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Abstract

The heterogeneous freezing temperatures of single binary sulphuric acid solution
droplets were measured in dependency of acid concentration down to temperatures
as low as −70◦C. In order to avoid influence of supporting substrates on the freezing
characteristics, the droplets were suspended by means of an acoustic levitator. The5

droplets contained immersed particles of graphite, kaolin or montmorillonite in order to
study the influence of the presence of such contamination on the freezing temperature.
The radii of the suspended droplets spanned the range between 0,4 and 1,1 mm and
the concentration of the sulphuric acid solution varied between 5 and 25 weight per-
cent. The presence of the particles in the solution raises the freezing temperature with10

respect to homogeneous freezing of these solution droplets. The pure solution droplets
can be supercooled up to 40◦ below the ice-acid solution thermodynamic equilibrium
curve. Depending on the concentration of sulphuric acid and the nature of the impurity
the polluted droplets froze between −11◦C and −35◦C. The experimental set-up, com-
bining a deep freezer with a movable ultrasonic levitator and suitable optics, proved to15

be a useful approach for such investigations on individual droplets.

1. Introduction

Sulphuric acid is one of the major components of existing particles in the upper tropo-
sphere (UT) and lower stratosphere (LS) (Sheridan et al., 1994; Murphy et al., 1998).
The emission of sulphur containing gases and their subsequent oxidation produces20

H2SO4 in the atmosphere. Droplets, consisting of sulphuric acid/water solution, are
often found in a supercooled metastable state.

The atmosphere contains aerosol particles, which could contaminate the aqueous
droplets and therefore cause heterogeneous contact or immersion freezing. Clay min-
erals and carbonaceous particles were often found in the upper troposphere and lower25

stratosphere (Mason, 1960; Hoffer, 1961; Pueschel et al., 1992). Ice nucleation of wa-
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ter in the immersion and contact mode caused by these particles, has been studied
by Mason (1960), Hoffer (1961), Pitter and Pruppacher (1973), and Diehl et al. (1998).
Also the influence of biogenic materials as pollen and bacteria on the freezing be-
haviour of solution droplets was measured by (Diehl et al., 2002; von Blohn, 2003).

Emissions of soot particles and sulphate aerosol in the upper troposphere/lower5

stratosphere by aircraft engines cause the formation of contrails. Such contrails in-
fluence the radiative forcing of the atmosphere by reducing the solar radiation and
trapping parts of the longwave radiation from earth’s surface (Penner et al., 1999).
They also have an effect on cirrus cloud formation because gas phase and particu-
late emissions as well as long-lived contrails sometimes contribute to the formation or10

persistence of cirrus clouds.
Binary heterogeneous nucleation and condensation produces a coating of liquid

H2SO4/H2O on soot particles emitted by aircraft engines. These particles grow
by condensation of gaseous H2O and H2SO4 and also by coagulation with volatile
H2SO4/H2O particles forming a mixed H2SO4/H2O-soot aerosol (Penner et al., 1999).15

Freezing of those particles creates ice particles which form the visible part of the con-
trails.

The transition from the liquid into the ice phase takes place either through heteroge-
neous ice nucleation at the interface of the nucleus and the liquid, or by homogeneous
nucleation occuring in the interior of the liquid. Here it needs to mentioned, that some20

recent theoretical studies indicate that the surface of the liquid is a possible site for the
initiation of homogeneous nucleation (Tabazadeh et al., 2002).

In the past, numerous studies have been carried out to investigate the homogeneous
nucleation of sulphuric acid/water solutions (Bertram et al., 1996; Carleton et al., 1997;
Koop et al., 1997, 1998; Krämer, 1998; Prenni et al., 1999; Vortisch et al., 2000).25

According to these, homogeneous ice nucleation occurs at temperatures significantly
below the equilibrium temperature where ice and sulphuric acid solution co-exist.

The efficiency of soot (DeMott et al., 1990, 1999), solid (NH4)2SO4, solid NH4HSO4
(Zuberi et al., 2001), kaolinite and montmorillonite (Zuberi et al., 2002) for causing
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heterogeneous ice nucleation in comparison to the homogeneous process has been
demonstrated recently.

In this paper, we present laboratory measurements of the freezing behaviour of sin-
gle, large sulphuric acid/water droplets obtained by using an acoustic levitator in con-
nection with a deep freezer. This technology is briefly described and measured results5

are presented for homogeneous and heterogeneous freezing temperatures in the im-
mersion mode. Here the freezing was triggered by insoluble particles consisting of
kaolin, montmorillionite and graphite (as proxy for soot) added to the droplets. Having
size diameters between 400µm and 1.1 mm the droplets used in this study are orders
of magnitudes larger than the sub-micron to micron sized droplets typically present in10

the UT/LS. This size range was chosen for the experiments, because higher nucleation
rates result. The “volume advantage” is then expected to reduce observation time until
a freezing event occurs. Furthermore within this size range evaporation losses of the
solution droplet during the observation period are minimised.

2. Experimental methodology15

The experimental set-up is shown in Fig. 1. A large chest freezer, which can be cooled
down to −85◦C, houses the closed chamber with the acoustic levitator. Using an eleva-
tor mechanism, the levitator unit can be moved from outside of the freezer to its bottom,
where the lowest temperatures are encountered. Two CCD-cameras record images of
the droplet onto a video tape. One camera is positioned on the top of the freezer, where20

it records the injection of the droplet into its floating position at an acoustic node. The
other CCD-camera is located inside the chest freezer and is protected by a thermally
isolated and heated box to ensure its operation at these temperature extremes. The
oscillatory motion in the standing sound wave field and the evaporation of the droplet
during its cooling down to the freezing point can be visually observed on a monitor and25

later analysed.
As long as the levitator is moving down to the bottom of the freezer, no images of
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the sample can be taken and for this time period of about 2–3 min, the droplet can not
be observed. During this period the droplet position can not be externally controlled,
which leads to frequent losses of droplets.

The acoustic levitator device used to freely suspend the droplets is shown in Fig. 2.
Inside the acoustic levitator a piezoelectric oscillator (radiator) generates a sound5

wave at 58 kHz, which is reflected by a concave Teflon reflector. With proper positioning
of the reflector, standing waves are produced in the space between the radiator and the
reflector. A droplet with a diameter up to 3 mm or as small as 100µm can be levitated
in a vertical position slightly below the third of the five existing nodes. As the acoustic
field strength required to suspend the droplets increases quadratically with its weight,10

very large droplets can not be levitated. Smaller droplets will evaporate rapidly and
cannot be seen clearly with the current magnification of the cameras.

The experimental characteristics are summarised in Table 1. The gravitation force
FGrav (in N) is in balance with the axial levitation force FLev (in N) and the droplet is
kept afloat there in a stable position. If the droplet moves horizontally, the gas flow on15

the side of the droplet towards the levitation axis is higher then on its other side. The
resulting underpressure forces the droplet back into its original, stable position. The
balance of forces is described by the following equation:

FLev=
5
6

kπ
p2

ρ0c2
0

r3
d sin (2k∆z)=

4
3
πr3

dρdg=FGrav (1)

The wave number of the sound wave is denoted by k in 1/m, p is the amplitude of20

sound pressure in N/m2, rd the radius of the drop in m, c0 the speed of sound in
m/s, ρ0 and ρd the density of air (0) and the density of the droplet (d) in kg/m3. ∆z
is the vertical displacement from the exact nodal position, and g is the gravitational
acceleration in m/s2. The operator controls a micrometer screw by means of a stepper
motor, which is used to move the reflector in order to change the distance between25

the oscillator-radiator and the reflector. This is necessary, because with decreasing
temperature the speed of sound and with it the wavelength and thus the separation
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between the nodes change. This variation can be compensated with an appropriate
reduction of the distance between the radiator and the reflector. For this reason the
operator has to observe the experiment using the video images and adjust the sound-
field. The micrometer screw has to be heated, because otherwise the lubricating oil will
freeze blocking any adjustments. In order to avoid fast temperature changes, the trap5

is surrounded by a Plexiglass hood. Fluctuating temperatures will otherwise lead to an
irreversible deviation of the droplet from its equilibrium position because of the inherent
slow operator response time for readjusting the nodal positions resulting a loss of the
droplets. A Pt-100 sensor next to the floating droplet allows one to measure a proxy for
the droplet temperature. The ultrasonic fields heat the droplet by approximately 2◦C. A10

second temperature sensor is positioned very close to the wall of the Plexiglass hood.
The presence of the Plexiglass hood allows the temperature of the drop to decrease at
a controlled rate thus enabling the droplet’s continuous levitation. A typical temperature
record from an experiment is shown in Fig. 3.

Both temperatures decrease, when the acoustic levitator is moved into the freezer.15

They approach the temperature of the freezer in a certain time, depending on the pre-
set freezer temperature. The “droplet temperature” measured with sensor 1, which
is illustrated with the red line in Fig. 3, is corrected by 2◦C, considering the warming
caused by the ultrasonic field. The temperature recorded by sensor 1 in the moment
when freezing occurs is regarded as the freezing temperature of the droplet.20

At the beginning of the experiment a syringe with a special needle is used to place
the solution droplet at the ultrasonic standing wave node, where it is levitated. The
needle is teflon-coated to ensure easy detachment of the drop from its tip.

By means of this levitation-technique, we were able to experiment with droplets in
the mm size range. Although this relatively large size reduces the effect of evaporation25

loss, the volume decrease is not negligible. Especially in the beginning of the exper-
iment, the solution is exposed to warmer ambient temperatures, which cause faster
evaporation.

To monitor the changing droplet volume continuously during an experiment, the video
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images were digitised. In post-processing of each freezing experiment the height and
the width of the droplets were determined using the digital images while assuming the
droplets to have the shape of rotationally symmetric ellipsoids. Taking this into account
the droplet volumes could be obtained from the digitised video images. The assumption
of the rotationally symmetric shape of a levitated droplet can be confirmed visually.5

Examples for typical droplet images are given in Fig. 4. The left picture shows an
unfrozen, liquid sulphuric acid solution droplet containing black graphite particles. The
particles inside the liquid rotate due to internal circulation of the droplet induced by the
sound waves. The large dark and the white areas result from reflections and refractions
from parts of the experimental apparatus. The image to the right shows a frozen droplet10

with graphite particles on its surface. The transition from the liquid to the solid phase is
easily detected from the rapid change of the drop image from transparent to opaque.

Sulphuric acid solutions with initial concentrations of 5, 9 and 11 wt % were investi-
gated. Water from the solution droplets evaporates during each experiment. With the
assumption that no H2SO4evaporates, the concentration of sulphuric acid in the solu-15

tion increases during the experiment. The actual concentration in the droplet can be
calculated with the known decrease of the volume and the density of the solution at the
particular temperature (Luo et al., 1996).

To obtain the concentration at the moment of freezing, the volume right before the
phase transition is obtained. From the 25 frame-per-second video, the drop volumes20

were obtained which together with the knowledge of the density of the solutions lead
to the determination of the sulphuric acid concentration in the drop.

To investigate heterogeneous ice nucleation, various commercially available materi-
als were added to the solution droplets. The investigated materials, namely graphite,
kaolin, montmorillonite KSF and montmorillonite K10, were all obtained in very fine25

powdered form. The particles were introduced into the droplet simply by dipping the
needle tip into the respective substance and then squeezing a volume of the liquid into
the acoustic node. The disadvantage of this technique is, that we were not able to
determine the number of particles present in the droplet.
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3. Sources of errors

The homogeneous freezing temperature of a liquid depends on the purity of the solu-
tion. In order to obtain homogeneous ice nucleation it is of great importance to ensure
a high purity of the solution. Because the suspended droplet is more or less exposed
to the ambient atmosphere, particles and gases are able to contaminate the solution.5

The same precautions are also required for experiments on heterogeneous nucle-
ation. Furthermore, the indefinable number of particles which are brought into the
droplet, may influence the freezing behaviour of the droplets. Further technical refine-
ments are currently implemented in order to reduce these effects.

The accuracy of the temperature measurement is 1◦C. The error in size determina-10

tion of the droplet leads to an uncertainty of the volume, which is lower than 5%. The
volume error leads to an uncertainty in the calculation of the sulphuric acid concentra-
tion.

4. Results

Figure 5a shows a typical volume decrease of 2 droplets during exposure inside the15

trap where the droplet size decreases with time due to evaporation loss of water. This
evaporation loss slows down as the temperature of the drop falls with time. At the mo-
ment of freezing, the volume of the droplets shows a small jump, which is caused by
the transition from the liquid phase to the ice phase. Figure 5b on the right shows a
typical increase of the calculated sulphuric acid concentration in the solution droplet20

with time, caused by the evaporation of water. The error bars result from the uncer-
tainties in the volume measurements. The heterogeneous freezing temperatures in the
immersion mode, measured with the ultrasonic levitator device, were higher compared
to the homogeneous freezing temperatures of the pure liquid.

Figures 6 and 7 show the freezing temperatures of the single sulphuric acid solu-25

tion droplets in relation to their concentration. The red circles in Fig. 6 represent the
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homogeneous freezing of the pure solution. The green triangles show the solution
polluted with graphite particles, whereas the blue triangles presents the solution pol-
luted with montmorillonite KSF. The solid line indicate the phase transition equilibrium
between ice and sulphuric acid/water solution (Gable et al., 1950). In the concentra-
tion range between 6–8 wt %, the pure solution can be supercooled down to −33◦C.5

With the presence of graphite the freezing temperature increases by 5–6◦C. Montmoril-
lonite KSF-particles in the droplet lead to freezing temperatures 20◦C higher than that
of the pure solution. The two measurements with the lowest freezing temperatures
containing graphite are probably frozen homogeneously, because only few particles in
the droplets were observed. This indicates the need for further experiments for which10

droplets with known numbers of contaminating particles are prepared. Figure 7 shows
a diagram similar to that in Fig. 6, where the green squares represent the droplets
containing kaolin and the blue squares those containing montmorillonite K-10. The de-
tailed data showing freezing temperatures as a function of the sulphuric acid content
and the droplet volumes are listed in Table 2 together with estimation of the experimen-15

tal errors.

5. Conclusions

We presented in this paper a contact-less technique to investigate ice nucleation of su-
percooled droplets. The freezing experiments with sulphuric acid have shown that the
pure solution droplets freeze at lower temperatures compared to the heterogeneous20

freezing temperatures of the polluted droplets. Mineral particles, which are produced
in the large desert areas and are transported in the upper troposphere, are able to in-
fluence the freezing behaviour of cloud droplets. Soot particles that are directly emitted
from aircraft engines into the UT/LS, can also influence the freezing of cloud droplets.
This could be of importance for the microphysics of UT/LS-clouds containing super-25

cooled droplets or mixed phase clouds.
By means of this levitation technique we are able to simulate the freezing processes
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which are responsible for contrail development (Penner et al., 1999). We are able
to investigate the influence of different kinds of aerosols to the immersion freezing of
droplets. Furthermore, organic substances can be added to the droplets, which change
their surface tension and because of that (might) have influence on their freezing char-
acteristics. Another application of the levitator is the investigation of ice nucleation5

in the contact mode. The aerosol particles can be brought in the surrounding of the
droplet and induce contact freezing, when the particle hit the droplets surface. The
visualisation of the freezing process itself will be possible after some optical rearrange-
ments. This will contribute to recently raised issues in the literature concerning the
initiation of the freezing process from the interior or the surface of the droplet. Also the10

studies on the influence of organic surfactants on the freezing can be performed. Thus
this small device represents a technique of considerable potential for single droplet
experiments.
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We thank B. Luo for his code to determine the density for the sulphuric acid solution.15
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Table 1. Characteristics of the instrumental setup.

Applied for Experimentally
this study possible

Droplet size (mm) 0.8–2.2 0.1–3
Concentration range (wt %) 5–25 0–100
Measurement time (h) 0.5–4 0–unlimited
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Table 2. Freezing temperatures of binary sulphuric acid/water solution polluted with the par-
ticles graphite (gr), kaolin (ka), montmorillonite KSF (mKSF), montmorillonite K-10 (mK-10),
respectively.

 

 

H2SO4 Tfreeze Volume  H2SO4 Tfreeze Volume 
[wt%] [°C] [x 10-3 cm³]  [wt%] [°C] [x 10-3 cm³]
+ (gr) +/- 1°C < +/- 5%  + (mKSF) +/- 1°C < +/- 5% 

5,6 ±0,2 -12,6 3,0  5,7±0,2 -12,7 3,3 
5,7 ±0,2 -21,6 5,0  5,8 ±0,2 -10,8 2,5 
5,8 ±0,2 -18,3 4,1  6,0 ±0,3 -10,3 3,6 
5,8 ±0,2 -22,2 3,8  6,2 ±0,2 -10,8 3,1 
5,9 ±0,3 -22,6 4,6  6,2 ±0,2 -12,8 3,7 
6,1 ±0,2   -27,7* 4,3  11,3 ±0,5 -15,9 2,7 
6,2 ±0,2 -11,5 4,1  11,6 ±0,4 -13,8 4,5 
6,3 ±0,2 -21,1 2,2  11,6 ±0,5 -14,1 3,8 
6,4 ±0,2 -20,2 3,6  11,8 ±0,5 -15,4 4,0 
6,4 ±0,3 -16,7 2,4  12,0 ±0,4 -13,9 3,6 
6,4 ±0,3 -22,4 3,9  12,1 ±0,5 -18,3 3,2 
6,6 ±0,2 -23,5 4,0  12,2 ±0,4 -16,8 3,5 
6,8 ±0,3   -31,4* 3,0  12,4 ±0,6 -17,2 3,2 
11,8±0,5 -26,1 4,1  12,5 ±0,6 -14,5 3,4 
11,8 ±0,5 -28,1 3,9  12,7 ±0,5 -12,6 3,2 
11,9 ±0,5 -27,5 3,6     
12,0 ±0,4 -25,1 4,3     
12,1 ±0,4 -25,4 2,8     
12,4 ±0,5 -29,5 3,4     
12,6 ±0,5 -30,7 3,4     
12,9 ±0,5 -27,8 3,6     
13,4 ±0,5   -31,4* 4,1     
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Table 2. Continued.
 

 

H2SO4 Tfreeze Volume  H2SO4 Tfreeze Volume 
[wt%] [°C] [x 10-3 cm³]  [wt%] [°C] [x 10-3 cm³]

+ (mK-10) +/- 1°C < +/- 5%  + (ka) +/- 1°C < +/- 5% 
5,7 ±0,3 -22,1 2,2  11,8 ±0,4 -21,8 4,1 
6,0 ±0,3 -23,3 2,8  11,9 ±0,4 -23,4 4,9 
6,1 ±0,2 -13,6 5,8  12,1 ±0,4 -23,9 4,7 
6,1 ±0,2   -28,8* 2,7  12,6 ±0,6 -21,9 3,7 
6,1 ±0,2 -27,9 4,1  12,6 ±0,4 -16,2 5,2 
6,4 ±0,2 -25 3,0  12,7 ±0,5 -24,2 4,0 
6,5 ±0,3 -24,2 3,7  13,3 ±0,5   -29,6* 3,6 

11,3 ±0,5 -10 3,9  13,4 ±0,5   -28,2* 3,5 
11,6 ±0,4 -15,3 4,0  13,5 ±0,5 -22 4,8 
11,7 ±0,5 -24,1 5,6  13,7 ±0,5 -19,3 4,1 
11,9 ±0,5 -26,2 3,1  13,8 ±0,6   -34,6* 3,7 
12,2 ±0,5   -31,1* 3,6     
12,2 ±0,5 -26,4 4,2     
12,7 ±0,5 -19 4,3     
13,1 ±0,5   -33,1* 3,5     
13,6 ±0,5 -24,1 3,1     

 

*These droplets contained only very few particles, so they could be frozen homogeneously an
error in temperature of +/−1◦C.
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Fig. 1. Chest freezer with the movable acoustic levitator.
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Fig. 2. Acoustic levitator with suspended droplet.
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Fig. 3. Temperature decrease inside the plexiglass trap.
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Fig. 4. Left: liquid droplet with a few graphite particles inside. Right: frozen droplet with graphite
particles on the surface.
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Fig. 5. (a) Volume decrease of two uncontaminated droplets with different initial size.
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Fig. 5. (b) Increase of the sulphuric acid concentration.
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Fig. 6. Freezing temperatures of the sulphuric acid solution versus the concentration in wt %,
droplets polluted with graphite and montmorillonite (KSF) compared to the pure solution to-
gether with the equilibrium ice melting curve (Gable et al., 1950).
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Fig. 7. Freezing temperatures of the sulphuric acid solution versus the concentration in wt %,
droplets polluted with kaolin and montmorillonite (K-10) compared to the pure solution, together
with the equilibrium ice melting curve (Gable et al., 1950).

1909

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/4/1887/acpd-4-1887_p.pdf
http://www.atmos-chem-phys.org/acpd/4/1887/comments.php
http://www.copernicus.org/EGU/EGU.html

