of South American MCS are rare (Ve-
lasco and Fritsch, 1987; Pickering et al., 1996; Smyth et al., 1996). Therefore, the
features of the flight of 7 March 2004 are presented here in more detail. The 1 and
8 February 2005 cases are discussed in more detail by Konopka et al. (2006), where25

signatures of a deep stratospheric intrusion into the TTL (tropical tropopause layer)
and troposphere-to-stratosphere transport along the subtropical jet were observed.

On 7 March 2004, enhanced NOx, CO and O3 mixing ratios in the range of 0.6–1.1,
110–140 and 60–70 nmol mol−1, respectively, were sampled over a wide distance of

2575

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/2561/2007/acpd-7-2561-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/2561/2007/acpd-7-2561-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD
7, 2561–2621, 2007

Lightning-produced
NOx in Brazilian
thunderstorms

H. Huntrieser et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

400 km (from 21◦ S to 25◦ S along 52◦ W), between 9 and 11 km altitude in the aged
anvil outflow (Fig. 2b and 6b). The rather low and constant NO/NOy ratio of 0.2 to 0.4
indicates that aged, well-mixed NO emissions were probed (not shown). The NOy mix-

ing ratio in the aged anvil outflow was high (∼2.0–2.5 nmol mol−1), indicating a strong
source. The average NOx mixing ratio in the aged MCS outflow of about 1 nmol mol−1

5

is close to the average value observed in fresh TROCCINOX thunderstorms (see Ta-
ble 2a), however in this case the BL-NOx contribution was likely larger.

Backward simulations with the Lagrangian particle dispersion model FLEXPART
from a flight section on 7 March (Fig. 7a) indicate that the observed NOx-rich air
mass was advected within ∼1 day from a MCS located over the Buenos Aires area10

on 6 March. Pollution from this urban area was probably uplifted by the system,
which partly might explain the elevated CO and NOx mixing ratios observed. In ad-
dition, emissions from fires might have been uplifted, since just ahead of the MCS
widespread vegetation fires over Paraguay and Uruguay were observed in the time
period 2-7 March 2004 from space by MODIS (Moderate Resolution Imaging Spec-15

troradiometer) (Fig. 9). For general information on the MODIS Rapid Response fire
locations see, e.g. Justice et al. (2002), Giglio et al. (2003), Davies et al. (2004), and
http:www.//maps.geog.umd.edu/.

For the same region and period, satellite observations of CO at 850 hPa from the
MOPITT (Measurements Of Pollution In The Troposphere) instrument on 2 March show20

a large area with enhanced CO in the BL (Fig. 10a) and an elevated CO area in 150
hPa further to the north (Fig. 10b). For general information on MOPITT see, e.g. Drum-
mond and Mand (1996), Edwards et al. (1999), and http://www.eos.ucar.edu/mopitt/.
In addition, tropospheric NO2 from the SCIAMACHY (SCanning Imaging Absorp-
tion spectroMeter for Atmospheric CHartographY) instrument on 3 March show a25

large area with enhanced NO2 over Paraguay (Fig. 11a), presumably mainly from
biomass burning (compare Fig. 10a and Fig. 11a to Fig. 9). For general informa-
tion on SCIAMACHY see, e.g. Burrows et al. (1995), Bowensmann et al. (1999), and
http://www.iup.physik.uni-bremen.de/sciamachy/. For pixels with less than 20% cloud
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cover, a clear sky air mass factor was used as described in (Richter et al., 2005). For
scenes with a larger cloud fraction, an air mass factor appropriate for a NO2 layer above
a thick cloud was used (Hild et al., 2002). No attempt was made to correct for mixed
pixels or for NO2 below the cloud. Therefore, the values obtained are representative
for NO2 above the clouds and in the cloud top, where the measurement sensitivity is5

large but do not include boundary layer NO2 in cloudy situations.
In Fig. 11b the extension of enhanced NO2 in the vicinity of the MCS at 13:30 UTC

on 7 March roughly agrees with the extension of LNOx at 300 hPa in the ECHAM fore-
cast for 12:00 UTC (Fig. 8b). The extension in the N-S direction is about 800 km and in
the E-W direction about 400 km. The Falcon measurements indicate a depth of the en-10

hancement of ∼2 km. Downwind of the MCS, NOx mixing ratios between 0.6–1.1 nmol
mol−1 were measured by the Falcon aircraft which are in the same range as predicted
in the LNOx forecast, ∼1 nmol mol−1 (Fig. 8b). An estimate, based on the satellite ob-
served NO2 distribution in Fig. 11b (NO2-column: 2.5×1015 molec. cm−2) and an anvil
outflow depth of 2 km, give NO2 mixing ratios in the range of 1.5 nmol mol−1. This value15

is rather high, however the overall column depth of the outflow is probably larger than
2 km, which would decrease the estimated value.

Besides upward transport of emissions from biomass burning and urban pollution,
presumably lightning in the MCS produced additional NO. Observations of an elevated
number of lightning events in the MCS on 6 and 7 March are shown in Figs. 12a–20

b, as registered optically by the LIS instrument aboard the TRMM (Tropical Rainfall
Measurement Mission) satellite (compare to cloud distribution in Fig. 7a–b). These
lightning events within a certain range and time can be grouped to flashes (however
not shown here). For general information on LIS see, e.g. Christian et al. (1999),
Thomas et al., (2000), Boccippio et al. (2002) and http://thunder.msfc.nasa.gov/lis/.25

On 6 March in the afternoon, lightning was centred in the MCS over Uruguay and its
surroundings to the NW. On 7 March in the afternoon, the area with enhanced lightning
activity in the MCS had moved to the north and was located west of Paraguay.

From these observations, we conclude that emissions from both biomass burning,
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lightning, and urban pollution presumably contributed to the elevated NOx and CO
mixing ratios observed in the MCS outflow. In addition, O3 was elevated in the outflow,
but no data are available to determine whether it was produced already at the ground or
produced from precursors after transport to the UT. Furthermore, in Sect. 5 a possible
influence from the O3-rich upper troposphere – lower stratosphere (UTLS) region is5

discussed.
Only in this aged outflow from MCS, a pronounced O3 enhancement was observed

during TROCCINOX. Forward trajectories for six subsequent days were calculated to
follow the O3-rich air mass measured on 7 March 2004. The air mass was transported
to the north and then to the west, and circulated further westwards driven by the Boli-10

vian High, where it slowly ascended to 150–200 hPa in a region between 20◦ S to 5◦ S
and 80◦ W to 65◦ W (Fig. 13). Because of the presence of the Bolivian High, trans-
port of the MCS outflow towards the equator and the subsequent circulation around
the Bolivian High is probably a common feature over Brazil. Therefore, we suggest
that emissions in the MCS outflow from distant urban pollution, lightning and biomass15

burning events may have, in addition to local convectively uplifted sources emitted from
the Amazon basin, an important impact on the tropical NOx, CO and O3 budget in and
around the Bolivian High.

3.3.3 The Falcon flight on 4 February 2005

On 4 February 2005, tropical air masses with elevated Θe penetrated to the south and20

reached the TROCCINOX observation area, where many thunderstorms developed in
the late afternoon and evening. The SACZ was located right over the area and the
centre of the Bolivian High was located closer than usually, to the west over Paraguay.
Calculated Θe temperatures at 850 hPa from Falcon data were in the range of 347–
353 K, indicating tropical air masses (compare to ECMWF analyses). Weak winds25

of 5 to 10 m s−1 from the east (northern-eastern branch of the Bolivian High) and
the southwest (southern-eastern branch of the Bolivian High) dominated in the UT
according to Falcon measurements. The subtropical jet was displaced by the Bolivian
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High and located further to the south. At 850 hPa, the main wind direction in the
northern part of the observation area was from the NE and in the southern part from
the SE, indicating low-level convergence. The horizontal wind velocity was almost
constant with altitude and weak, which seems to be typical for tropical air masses in
the vicinity of the Bolivian High (Fig. 5c) and Fig. 14, here data from a second flight in5

tropical air masses, 5 February 2004, was also included). Both the high Θe values of
more than 345 K at 850 hPa and the weak winds in the UT from northerly and easterly
directions indicate a difference between these tropical air masses and the subtropical
air masses described before (Table 2a). CO mixing ratios in the mid troposphere were
elevated to 80–90 nmol mol−1, as indicated in Fig. 1b, supporting the origin of the air10

masses from the tropical region in the north.
Widespread tropical deep convection developed in the afternoon after 17:00 UTC

(Fig. 3c, 15a). Most systems were short-lived (∼1 h) due to weak horizontal winds and
little shear, and they were rather narrow (20–40 km). Because of the rapid pulse-like
development of this type of very deep convection, it was difficult to direct the Falcon15

aircraft. In addition, due to the widespread occurrence of deep convection, visibility
was poor during the flight. The Falcon was directed to different developing thunder-
clouds from the operation centre, but had to fly around intense convection resulting in
a zigzag pattern at altitudes between 10.1 and 10.7 km and repeated penetrations of
single tropical thunderstorms were almost not possible. However, single penetrations20

of these tropical thunderstorms succeeded several times and three of the penetrations
(labelled 1a, 5a and 2b in Fig. 2c, 6c) were selected to be presented in more detail in
a forthcoming paper (Huntrieser et al., 20071).

In Fig. 6c the distributions of CO, O3, and NOx mixing ratios along the Falcon track
on 4 February 2005 are shown. Two periods with thunderstorm penetrations are visible25

at 66 000–68 000 s (=18:20–18:53 UTC) and at 69 500–70 000 s (=19:18–19:27 UTC).
Mean NOx mixing ratios during these turbulent penetrations in vicinity of the thunder-
storm lightning centre were in the range of 0.6–1.0 nmol mol−1, similar to the pre-
vious observations (Table 2a), however background NOx mixing ratios were slightly
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higher than in the subtropical air masses. Narrow, high NO peaks of up to 8 nmol
mol−1indicate recent production by free tropospheric lightning. Though, we cannot ex-
clude that such isolated peaks are measurement artefacts caused by discharges on
the aircraft fuselage or inlets as suggested by Ridley et al. (2006). In this tropical air
masses, background CO mixing ratios in the UT were as high as in the BL (almost 1205

nmol mol−1). Therefore, during the anvil penetrations there was no clear enhancement
in CO mixing ratios above the background. In comparison, O3 mixing ratios in the free
tropospheric background were low (∼40 nmol mol−1).

3.3.4 The Falcon flight on 18 February 2005

On 18 February 2005, the SACZ touched the TROCCINOX area in the north and a10

flight was performed to the north-east. Calculated Θe temperatures at 850 hPa from
Falcon data reached values between 342 and 352 K (compare to ECMWF analyses).
The Bolivian High was located far to the northwest over Brazil, and a branch of the
subtropical jet was in vicinity to the east. Strong winds from WNW of 15–25 m s−1

were observed in the UT by the Falcon aircraft (Fig. 14). At 850 hPa, the main wind15

direction was from the SW. In this case, the observations indicate that the air mass over
the TROCCINOX observation area was predominantly subtropical (Table 2a), except
for the presence of tropical air masses with elevated Θe at 850 hPa in some areas.
In agreement, CO mixing ratios in the mid troposphere were rather low (50–60 nmol
mol−1), as indicated in Fig. 1b.20

In the northern part of the TROCCINOX observation area (20◦ S, 48◦ W) a long-lived
thunderstorm system developed in the afternoon (Fig. 15b). The system was long-lived
probably because of the pronounced wind shear (Fig. 14). The system, with a diameter
of 30 to 40 km, was penetrated six times by the Falcon aircraft at the altitudes 10.7,
10.1, and 9.4 km (Fig. 2d). On each level, one penetration ∼10–30 km downwind from25

the thunderstorm lightning centre and another penetration ∼30 km further downwind
were performed. In Fig. 15a–b the cloud top brightness temperature indicates that the
height of this subtropical thunderstorm system on 18 February (∼13 km, 210–215 K)
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was lower in comparison to the investigated tropical thunderstorms on 4 February 2005
(∼16 km, 195–200 K).

During the 18 February 2005 flight, CO mixing ratios showed large differences be-
tween the mid and upper troposphere (50 and 110 nmol mol−1, respectively), as shown
in Fig. 1b and 6d. FLEXPART backward simulations over 20 days indicate a distinct5

difference in the air mass origins (Fig. 16a–b). The air masses with low CO mixing
ratios (and low H2O, shown in Sect. 4) were rapidly transported from the subtropical
mid Pacific. The air masses with high CO (and high H2O) mixing ratios had a tropical
origin in the Amazon basin and circulated around the western side of the Bolivian High.
This was a common situation observed on many TROCCINOX flights and explains the10

wide separation between the vertical CO profiles presented in Fig. 1b. Conversely, no
strong differences in the O3 mixing ratios were observed between the Pacific and Ama-
zon basin air masses (Fig. 6d). Background O3 mixing ratios for both air mass types
were low and varied between 20 and 40 nmol mol−1.

During the repeated thunderstorm penetrations, NOx mixing ratios were distinctly15

elevated in the anvil outflow with means between 0.2 and 0.8 nmol mol−1, however less
than in the previous cases discussed (Table 2a). CO mixing ratios slightly decreased to
95–100 nmol mol−1 compared to the ambient UT with 105–110 nmol mol−1, indicating
upward transport from the upper part of the BL with lower CO mixing ratios in the range
of 80–100 nmol mol−1.20

4 Vertical distribution of temperature and humidity in tropical and subtropical
air masses

Further differences between tropical and subtropical air masses are also prominent
from the meteorological parameters listed in Table 2b. The flight from 7 March 2004 is
not included here, since no representative initial conditions for the MCS over northern25

Argentina are available. All input parameters for the calculation of the potential tem-
perature (Θ), and of Θe and TL, as described in Sect. 3.2, (Eqs. 1 and 2), are listed in
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Table 2b. The values represent averages for the lowest 100 m layer.
In the tropical air masses on 4 and 5 February 2005, the temperature was lower

but the relative humidity and H2O mixing ratio were higher than in the subtropical air
masses on 28 February 2004 and 18 February 2005. As a result, the Θe and TL
temperatures were mostly higher. The lifting condensation level was reached earlier5

at ∼1–1.5 km, in comparison to subtropical air masses at ∼2–3 km, which may influ-
ence the vigour of convection and the occurrence of lightning according to Mushtak et
al. (2005) (see further discussions in a forthcoming paper, Huntrieser et al., 20071).
The pressure altitude of the 0◦C level was within the same range. These findings from
a few tropical cases (Table 2b) indicate, that more cloud droplets may fall out of tropical10

deep convection, because they condensate at a lower cloud base and therefore grow
to larger sizes before they reach the freezing level. As a result, less supercooled liquid
water is available, which is essential for the charge separation (Williams et al., 2002;
Cecil et al., 2005). It has been observed that the precipitation in deep convection over
the tropical Brazil (Amazon) is more of a maritime type (so-called “warm rain” without15

significant ice scattering signatures) (Williams et al., 2002).
Further differences between tropical and subtropical air masses are also prominent

in the vertical temperature and water vapour profiles, as shown in Fig. 17a–b. In pro-
nounced subtropical air masses on 28 February 2004, temperatures measured in the
lowest 1 km are similar to those in the tropical air masses on 4 February 2005. How-20

ever, more moisture is available in the tropical air masses, which supports the develop-
ment of clouds with lower cloud base. Furthermore, the temperature lapse rate in the
lowest 3 km is lower (almost moist adiabatic) in tropical air masses than in subtropical
air masses. The elevated H2O mixing ratios throughout the troposphere indicate a well
mixed tropical air mass. In contrast, on 18 February 2005 a dry layer originating from25

the subtropical mid Pacific is prominent in the mid troposphere.
In addition, vertical profiles of Θ and Θe temperatures are shown in Fig. 17c–d, re-

spectively. The Θ temperature in the BL is similar on 28 February 2004 (subtropical air
mass case) as on 4 February 2005 (tropical air mass case). However, above the BL
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this temperature increases more strongly with altitude in the tropical than in the sub-
tropical air mass. In addition, the vertical distribution of the Θe temperature indicates
distinct differences between tropical and subtropical air masses. In the subtropical air
mass, the Θe temperature is about 10 to 20 K lower than in the tropical air mass. The
third case presented in Fig. 17c–d, 18 February 2005, is of mixed nature. The SACZ is5

located close to the observation area, which is also reflected in the elevated Θe tem-
peratures in the BL and UT. However, the low Θe temperature of the mid troposphere
still indicates the influence of cool and dry subtropical air masses. For this reason, the
Θe temperature at 500 hPa was used as an additional criterion to separate tropical and
subtropical air masses (see Sect. 3.2), which is in accordance with previous findings10

by Pickering et al. (1993) during ABLE 2A (dry season) and ABLE 2B (wet season)
over the Amazon basin in Brazil (see Fig. 10 in their paper). Pickering et al. (1993) also
pointed out, that this cool and dry layer in the mid troposphere is important to retain
intense thunderstorms for several hours. In addition, the vertical Θe profiles in Fig. 17d
show similar Θe temperature in the BL as in the UT. In agreement with Highwood and15

Hoskins (1998) and Folkins et al. (2000), this indicates efficient vertical cloud formation
and transport.

5 Trace gas correlations in tropical and subtropical air masses

The different air mass types which were penetrated by the Falcon aircraft are reflected
in different trace correlations, see Fig. 18a–c. Here only the data for flights with pro-20

nounced signatures in the trace gas correlations are shown (narrow correlations and/or
distinct air mass signatures) to avoid too much scatter.

Tropical air masses typically originated from the continent, the Amazon basin, and
were frequently trapped within or at the edge of the Bolivian High (Fig. 16b). Sub-
tropical air masses typically originated far away from the Pacific Ocean (Fig. 16a). As25

discussed before, both of these air mass types were characterized by low O3 mixing
ratios of 20 to 40 nmol mol−1, see Fig. 18a. In the Pacific air mass, O3 and CO was
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positively correlated and CO mixing ratios were low in the range of 40–60 nmol mol−1.
In comparison, the air mass originating from the Amazon basin contained elevated CO
in the range of 80–110 nmol mol−1, and O3 and CO was negatively correlated.

During ascent and descent in the BL, a positive O3-CO correlation, probably due to
photochemical O3 production, was observed in some cases in subtropical air masses,5

with O3 and CO mixing ratios reaching up to 50 and 140 nmol mol−1, respectively
(Fig. 18a). However, in the low-level tropical air mass on 7 March 2004 a negative
correlation was observed in the BL, indicating O3 destruction, probably due to the
high humidity. Air masses from the UTLS region were encountered on 28 February
2004, characterized by elevated O3 (80–100 nmol mol−1) and low CO mixing ratios10

(40–50 nmol mol−1), and a negative correlation (Fig. 18a).
In the MCS outflow on 7 March 2004, both CO and O3 mixing ratios were distinctly

enhanced up to 140 and 90 nmol mol−1, respectively, as shown in Fig. 18a. However,
no distinct positive correlation was observed. Instead, the O3 mixing ratio was rather
constant for CO mixing ratios above 90 nmol mol−1. The elevated O3 mixing ratios15

suggest that photochemical O3 production has taken place. However, because of the
missing correlation with CO (above 90 nmol mol−1) we conceive that the main ozone
precursors were not from anthropogenic or biomass burning sources. Instead, LNOx
may have enhanced the rate of produced O3, which is a source not correlated with
CO. For CO mixing ratios below 90 nmol mol−1, the data in Fig. 18a scatter along a20

mixing line between the MCS outflow data points and the air mass from the UTLS
region, indicating mixing between these air masses. In addition, elevated O3 and low
CO mixing ratios along the flight track on 7 March 2004 in Fig. 6b (∼47 000 s) indicate
that air masses from the UTLS region were penetrated just ahead of the MCS outflow
to the north.25

Therefore, the origin of the elevated O3 observed in the vicinity of the MCS outflow
was probably threefold: 1) very deep convection in the MCS probably penetrated into
the UTLS region and entrained O3-rich air masses, 2) polluted air masses from the
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BL with elevated CO (and further ozone precursors), as discussed in Sect. 3.3.2, were
ingested by the MCS, causing suitable conditions for O3 formation, and 3) LNOx in-
creased the rate of produced O3. It was however not possible to exactly determine
the contribution of photochemically produced O3 versus UTLS O3, since no measure-
ments are available in the BL source region to our knowledge. Measurements ahead of5

the MCS in the BL, along 21–22◦ S, indicate that O3 was low with 20 to 30 nmol mol−1,
whereas O3 measured in the aged MCS outflow exceeds 50 nmol mol−1. In both cases,
similar CO mixing ratios of up to 140 nmol mol−1 were observed, but it is not clear how
representative these BL-measurements, ahead of the MCS, are in comparison to the
BL around the MCS at 30◦ S. The correlations in Fig. 18a indicate that photochemical10

production was probably very efficient and enhanced O3 to 60–70 nmol mol−1. In ad-
dition, mixing with UTLS air masses, as indicated in the correlation plot, enhanced O3

further to 70–90 nmol mol−1.
Both the air mass originating from the Pacific and from the Amazon basin contained

little NOy (<0.7 nmol mol−1), see Fig. 18b–c. Within the active thunderstorm system15

of 18 February 2005, elevated NOy mixing ratios up to 8 nmol mol−1 were observed
several times, as discussed in Sect. 3.3.4. The elevated NOy was not correlated with
CO, indicating that the NOy likely originated from lightning (Fig. 18b). A slightly positive
NOy-CO correlation was observed during a descent/ascent in the polluted BL on 7
March 2004. In the MCS outflow on the same day, a slightly positive (negative) NOy-20

CO correlation at the lower (upper) boundary was observed, indicating the mixture of a
polluted air mass with an air mass from the UTLS region. For similar CO mixing ratios
(>90 nmol mol−1), NOy mixing ratios (2–3 nmol mol−1) were higher in the MCS outflow

than observed ahead of the MCS in the BL (1–1.5 nmol mol−1), which may partly be
attributed to LNOx.25

Finally, the last correlation in Fig. 18c indicates that both O3 and NOy were especially
elevated in the MCS outflow, compared to other air masses penetrated by the Falcon
aircraft. Due to the wide horizontal (∼400 km in north-south direction) and vertical
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(∼2 km) extension of the MCS outflow, as observed by the Falcon aircraft, it is clear that
these systems have a large impact on the upper tropospheric trace gas composition
over Brazil.

6 Summary and conclusions

During the TROCCINOX field experiments in Brazil, in the wet seasons of 2004 and5

2005, NO, NOy, CO and O3 mixing ratios and meteorological parameters were mea-
sured in and around thunderstorms in large detail with the DLR Falcon aircraft. The
paper present results from four operation days with successful thunderstorm penetra-
tions. A generalisation of the results is restricted due to the small number of cases
studied.10

Backward simulations with the FLEXPART model were used to determine the origin
of the encountered air masses, i.e. subtropical air masses mainly originating from the
Pacific Ocean and tropical air masses originating from the Amazon basin. In both
types of air masses, O3 mixing ratios were low, between 20 and 40 nmol mol−1. In the
subtropical air masses, CO mixing ratios were in addition low, between 40 and 60 nmol15

mol−1, and positively correlated with O3. In the tropical air masses, CO mixing ratios
were enhanced, between 80 and 110 nmol mol−1, and negatively correlated with O3,
indicating O3 loss processes (Jacob and Wofsy, 1990).

Depending on the position of the South Atlantic convergence zone (SACZ), different
types of thunderstorms developed in the TROCCINOX area. On the majority of the20

days, the SACZ was located to the north and east, and very few subtropical thunder-
storms developed in the vicinity of the subtropical jet. Deep convection of tropical type
developed only on a few days during the TROCCINOX field phase in the observation
area (e.g. 4–5 February 2005). The SACZ was then located right over the area or
to the south. In these tropical air masses, particularly narrow (∼20–40 km), tall and25

short-lived thunderstorms with an especially low cloud base developed. The Θe tem-
peratures at 850 and 500 hPa were elevated in these tropical air masses with ≥345 K
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and ≥332 K, respectively. In addition, the horizontal wind velocity in the UT was es-
pecially low (5–10 m s−1), from easterly or northerly directions and no increase with
altitude was observed throughout the troposphere, due to the presence of the Bolivian
High. It was found, that CO mixing ratios were elevated throughout the troposphere in
tropical air masses (>70 nmol mol−1), due to widespread deep convection and efficient5

vertical mixing.
Several times during the observation period, large, persistent mesoscale convec-

tive systems (MCSs) developed over northern Argentina, Uruguay and Paraguay. The
aged anvil outflow from these MCSs was occasionally advected into the TROCCINOX
area. For the first time in the wet season, detailed airborne measurements in the out-10

flow of one of these MCS succeeded, which are know to have the highest flash rates
globally (Cecil et al., 2005). On 7 March 2004, distinctly enhanced NOx, CO and O3

mixing ratios in the range of 0.6–1.1, 110–140 and 60–70 nmol mol−1, respectively,
were observed in the aged outflow from a MCS that developed ∼1 day earlier. These
NOx mixing ratios are as high as measured in the vicinity of the active thunderstorms.15

The MCS outflow observed by the aircraft covered a large area of about 400 km in the
horizontal N-S direction and about 2 km in the vertical. However, LNOx model forecasts
and satellite observations of NO2 indicate that the total extension in the N-S direction
was about 800 km and in the E-W direction about 400 km. NO mixing ratios in the same
range and even higher (∼1–4 nmol mol−1) have also been measured in large-scale NO20

plumes (partly from MCS) in the tropopause region over and downwind of the United
States and Canada during past campaigns, e.g. NOXAR, SONEX and STREAM, and
their implication for the ozone production has occasionally been pointed out (Brunner
et al., 1998; Crawford et al., 2000; Jeker et al., 2000; Lange et al., 2001; Cooper et al.,
2006).25

The analyses of the TROCCINOX data indicate that MCS in the wet season con-
tribute distinctly to the upper tropospheric CO, NOy and O3 budget over the investi-
gated area over Brazil, which has never been observed in such detail before. High
O3 levels were observed during TROCCINOX only in the aged outflow of such MCSs.
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It has been suggested that the transport of O3 precursors from South America, e.g.
biomass burning products uplifted by deep convection and NO produced by lightning,
may contribute to the tropospheric O3 maximum observed in the tropical South Atlantic
basin (Pickering et al., 1996; Thompson et al., 1996; Weller et al., 1996; Edwards et
al., 2003; Jenkins and Ryu, 2004; Sauvage et al., 2006). However, for our investigated5

MCS case the forward trajectories indicate that the O3-rich air mass was transported
into the outer region of the Bolivian High. Our observations give no indications that the
O3-rich air mass moved out over the Atlantic and influenced the South Atlantic ozone
maximum.

Furthermore, it has been suggested by e.g. Thompson et al. (2000) and Ryu and10

Jenkins (2005) that the so-called “Atlantic ozone paradox”, which is observed in the wet
season (December to February), is partly influenced by the production of O3 precursors
from lightning over South America. Here we showed that O3 was indeed distinctly
enhanced in the MCS outflow, however possibly only partly due to photocatalytic O3
production by NOx from lightning and from the polluted BL, and partly due to mixing15

with O3-rich air masses from the UTLS region. The importance of the latter source
has not been pointed out clearly in most references listed above, though Thompson
et al. (2000) mentioned it as a possible source. However, this transport from the
UTLS region in the vicinity of MCS has also been identified from other TROCCINOX
data and model simulations (cases 1 and 8 February 2005) by Konopka et al. (2006).20

In addition, observations at northern midlatitudes show that stratosphere-troposphere
exchange may occur in the vicinity of large MCS (Poulida et al., 1996).

Furthermore, we find that the outflow from South American MCSs may contribute
considerably to the elevated CO mixing ratios observed in the vicinity of the Bolivian
High, at least occasionally. Earlier studies suggested biogenic emissions in the BL over25

the Amazon basin (uplifted by deep convection) and long-range transport of CO-rich air
masses from Africa (caused by biomass burning emissions) as the main sources of CO
in the region of the Bolivian High in the wet season (Jonquieres and Marenco, 1998;
Baehr et al., 2003). Here we find that CO emissions from man-made vegetation fires

2588

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/2561/2007/acpd-7-2561-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/2561/2007/acpd-7-2561-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD
7, 2561–2621, 2007

Lightning-produced
NOx in Brazilian
thunderstorms

H. Huntrieser et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

(end of harvest) over northern Argentina and Paraguay, and presumably anthropogenic
emissions from the area around Buenos Aires may contribute considerably.

Generally during the penetrations of TROCCINOX thunderstorms, NOx mixing ratios
were enhanced in the anvil outflow region between 8 and 12.5 km (maximum flight alti-
tude). The mean anvil-NOx mixing ratios varied between 0.2 and 1.6 nmol mol−1. NOx5

in the anvil outflow from a subtropical thunderstorm was mainly attributed to lightning-
produced NOx (>80%) with minor contribution from the boundary layer (BL). Only on
a few days, as in the aged MCS outflow on 7 March 2004, the contribution from the
BL was significant, likely due to emissions from biomass burning and/or anthropogenic
emission from larger urban areas (e.g. Buenos Aires).10

These NOx mixing ratios in Brazilian thunderstorms can be compared to our previous
observations over Central Europe (Huntrieser et al., 1998; 2002). Over both regions,
average lightning-produced NOx (LNOx) mixing ratios during anvil penetrations at 8–
12.5 km were in the range of ∼1 nmol mol−1. Significantly higher average anvil-NO
mixing ratios in the range of 1–4 nmol mol−1 were found during the CRYSTAL-FACE15

experiment in 2002 over Florida; these values were in fact higher than observed in
most previous field experiments targeting thunderstorms (Ridley et al., 2004). One ex-
planation for these higher NO mixing ratios (corresponds to about 2–6 nmol mol−1 NOx)
could be that CRYSTAL-FACE anvils were penetrated at higher altitudes between 12
and 16 km, where LNOx maximizes in the anvil outflow. The investigated tropical deep20

convection over Brazil on 4 February 2005 also reached altitudes up to 16 km. How-
ever, the Falcon aircraft only investigated parts of the thunderstorms extending up to
10.7 km. Therefore, the main outflow region where LNOx maximizes vertically in the
investigated tropical thunderstorms was probably not probed by the Falcon aircraft. In
agreement, the mean NOx mixing ratios measured during the penetrations of the dif-25

ferent tropical thunderstorm cells (∼0.6–1.0 nmol mol−1) have the tendency to increase
with altitude, with the highest mixing ratios in the upper penetration level at 10.7 km
(Table 2a). In contrast, during the penetrations of the subtropical thunderstorms on
28 February 2004 and 18 February 2005, the outflow altitude where LNOx maximizes
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was very likely probed. According to Table 2a, the highest NOx mixing ratios where in
both cases observed in the mid penetration level (10.1 km). The repeated penetration
of the latter thunderstorm (dissipating stage), indicate decreasing NOx mixing ratios
further downwind in the outflow. In this case, the measurements where performed fur-
ther downwind from the lightning centre (∼10–60 km), which might explain the overall5

lower NOx mixing ratios (∼0.2–0.8 nmol mol−1), due to increased mixing with ambient
air. The highest mean NOx mixing ratios (∼1.0–1.6 nmol mol−1) were measured in the
subtropical thunderstorm on 28 February 2004 (mature stage), where the region and
altitude where LNOx maximizes in the anvil outflow was most likely probed. However,
the amount of LNOx measured in the anvil outflow does not only depend on the position10

where and when the anvil was probed. Also, the number and type of lightning flashes
affect the amount of LNOx produced in the thunderstorm, which will be discussed in
more detail in a forthcoming paper (Huntrieser et al., 20071).
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Table 1. Selected Falcon instrumentation.

Species Technique Averaging Accuracy, Precision, Reference
Time, s % %

NO chemiluminescence 1 10 3 Schlager et al. (1997), Baehr et al. (2003)
NOy chemiluminescence 1 15 5 Schlager et al. (1997), Baehr et al. (2003)

plus Au-converter Huntrieser et al. (2005)
O3 UV absorption 5 5 1 Baehr et al. (2003), Huntrieser et al. (2005)
CO VUV fluorescence 1 10 3 Gerbig et al. (1999), Baehr et al. (2003),

Huntrieser et al. (2005)
J(NO2) filter radiometer 1 6 0.0001, s−1 Volz-Thomas et al. (1996), Huntrieser et

al. (2002)
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Table 2. (a) Comparison of meteorological parameters and trace gas mixing ratios for selected
flights in tropical and subtropical air masses.

Falcon
Flight/Tropical
(t) or Sub-
tropical
(s)

Cloud Top
Height, km
(brightness
temper-
ature,
K)

Pressure Alti-
tude of Pene-
tration, km

Mean
Anvil-NOx
Mixing
Ratio1,
nmol mol−1

Anvil-NOx

Extension2,
km

CO Mixing Ra-
tio at 500 hPa,
nmol mol−1

Equivalent
Potential
Tempera-
ture Θe at
850 hPa, K

South
Atlantic
Conver-
gence
Zone
(SACZ)

Subtropical
Jet

Bolivian
High

Wind Velocity
(Direction) in
the UT, m s−1

Wind Direction
at 850 hPa

280 204(s) ∼11.5
(220–225)

10.7
10.1
8.8

1.4
1.6
1.0

20–30 <50 334–344 >500 km
away
(N/E)

close-by
(SW)

NW Brazil/
Bolivia

20–30(SW) SW

070304(s)
aged
MCS3

∼13
(210–215)

9–11 0.86±0.214 400 40–50 338–352 ∼100 km
away
(N/E)

N-
Argentina

NW
Brazil/Bolivia

10–25
(SSW)

NNE

040205 (t) ∼16
(195–200)

10.6
10.7
10.1

0.87
1.03
0.58

20–40 80–90 347–353 in situ Uruguay Paraguay 5–10
(E/SW)

NE/SE

180 205b
(s)

∼13
(210–215)

10.7
10.1
9.4

0.29/0.535

0.32/0.765

0.24/0.505

30–40 50–60 342–352 close-by
(N)

close-by
(SE)

NW Brazil 15–25
(WNW)

SW

1The mean anvil-NOx mixing ratio is the mean of all NOx-values measured between the en-
trance and exit of the anvil at a given pressure altitude.
2The anvil-NOx extension is the extension in flight direction, between anvil entrance and exit,
perpendicular to the anvil outflow direction.
3Mesoscale Convective System.
4Due to the large extension of the anvil-NOx enhancement from the MCS, the standard devia-
tion is also given.
5Right value estimated from penetration close to the thunderstorm centre and left value esti-
mated from penetration ∼30 km further downwind.
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Table 2. (b) Comparison of meteorological parameters for selected flights in tropical and sub-
tropical air masses (mean values for the lowest 100 m layer).

Flight Tropical (t) or
Subtropical (s) /
Take off (TO) or
Landing (L)

Pressure
p, hPa

Temperature
TK , K

Relative
Humidity
U ,%

Mixing Ratio r ,
g kg−1

Potential
Temperature
Θ, K

Equivalent
Potential
Temperature
Θe, K

Temperature
at the Lifting
Condensation
Level (LCL)
TL, K

Pressure Alti-
tude for LCL,
km

Pressure Alti-
tude for 0◦C,
km

280 204 s/TO (0.6–0.7 km) 936 301 48 12.2 307 344 286 2.2 4.2–4.4
040 205 t/TO (0.4–0.5 km) 963 299 86 19.5 302 360 296 0.8 4.7–4.8
040205 t/L (0.4–0.5 km) 960 299 66 14.9 303 347 291 1.3 4.7–4.8
050205 t/TO (0.4–0.5 km) 963 303 59 16.3 306 356 292 1.6 4.7–4.8
180205a s/TO (0.4–0.5 km) 960 307 37 13.0 311 351 287 2.5 4.7–4.8
180205a s/L (0.4–0.5 km) 958 307 33 11.9 311 348 284 2.8 4.7–4.8
180205b s/TO (0.4–0.5 km) 960 308 37 13.5 312 353 287 2.6 4.9–5.2
180205b s/L (0.4–0.5 km) 959 306 38 12.8 310 349 286 2.5 4.9–5.2
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Fig. 1. Mean vertical NOx (a) and CO (b) profiles derived from measurements with the Fal-
con aircraft. Mean values for every 250 m altitude bin are given for all TROCCINOX flights
(dd:mm:yy) in colour, except for the flight on 5 February 2005 (no NOx data available). The
white lines are the mean of all coloured flight profiles in each figure.
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Fig. 2. Falcon flight tracks on (a) 28 February 2004 at 17:08–20:47 UTC, (b) 7 March 2004
at 11:53–15:24 UTC, (c) 4 February 2005 at 17:46–20:11 UTC, and (d) 18 February 2005
at 20:09–21:49 UTC with pressure height (coloured from blue to red with increasing height),
wind direction (vane) and velocity (in knots, short 5, long 10, triangle 50). The areas with anvil
penetrations are marked with circles and labelled (see also Fig. 6). The size of the domain in
E–W and N–S direction is in (a) ∼450×300 km2, (b) ∼1200×750 km2, (c)∼400×250 km2, and
(d)∼450×300 km2. 2605
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a) b)

c) d)

Fig. 3. GOES IR-images (brightness temperature, see colour bar in Fig. 7b) from (a) 28 Febru-
ary 2004 at 18:00 UTC, (b) 7 March 2004 at 12:00 UTC, (c) 4 February 2005 at 18:00 UTC,
and (d) 18 February 2005 at 21:00 UTC. The Falcon flight track is superimposed in yellow (solid
line). The position of the SACZ is also indicated in yellow (dashed line).
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Fig. 4. Equivalent potential temperature (in K) and wind vector at 850 hPa (in m s−1) for (a)
28 February 2004 at 18:00 UTC, (b) 7 March 2004 at 12:00 UTC, (c) 4 February 2005 at
18:00 UTC, and (d) 18 February 2005 at 21:00 UTC (based on ECMWF analyses). Longitudes
and latitudes are indicated in (a). The three triangles indicate the position of the two radars
in Bauru (22.4◦ S, 49.0◦ W) and Presidente Prudente (22.1◦ S, 51.4◦ W), and the position of the
airport in Aracatuba (21.1◦ S, 50.4◦ W).
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Fig. 5. Wind speed (in m s−1) and stream lines at 200 hPa for (a) 28 February 2004 at
18:00 UTC, (b) 7 March 2004 at 12:00 UTC, (c) 4 February 2005 at 18:00 UTC, and (d) 18
February 2005 at 21:00 UTC (based on ECMWF analyses). Longitudes and latitudes are in-
dicated in (a). The three triangles indicate the position of the two radars in Bauru (22.4◦ S,
49.0◦ W) and Presidente Prudente (22.1◦ S, 51.4◦ W), and the position of the airport in Ara-
catuba (21.1◦ S, 50.4◦ W).
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Fig. 6. Time series of NOx, CO, O3 and pressure altitude for the Falcon flights on (a) 28
February 2004, (b) 7 March 2004, (c) 4 February 2005, and (d) 18 February 2005 (all figures
same y-axis ranges). Anvil penetrations are labelled.
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     a)           
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Figure 7.   

 54

     a)           

  

     b) 

  

 

 

 

Figure 7.   

Fig. 7. Initiation and development of a MCS over northern Argentina, Uruguay and Paraguay on
6 (a) and 7 (b) March 2004 at 15:00 UTC. In the GOES IR-images (brightness temperature) the
complete Falcon flight track (black) from 7 March is superimposed. In a) FLEXPART backward
simulations (colour scale) from the flight on 7 March are in addition superimposed indicating
the source region of the investigated air mass (outflow from MCS over northern Argentina and
Uruguay on 6 March, ∼24 h prior to the flight).
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a) b)

Fig. 8. ECHAM5/MESSy model forecasts of LNOx at 300 hPa for 7 March 2004, 00:00 UTC (a)
and 12:00 UTC (b).
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MODIS fire locations

2-7 March 2004

Fig. 9. MODIS fire locations (in red) over South America for the time period 2–7 March 2004
indicating enhanced fire activity over northern Argentina and Paraguay. (MODIS-map from:
http://maps.geog.umd.edu/)
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Fig. 10. Global distribution of CO at 850 hPa (a) and 150 hPa (b) derived from
MOPITT on 2 March 2004. Over northern Argentina and Paraguay, CO was en-
hanced at 850 hPa (a) from biomass burning (see Fig. 9). (MOPITT-Maps from:
http://www.eos.ucar.edu/mopitt/data/index.html)
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a) b)a) b)

Fig. 11. Tropospheric NO2 over South America derived from SCIAMACHY measurements
on 3 (a) and 7 (b) March 2004 at 13:30 UTC. A standard air mass factor was used and it
was distinguished between cloudy and non-cloudy pixels. Over northern Argentina, Paraguay
and SW Brazil, the tropospheric NO2 column was enhanced; on 3 March presumably due to
emissions from biomass burning in the BL and on 7 March due to uplifted emissions from both
biomass burning, lightning and urban pollution in the outflow of an aged MCS.
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a) b)

Fig. 12. LIS lightning events (colour scale gives number of lightning events) over northern
Argentina, Uruguay, Paraguay and SW Brazil superimposed on a LIS background cloud-field
image for 6 and 7 March 2004 when the TRMM satellite passed over this region in the afternoon
(compare to Fig. 7). (LIS-Maps from: http://thunder.msfc.nasa.gov/).
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Fig. 13. Six days forward trajectories indicating the transport pathway of the MCS outflow from
7 March 2004, 15:00 UTC, into the Bolivian High. The black dots indicate the position of the air
mass after 1 to 6 days of forward calculations. The colour bar gives pressure values (in hPa)
along the forward trajectories.
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Fig. 14. Mean vertical profiles of the horizontal wind velocity derived from Falcon measure-
ments in tropical (4–5 February 2005) and subtropical (18 February 2005) air masses. Mean
values are given for every 250 m altitude bin.
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a) b)

Fig. 15. GOES IR-images (brightness temperature in K) indicating the penetration of selected
thunderstorms on (a) 4 and (b) 18 February 2005 with the Falcon flight track (black-red) super-
imposed. The thick part of the flight track indicates a time period of 30 min, 15 min prior and
after the time given for the satellite image.
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a)

b)

Fig. 16. FLEXPART column-integrated source-receptor relationship indicating the transport
pathway (colour) and transport age in days (numbers) of an air mass investigated by the Falcon
aircraft on 18 February 2005, (a) 20:19:18–20:19:55 UTC (subtropical origin) and (b) 20:30:30–
20:32:11 UTC (tropical origin).
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Fig. 17. Vertical profiles (1 s values) for temperature (a), H2O mixing ratio (b), potential temper-
ature Θ (c), and equivalent potential temperature Θe (d) derived from Falcon measurements
for tropical (4–5 February 2005) and subtropical (28 February 2004 and 18 February 2005) air
masses. In (a) and (b) the lower part of the profile (up to 3 km) is shown enlarged in the insets.
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Fig. 18. Correlation plots for (a) O3-CO, (b) NOy-CO, and (c) O3-NOy derived from Falcon
measurements on 28 February 2004 (grey), 7 March 2004 (yellow), and 18 February 2005
(white dots). Different types of air masses are labelled.
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