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Abstract. This paper presents extensive bias determina-
tion analyses of ozone observations from the Atmospheric
Chemistry Experiment (ACE) satellite instruments: the ACE
Fourier Transform Spectrometer (ACE-FTS) and the Mea-
surement of Aerosol Extinction in the Stratosphere and Tro-
posphere Retrieved by Occultation (ACE-MAESTRO) in-
strument. Here we compare the latest ozone data products
from ACE-FTS and ACE-MAESTRO with coincident ob-
servations from nearly 20 satellite-borne, airborne, balloon-
borne and ground-based instruments, by analysing volume
mixing ratio profiles and partial column densities. The ACE-
FTS version 2.2 Ozone Update product reports more ozone
than most correlative measurements from the upper tropo-
sphere to the lower mesosphere. At altitude levels from 16
to 44 km, the average values of the mean relative differences
are nearly all within +1 to +8%. At higher altitudes (45–
60 km), the ACE-FTS ozone amounts are significantly larger
than those of the comparison instruments, with mean rela-
tive differences of up to +40% (about +20% on average). For
the ACE-MAESTRO version 1.2 ozone data product, mean
relative differences are within±10% (average values within
±6%) between 18 and 40 km for both the sunrise and sun-
set measurements. At higher altitudes (∼35–55 km), sys-
tematic biases of opposite sign are found between the ACE-
MAESTRO sunrise and sunset observations. While ozone
amounts derived from the ACE-MAESTRO sunrise occulta-
tion data are often smaller than the coincident observations
(with mean relative differences down to−10%), the sunset
occultation profiles for ACE-MAESTRO show results that
are qualitatively similar to ACE-FTS, indicating a large pos-
itive bias (mean relative differences within +10 to +30%) in
the 45–55 km altitude range. In contrast, there is no signif-
icant systematic difference in bias found for the ACE-FTS
sunrise and sunset measurements.

1 Introduction

Ozone is a key molecule in the middle atmosphere because
it absorbs solar ultraviolet (UV) radiation and contributes
to the radiative balance of the stratosphere. Understanding
changes occurring in the distribution of ozone in the atmo-
sphere is, therefore, important for studying ozone recovery,
climate change and the coupling between these processes
(WMO, 2007). To this end, it is important to have continuous
high quality measurements of ozone in the stratosphere. Pro-
file measurements from satellite-borne instruments provide
height-resolved information that can be used to understand
changes in ozone concentrations occurring at different alti-
tudes. For the past two decades, one of the primary sources
for ozone profile information has been satellite-borne instru-
ments making solar occultation measurements. The solar oc-
cultation technique provides self-calibrating measurements
of atmospheric absorption spectra with a high signal-to-noise

ratio and good vertical resolution. Thus, to extend this time
series of measurements in a consistent way, it is crucial to
conduct validation studies that compare the results from new
instruments with those from older and more established in-
struments.

The newest satellite for solar occultation studies is the At-
mospheric Chemistry Experiment (ACE). This Canadian-led
satellite mission, also known as SCISAT, was launched on
12 August 2003 (Bernath et al., 2005). There are two instru-
ments on-board the spacecraft that provide vertical profiles
of ozone and a range of trace gas constituents, as well as
temperature and atmospheric extinction due to aerosols. The
ACE Fourier Transform Spectrometer (ACE-FTS) (Bernath
et al., 2005) measures in the infrared (IR) region of the
spectrum and the Measurement of Aerosol Extinction in
the Stratosphere and Troposphere Retrieved by Occultation
(ACE-MAESTRO) (McElroy et al., 2007) operates in the
UV/visible/near-IR. The main objective of the ACE mis-
sion is to understand the global-scale chemical and dynam-
ical processes which govern the abundance of ozone from
the upper troposphere to the lower mesosphere, with an em-
phasis on chemistry and dynamics in the Arctic. SCISAT,
the platform carrying the ACE-FTS and ACE-MAESTRO,
is in a circular low-Earth orbit, with a 74◦ inclination and
an altitude of 650 km (Bernath et al., 2005). From this or-
bit, the instruments measure up to 15 sunrise (hereinafter
SR) and 15 sunset (hereinafter SS) occultations each day.
Global coverage of the tropical, mid-latitude and polar re-
gions (with the highest sampling in the Arctic and Antarc-
tic) is achieved over the course of one year and the ACE
measurement latitude pattern repeats each year. When ACE
was launched, there were several solar occultation satellite-
borne instruments in operation: Stratospheric Aerosol and
Gas Experiment (SAGE) II (Mauldin et al., 1985), SAGE III
(SAGE ATBD Team, 2002a), HALogen Occultation Exper-
iment (HALOE) (Russell et al., 1993), Polar Ozone and
Aerosol Measurement (POAM) III (Lucke et al., 1999)
and SCanning Imaging Absorption spectroMeter for Atmo-
spheric CHartographY (SCIAMACHY) (Bovensmann et al.,
1999). The first four instruments only make occultation mea-
surements while SCIAMACHY operates in nadir, limb and
occultation modes. Between August and December 2005,
the SAGE II, SAGE III, HALOE, and POAM III measure-
ments ended. Currently, ACE-FTS and ACE-MAESTRO are
the only satellite-borne instruments operating exclusively in
solar occultation mode, while SCIAMACHY provides oc-
cultation measurements in addition to its limb and nadir ob-
servations. To be able to extend the long-standing record of
observations from the SAGE II, SAGE III, POAM III and
HALOE instruments, it is important that the ozone measure-
ments provided by ACE-FTS and ACE-MAESTRO be well
characterized and their quality thoroughly assessed.

In this paper, we present extensive studies focusing on bias
determination for the most recent ozone data products from
ACE-FTS (version 2.2 Ozone Update) and ACE-MAESTRO
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(version 1.2). The current ozone data are here compared
with measurements from satellite-borne instruments as well
as ozonesondes and balloon-borne, airborne and ground-
based instruments employing different observation tech-
niques. Section2 describes the ACE satellite mission, instru-
ments, and the ozone data products. The coincidence crite-
ria and the validation methodology are described in Sects.3
and4, respectively. The comparisons are organized by in-
strument platform in the following two sections, Sect.5 for
the satellites and Sect.6 for the ozonesondes, balloon-borne,
airborne and ground-based instruments. The overall results
are summarized and discussed in Sect.7 and conclusions are
given in Sect.8.

2 The ACE instruments and data products

2.1 ACE-FTS

The primary instrument for the ACE mission, the ACE-
FTS, is a successor to the Atmospheric Trace MOlecule
Spectroscopy (ATMOS) experiment (Gunson et al., 1996),
an infrared FTS that operated during four flights on the
Space Shuttle (in 1985, 1992, 1993 and 1994). ACE-FTS
measures high-resolution (0.02 cm−1) atmospheric spectra
between 750 and 4400 cm−1 (2.2–13µm) (Bernath et al.,
2005). A feedback-controlled pointing mirror is used to tar-
get the centre of the Sun and track it during the measure-
ments. Typical signal-to-noise ratios are more than 300 from
∼900 to 3700 cm−1. From the 650 km ACE orbit, the instru-
ment field-of-view (1.25 mrad) corresponds to a maximum
vertical resolution of 3–4 km (Boone et al., 2005). The verti-
cal spacing between consecutive 2 s ACE-FTS measurements
depends on the satellite’s orbit geometry during the occul-
tation and can vary from 1.5–6 km. The altitude coverage
of the measurements extends from the cloud tops to∼100–
150 km. The suntracker used by the ACE instruments cannot
operate in the presence of thick clouds in the field-of-view.
Therefore the profiles do not extend below cloud top level.
The lower altitude limit of the profiles is thus generally 8–
10 km, extending in some cases to 5 km, depending on the
presence or absence of clouds.

Vertical profiles of atmospheric parameters, namely tem-
perature, pressure and volume mixing ratios (VMRs) of trace
constituents, are retrieved from the occultation spectra. This
is described in detail inBoone et al.(2005). Briefly, re-
trieval parameters are determined simultaneously in a mod-
ified global fit approach based on the Levenberg-Marquardt
nonlinear least-squares method (seeBoone et al., 2005, and
references therein). The retrieval process consists of two
steps. Knowledge of pressure and temperature is critical for
the retrieval of VMR profiles. However, sufficiently accu-
rate meteorological data are not available for the complete
altitude range of ACE-FTS observations. Therefore, the first
step of the retrieval derives atmospheric pressure and tem-

perature profiles directly from the ACE-FTS spectra, using
microwindows containing CO2 spectral lines. During the
second phase of the retrieval process, these profiles are used
to calculate synthetic spectra that are compared to the ACE-
FTS measured spectra in the global fitting procedure to re-
trieve the VMR profiles of the target species. In the current
ACE-FTS dataset (version 2.2 with updates for ozone, N2O5,
and HDO), profiles are retrieved for more than 30 species us-
ing spectroscopic information from the HITRAN 2004 line
list (Rothman et al., 2005). First-guess profiles are based
on the results of the ATMOS mission. It is important to
emphasize that the global fitting approach used here does
not use the Optimal Estimation Method, hence does not im-
pose constraints based on a priori information. Therefore the
retrieval method is not sensitive to the first-guess profiles.
Also, averaging kernels are not available for the ACE-FTS
retrievals. The altitude range of the ozone retrievals typically
extends from∼10 km to∼95 km. The final results are pro-
vided jointly on the measurement (tangent height) grid and
interpolated onto a 1 km grid using a piecewise quadratic
method. The latter form is used for all analyses presented
in this study. The uncertainties reported in the data files are
the statistical fitting errors from the least-squares process and
do not include systematic components or parameter correla-
tions (Boone et al., 2005). The mean relative fitting errors
are lower than 3% between 12 and∼65 km and typically less
than 1.5% around the VMR peak (30–35 km). A detailed er-
ror budget including systematic errors is not currently avail-
able for the ACE-FTS data products.

Initial validation comparisons for ACE-FTS version 1.0
ozone retrievals have been reported (Walker et al., 2005; Pe-
telina et al., 2005a; Fussen et al., 2005; McHugh et al., 2005;
Kerzenmacher et al., 2005). Version 2.1 ozone was used in
the early validation studies for the Microwave Limb Sounder
(MLS) on the Aura satellite (hereafter Aura-MLS) byFroide-
vaux et al.(2006). In these earlier ACE-FTS ozone retrievals
(up to and including version 2.2), a set of microwindows
from two distinct spectral regions (near∼5µm and∼10µm)
was used. Because of apparent discrepancies in the spectro-
scopic data for these two regions, the vertical profiles near the
stratospheric ozone concentration peak were found to have
a consistent low bias of∼10% in comparisons with other
satellite-borne instruments. This was corrected in an update
to version 2.2 by removing from the analysis the microwin-
dows in the 5µm spectral region. A consistent set of 37 mi-
crowindows around 10µm (from 985 to 1128 cm−1, with the
addition of one microwindow at 922 cm−1 to improve results
for the interfering molecule CFC−12) is now used for ozone
retrievals. This O3 data product, “version 2.2 Ozone Up-
date”, is used in the comparisons presented here. These ver-
sion 2.2 Ozone Update profiles were used in recent valida-
tion studies for Aura-MLS (Froidevaux et al., 2008) and the
Michelson Interferometer for Passive Atmospheric Sounding
(MIPAS) on Envisat (Cortesi et al., 2007). The agreement
with Aura-MLS version 2.2 ozone profiles is within 5% in
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the lower stratosphere (with ACE-FTS ozone VMRs consis-
tently larger than those of Aura-MLS), but degrades with al-
titude with the largest difference in the upper stratosphere
(up to∼25%) (Froidevaux et al., 2008). Relative differences
with the MIPAS ESA operational ozone v4.62 data products
are within±10% between 250 and∼2 hPa (10–42 km) but
increase above this range, with ACE-FTS reporting larger
VMR values than MIPAS by up to +40% around 0.6 hPa
(∼53 km) (Cortesi et al., 2007).

2.2 ACE-MAESTRO

ACE-MAESTRO is a dual-grating diode-array spectropho-
tometer that extends the wavelength range of the ACE mea-
surements into the near-IR to UV spectral region (McElroy et
al., 2007). It records over a nominal range of 400–1010 nm
with a spectral resolution of 1.5–2 nm for its solar occulta-
tion measurements. The forerunner of the ACE-MAESTRO
is the SunPhotoSpectrometer instrument which was used ex-
tensively by Environment Canada as part of the NASA ER-
2 stratospheric chemistry research program (McElroy, 1995;
McElroy et al., 1995). ACE-MAESTRO uses the same sun
tracking mirror as the ACE-FTS, receiving∼7% of the beam
collected by the mirror. The ACE-MAESTRO instrument
vertical field-of-view is∼1 km at the limb. The observation
tangent altitudes range from the cloud tops to 100 km with a
vertical resolution estimated at better than 1.7 km (Kar et al.,
2007).

The processing of ACE-MAESTRO version 1.2 occulta-
tion data is done in two stages and is described inMcEl-
roy et al. (2007). In summary, the raw data are converted
to wavelength-calibrated spectra, corrected for stray light,
dark current and other instrument parameters in the first
step. The corrected spectra are then analyzed by a nonlin-
ear least-squares spectral fitting code to calculate slant-path
column densities for each spectrum, from which vertical pro-
files of O3 and NO2 VMRs are subsequently derived. The
retrieval algorithm does not require any a priori informa-
tion or other constraints (McElroy et al., 2007). The inver-
sion routine uses the pressure and temperature profiles and
tangent heights from the ACE-FTS data analysis to fix the
tangent heights for ACE-MAESTRO. Vertical profiles for
the trace gases are determined by adjusting an initial guess
(high-vertical-resolution model simulation) using a nonlin-
ear Chahine relaxation inversion algorithm (seeMcElroy et
al., 2007, and references therein). The final profiles are pro-
vided both on the tangent grid and linearly interpolated onto
a 0.5 km-spacing vertical grid. As is done for ACE-FTS, the
latter profiles are used in the analyses presented in this work.
Propagation of the spectral fitting errors in the ozone VMR
retrievals yield typical errors of 1–2% between 20 and 40 km
and increasing above and below this range. An error bud-
get including systematic errors has not been produced for the
ACE-MAESTRO ozone product. Averaging kernels are not
available for the ACE-MAESTRO retrievals.

As described above, ACE-MAESTRO consists of two
spectrophotometers and each can provide vertical VMR pro-
files for ozone. Following the previous validation study of
Kar et al. (2007), this work presents only the comparisons
made with the Visible-Near-IR (VIS) spectrometer ozone
data product. The retrieved profiles from the VIS spectrom-
eter are in good agreement (mean relative differences within
±10%) with those obtained from the UV spectrometer over
the altitude range where the UV data have good signal-to-
noise (∼15–30 km). The VIS profiles provide results over a
larger vertical range, necessary for studies in the upper strato-
sphere and lower mesosphere.

The version 1.2 ACE-MAESTRO data products have been
compared with SAGE III, POAM III and ozonesonde ob-
servations (Kar et al., 2007). Mean relative differences are
generally within±10% from 20–40 km. At higher altitudes,
there is a significant bias between the SR observations, for
which ACE-MAESTRO reports less ozone than the compar-
ison instrument, and the SS observations, which show a large
positive bias for ACE-MAESTRO with respect to the coin-
cident measurements (of up to +30% around 50 km) (Kar
et al., 2007). Direct comparison with the ACE-FTS ver-
sion 2.2 Ozone Update profiles was also performed byKar
et al. (2007) for data obtained in the period March 2004–
March 2005. The SR comparisons show a low bias of ACE-
MAESTRO at most altitudes. The mean relative differences
are within±5% between 22 and 42 km, and increase above
and below this range to a maximum value of−30% at 15 and
55 km. For the SS comparisons, the mean relative differences
remain globally within±5% for the Northern Hemisphere
occultations, with ACE-MAESTRO VMR values lower than
those of ACE-FTS except around 40 km; however, the mean
relative differences are larger (within±10%) for the South-
ern Hemisphere observations, with ACE-MAESTRO show-
ing less ozone than ACE-FTS below 35 km and more ozone
above this altitude (Kar et al., 2007).

3 Temporal and spatial criteria for coincidences

The nominal time period chosen for this study extends
over 2.5 years from 21 February 2004 to 31 August 2006.
The start date is the first day for which routine, reliable
measurements were available for both ACE-FTS and ACE-
MAESTRO. This time period includes the 2004, 2005, and
2006 Canadian Arctic ACE Validation Campaigns (Kerzen-
macher et al., 2005; Walker et al., 2005; Sung et al., 2007;
Manney et al., 2008; Fraser et al., 2008; Fu et al., 2008;
Sung et al., 2009) and the final period of measurements from
the SAGE II, SAGE III, POAM III and HALOE instruments.
Based on availability of correlative measurements, this time
period has been adjusted for some comparisons.

Common coincidence criteria were used to search for cor-
relative observations to compare with ACE-FTS and ACE-
MAESTRO. In addition to the spatial and temporal criteria

www.atmos-chem-phys.net/9/287/2009/ Atmos. Chem. Phys., 9, 287–343, 2009



292 E. Dupuy et al.: Validation of ACE ozone

discussed below, it was also required that there were profiles
available for both ACE instruments for each coincidence.
This provided a consistent distribution of comparisons for
ACE-FTS and ACE-MAESTRO. Coincidence criteria can
vary widely between different validation studies. The coin-
cidence criteria used in this study have been chosen to en-
sure a sufficient number of coincidences in all comparisons
while trying to limit the scatter resulting from relaxed coin-
cidence criteria. For satellite comparisons, a maximum time
difference of±2 h between the ACE observation and the cor-
relative measurement, and maximum latitude and longitude
differences of±5◦ and±10◦, respectively, were generally
used. All time differences were calculated using Univer-
sal Time (UT). The geographic coincidence criteria corre-
spond to maximum distances of∼600 km at high latitudes
and about twice this value near the equator. These distances
are of the same order of magnitude as the typical ground-
track distance of an ACE occultation (300–600 km). Note
that the measurement density is lower at low latitudes be-
cause of the high inclination of the ACE orbit and, there-
fore, we have significantly fewer coincidences available in
the tropics and subtropics. These criteria provide good statis-
tics consisting of a few hundred to several thousand events
for most satellite-borne instruments. The list of the correla-
tive datasets, time periods, number of coincidences and mean
values of the distance and of the time, latitude and longitude
differences is given in Table1. For the sparser datasets from
ozonesondes and airborne, balloon-borne and ground-based
instruments, it is more difficult to find coincidences using
the criteria listed above. In those cases, a similar fixed dis-
tance criterion was used (800 km for ozonesondes, 500 to
1000 km for other ground-based instruments) but the time
criterion was relaxed to±24 h. This was done in an effort
to maximize the number of coincident profiles while at the
same time avoiding biases in the atmospheric sampling.

To test the sensitivity of the comparison results to the
temporal and geolocation criteria of the correlative measure-
ments, we performed comparisons within shorter time peri-
ods and smaller geographical regions: typically, comparisons
were done for each month of the 2.5-year period and in five
latitude bands: four (two in each hemisphere) for mid- and
high latitudes (latitudes 30◦–60◦ and 60◦–90◦, respectively)
and a larger one for the tropics and subtropics (30◦ S–30◦ N).
This analysis was performed for most of the statistical com-
parisons with satellite-borne instruments and with ozoneson-
des (not shown). In addition, a detailed check of the time
series of the mean relative differences, at each ground-based
station, was performed for the study presented in Sect.6.6.
These analyses did not show any systematic latitudinal de-
pendence of the relative differences or apparent temporal
trend in the quality of the ACE observations. We also ana-
lyzed the dependence of the relative difference profiles on the
distance between the measurement pairs and on observation
parameters such as the beta angle for occultation instruments
or the solar zenith angle for sun-synchronous measurements

(not shown). This did not reveal significant systematic biases
which might have required the use of narrower coincidence
criteria. Finally, we did not find any visible latitude bias be-
tween the ACE measurements (e.g., ACE latitudes systemat-
ically higher or lower than those of the coincident observa-
tions) and the correlative instruments (not shown).

It should be noted that broad criteria such as those defined
here may result in multiple coincident observations for a par-
ticular ACE occultation, for instance when the ACE orbit
footprint is close to the satellite ground-track of the correl-
ative instrument or when the allowed time difference is large
(e.g., 24 h). In such cases, each coincident pair (the same oc-
cultation measured by ACE-FTS or ACE-MAESTRO paired
with a distinct observation from the comparison instrument)
is treated as an independent event, except for the statisti-
cal comparisons with ozonesondes (see Sect.6.5) and Mi-
croWave Radiometers (MWRs) (see Sect.6.9). However,
the number of multiple matches did not exceed a few hun-
dred for the largest comparison sets (e.g., for comparisons
with SABER), with no more than 6–8 distinct comparison
measurements coinciding with a single observation from the
ACE instruments.

In a first step, the comparisons with all satellite instru-
ments (Sect.5) and with the ozonesondes (Sect.6.5) were
made for ACE-FTS or ACE-MAESTRO SR and SS occul-
tations separately. These initial analyses did not show evi-
dence for a systematic SR/SS bias in the ACE-FTS dataset.
Therefore, averages over all coincidences – without SR/SS
separation – are shown for the ACE-FTS analyses in all sec-
tions except Sect.5.1. Since SR/SS differences can be im-
portant for intercomparisons between two solar occultation
instruments, the results of the comparisons with SAGE II,
HALOE, POAM III and SAGE III (Sect.5.1) are presented
separately for both ACE-FTS and the correlative dataset. For
the ACE-MAESTRO measurements, there is a known SR/SS
bias (Kar et al., 2007). Thus, we present all of the ACE-
MAESTRO SR and SS comparisons separately.

Day/night differences in ozone VMR can have an impact
on the comparison results in the mesosphere (e.g.,Schneider
et al., 2005). For the comparisons presented hereafter, we
did not routinely use any photochemical model for the ACE
measurements to account for these diurnal variations. How-
ever, in two cases, a photochemical correction was applied to
the correlative data (Sects.5.4.1and5.4.2).

4 Validation methodology

The satellite data used in the following comparisons have
vertical resolutions ranging from 0.5 to 5 km, which is the
same order of magnitude as those of the ACE instruments
(∼3–4 km for ACE-FTS and better than 1.7 km for ACE-
MAESTRO). Therefore, coincident profiles are linearly in-
terpolated onto the ACE vertical grid (with a spacing of
1 km for ACE-FTS or 0.5 km for ACE-MAESTRO) for the
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Table 1. Summary of the coincidence characteristics for the instruments (column 1) and data products (column 2) used in the statistical
analyses. The full comparison period, latitude range and number of coincidences are presented in columns 3–5. Columns 6–9 give the
mean and 1-σ standard deviation for: great circle distance, differences in latitude, longitude and time between the ACE and correlative
measurements. For instruments which have multiple retrieval codes, these are noted in parentheses in column 1.

Instrument Data Period Latitude Num. Distance Latitude Longitude Time
version range events [km] diff. [◦] diff. [ ◦] diff. [min]

SAGE II v6.20 2004/08/09 – 70◦ S–66◦ N 229 449±234 −1.4±1.9 0.1±5.9 −7±31
2005/05/06

HALOE V19 2004/07/05 – 53◦ S–67◦ N 49 382±222 0.4±2.2 2.4±5.8 38±46
2005/08/17

POAM III v4 2004/03/16 – 86◦ S–63◦ S & 376 395±165 0.6±3.1 0.5±5.5 16±53
2005/11/30 55◦ N–70◦ N

SAGE III v3.0 2004/02/21 – 59◦ S–37◦ S & 648 328±177 −0.0±2.4 0.3±5.7 −10±31
2005/10/09 49◦ N–80◦ N

OSIRIS v3.0 2004/02/24 – 80◦ S–86◦ N 913 458±231 0.2±2.9 −0.6±5.6 1±66
(York) 2006/08/31

OSIRIS v2.1 2004/03/02 – 79◦ S–86◦ N 1219 463±229 0.1±2.9 −0.6±5.6 2±67
(SaskMART) 2006/08/05

SMR Chalmers-v2.1 2004/02/21 – 82◦ S–82◦ N 1161 438±219 0.2±2.8 −0.2±5.7 −1±68
2006/08/31

SABER v1.06 2004/03/02 – 85◦ S–85◦ N 6210 366±158 −0.1±2.8 −0.2±5.6 0±68
2006/07/31

GOMOS IPF 5.00 2004/04/06 – 72◦ S–80◦ N 1240 317±122 −0.1±2.0 0.5±41.7 54±438
2005/12/08

MIPAS ESA-v4.62 2004/02/21 – 70◦ N–80◦ N 138 190±65 −0.5±1.3 −0.4±43.7 68±292
(ESA f.r.)a 2004/03/26

MIPAS ML2PP/5.0 2005/01/27 – 85◦ S–86◦ N 160 401±225 −0.1±2.8 0.4±5.4 96±210
(ESA r.r.)b 2006/05/04

MIPAS V3O O3 7 2004/02/21 – 30◦ N–80◦ N 681 276±146c
−0.2±1.7c 1.8±9.3c

−304±79c

(IMK-IAA) 2004/03/26 315±159d
−0.2±2.2d

−2.2±7.3d 340±98d

SCIAMACHY IUP v1.63 2004/03/01 – 80◦ S–80◦ N 734 339±120 0.6±2.3 −0.1±8.3 −84±233
2004/12/31

Aura-MLS v2.2 2004/09/16 – 80◦ S–86◦ N 3178 359±156 0.4±2.9 1.5±5.8 12±68
2007/05/23

ASUR n/a 2005/01/24 – 60◦ N–70◦ N 39 645±225 0.3±3.6 1.7±12.0 208±113
2005/02/07

Ozonesondese n/a 2004/02/22 – 78◦ S–83◦ N 376 478±210 0.4±3.8 0.1±4.9 8±728
2006/08/03

NDACC n/a 2004/02/21 – 71◦ S–83◦ N 250 305±135 1.4±1.1 7.7±6.5 302±180
Ozonesondes 2006/08/19

+ lidarsf

Eureka DIAL n/a 2004/02/21 – 76◦ N–81◦ N 10 279±123 −1.7±1.1 −2.4±10.1 417±56
2006/02/23

NDACC v5.0 2004/02/08 – 51◦ S–26◦ N 43 709±243 −0.3±4.0 0.8±7.0 35±345
MWRsg 2006/10/12

a ESA data product for full resolution MIPAS measurements. See text for details.
b ESA data product for reduced resolution MIPAS measurements. See text for details.
c ACE vs. MIPAS daytime measurements.
d ACE vs. MIPAS nighttime measurements.
e Statistical analyses presented in Sect.6.5.
f Detailed NDACC study described in Sect.6.6.
g MWRs at Lauder (45◦ S) and Mauna Loa (19.5◦ N) only. Analysis described in Sect.6.9.
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comparison. Tests with other interpolation methods (using
quadratic or cubic spline), or by comparing at the actual
ACE tangent heights, did not yield any systematic differ-
ences. For example, the different interpolation methods gave
results within a few percent for the Odin/OSIRIS SaskMART
dataset (not shown).

Secondly, for high-resolution measurements such as those
from ozonesondes or other instruments measuring in situ, it
is necessary to smooth the comparison data. Since averaging
kernels are not available for the ACE measurements, alter-
native smoothing methods were employed. In this case, two
techniques were used, either a smoothing function was ap-
plied or an integration method was used.

For most in situ and high-resolution profile comparisons,
smoothing (convolution) functions were created for ACE-
FTS, consisting of triangular functions of full width at the
base equal to 3 km and centered at the tangent heights of
each occultation. This value was chosen to account for the
smoothing effect of the limited ACE-FTS vertical resolution
(∼3–4 km field-of-view), whilst allowing for simplified but
valid systematic analysis. Furthermore, it accounts for the
vertical spacing of the tangent heights in a retrieved ACE-
FTS profile. The spacing varies with altitude (including re-
fraction below∼30 km) and with the beta angle for the oc-
cultation (angle between the satellite orbital plane and the
Earth-Sun vector). The minimum spacing is about 1.5 km
at low altitudes for a high-beta occultation and increases to
a maximum value of∼6 km at mesospheric heights for a
low-beta event. High-resolution correlative measurements
are convolved with these triangular functions for each ACE
tangent heightzi :

xs(zi) =

nhr∑
j=1

wj (z
hr
j − zi) · xhr(z

hr
j )

nhr∑
j=1

wj (z
hr
j − zi)

, (1)

where xs(zi) is the smoothed mixing ratio for the high-
resolution instrument at tangent heightzi , xhr is the VMR
value of the high-resolution profile at altitudezhr

j , wj the

associated weight (function ofzhr
j −zi), andnhr the num-

ber of points from the high-resolution profile found in the
3 km layer centered atzi . The resulting smoothed pro-
file is subsequently interpolated onto the 1 km grid. For
ACE-MAESTRO comparisons, the high-resolution profiles
are smoothed by convolution with a Gaussian filter of full
width at half-maximum (FWHM) equal to 1.7 km, which is
the upper limit for the vertical resolution of the instrument.
The smoothed profiles are then interpolated onto the ACE-
MAESTRO 0.5 km grid. This smoothing technique was used
by Kar et al.(2007).

An alternative method is used in some comparisons with
ozonesondes and lidars (Sect.6.6). To account for the
higher vertical resolution of the ozonesonde and lidar mea-

surements, these profiles are first integrated to obtain partial
columns calculated within layers centered at the ACE mea-
surement grid levels (tangent heights). To calculate the par-
tial column corresponding to altitudezi , the layer edges are
defined as the mid-points between tangent heightszi−1 andzi

(lower limit) andzi andzi+1 (upper limit). Then these partial
columns are converted to VMR values attributed to the same
tangent heights. The resulting profiles are interpolated onto
the ACE-FTS (1 km) and ACE-MAESTRO (0.5 km) altitude
grids.

Thirdly, for ground-based measurements with lower verti-
cal resolution than the ACE instruments (Fourier Transform
IR spectrometers (FTIRs) and MWRs), the ACE-FTS and
ACE-MAESTRO profiles are smoothed using the averaging
kernels calculated during the ground-based retrieval process,
following the method ofRodgers and Connor(2003):

xs = xa + A(xACE − xa), (2)

wherexACE is the original ACE profile (ACE-FTS or ACE-
MAESTRO),xs is the smoothed profile, andxa andA are
the a priori profile and the averaging kernel matrix of the
ground-based instrument, respectively.

For the analysis, data are screened to reject either the
whole profile or identified low-quality measurements at some
altitudes. First, the data from each instrument are filtered ac-
cording to the recommendations provided by each calibra-
tion/processing team. The specific criteria that were used
are described in the appropriate subsections of Sects.5 and
6. The profiles which do not meet the quality requirements
are rejected as a whole. Then, altitude levels for which the
stated error represents more than 100% of the profile value,
or which exhibit unphysical VMR values – outside of the
relatively broad interval of [−10; +20] ppmv – are excluded
from the analysis. This generally leads to a lower number
of comparison pairs at the lowermost and uppermost altitude
levels. Negative VMR values are not systematically rejected
as they can be produced by the retrieval process as an arti-
fact due to noise in the measurements, especially at altitudes
where O3 abundance is naturally low. Finally, an initial com-
parison step was used to identify and remove erroneous pro-
files that were not rejected during the aforementioned anal-
ysis (a maximum of 5–6 per comparison set). These gen-
eral filtering criteria were applied to all comparisons given in
Sects.5 and6.

Differences are calculated for each individual pair of pro-
files, at the altitude levels where both instruments satisfy the
screening criteria described above. The difference at a given
altitudez is expressed as

δi(z) =
xACE(z) − xcomp(z)

xref(z)
, (3)

wherexACE(z) is the VMR at altitudez for ACE (ACE-FTS
or ACE-MAESTRO),xcomp(z) the corresponding VMR for
the comparison instrument, andxref(z) is given by
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xref(z) = 1 (abs.)
= xcomp(z) (rel.–gb+o3s)
= (xACE(z) + xcomp(z))/2 (rel.–others)

The first line is the value ofxref(z) for absolute difference
calculations. The second and third lines give the denomina-
tor for calculations of relative differences for the ozoneson-
des and the ground-based instruments and for all other com-
parisons, respectively. This difference in the relative differ-
ence calculation method is based on the assumption that the
in situ high-resolution ozonesonde measurements are a good
reference for the comparisons, while satellite-borne mea-
surements are affected by larger uncertainties and a more
logical reference is the average of both instruments VMRs
(Randall et al., 2003). There are two exceptions. For the
comparisons with the Airborne SUbmillimeter Radiometer
(ASUR, Sect.6.1), xref(z)=xACE(z) was used. In com-
parisons between ACE and the Global Ozone Monitoring
by Occultation of Stars (GOMOS, Sect.5.4.1) instrument,
xref(z)=xGOMOS(z) was used as the denominator. In addi-
tion, a different calculation methodology has been used for
the comparisons with GOMOS. It is explained in detail in
Sect.5.4.1.

The resulting mean differences (absolute or relative) for a
complete set of coincident pairs of profiles are calculated as

1(z) =
1

N(z)

N(z)∑
i=1

δi(z), (4)

whereN(z) refers to the number of coincidences at altitude
z andδi(z) is the difference (absolute or relative) for theith
coincident pair calculated using Eq. (3). The mean relative
differences are given in percent in the following sections.

In some cases, notably for ACE-MAESTRO, there may
seem to be a discrepancy between the apparent differences
given by the mean profiles and the sign of the mean relative
differences, or between the signs of the mean absolute and
relative differences. The reader is reminded that the mean
relative differences are not calculated from the mean VMR
profiles but from each pair of coincident profiles (Eq.3).
Thus, the mean relative differences can become negative,
even though the mean absolute differences are positive, if
some profiles exhibit unusually low VMR values at certain
altitude levels or if the VMRs for both instruments are of
the same magnitude but of opposite signs (e.g., for the com-
parisons between ACE-MAESTRO and OSIRIS SaskMART,
Fig. 10).

Finally, as mentioned in Sect.2, a full error budget includ-
ing estimates of the systematic errors is not available for the
ACE data products analyzed in this work. Therefore, it is
not possible to conduct a full precision validation study. In
order to provide the reader with additional information on
the significance of the bias and to set an upper limit to the
precision of the ACE instruments, we calculate and show the
standard deviation of the bias-corrected differences (referred

to as “de-biased standard deviation” hereinafter) and the sta-
tistical uncertainty of the mean.

The de-biased standard deviation is a measure of the com-
bined precision of the instruments that are being compared
(von Clarmann, 2006). It has been used in previous valida-
tion studies, for example for POAM III (Randall et al., 2003)
or MIPAS (Steck et al., 2007). It is expressed for a given
altitude as

σ(z) =

√√√√ 1

N(z) − 1

N(z)∑
i=1

(δi(z) − 1(z))2, (5)

whereN(z) refers to the number of coincidences at altitude
z, δi(z) is here the difference (absolute or relative) for theith
coincident pair calculated using Eq. (3), and1(z) the mean
difference (absolute or relative) calculated from Eq. (4).

The statistical uncertainty of the mean differences (also
known as standard error of the mean or SEM) is the quan-
tity that allows the significance of the estimated biases to be
judged. It is related to the de-biased standard deviation by

SEM(z) =
σ(z)

√
N(z)

. (6)

5 Comparisons – satellites

5.1 Solar occultation instruments

5.1.1 SAGE II

SAGE II (Mauldin et al., 1985) was launched in October
1984 aboard the Earth Radiation Budget Satellite (ERBS)
and remained operational until August 2005, thus provid-
ing a nearly continuous dataset over 21 years. ERBS was
in a 610 km altitude circular orbit with an inclination of 56◦.
SAGE II performed two occultation measurements per orbit
(1 SR and 1 SS), thus sampling two narrow latitude circles
each day. Over the course of a month, observations were
recorded with a nearly global coverage between∼80◦ S and
∼80◦ N.

The SAGE II dataset comprises profiles of O3, NO2, H2O
and aerosol extinction, measured using seven channels cen-
tered at wavelengths from 0.385 to 1.02µm. The ozone re-
trievals use data from the center of the Chappuis absorption
band measured by the 0.603µm channel. The retrieval algo-
rithm is described in detail byChu et al.(1989).

Data versions prior to version 6.00 have been the subject
of several publications, including an extensive study of ver-
sion 5.96 in the first Stratospheric Processes And their Role
in Climate assessment report (SPARC, 1998). In 2000, a ma-
jor revision of the retrieval algorithm corrected long-standing
data issues (version 6.00). Version 6.00 was used in detailed
comparisons with HALOE (Morris et al., 2002) and several
other instruments (Manney et al., 2001). Subsequent im-
provements, versions 6.10 and 6.20, were made and have
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Fig. 1. Mean profiles and differences for the ACE-FTS− SAGE II
coincidences. Results are shown for ACE-FTS SR (top panel) and
SS (bottom panel) observations. In each panel: Left: Mean VMR
profiles from ACE-FTS and SAGE II (solid lines) and associated
1-σ standard deviations (dot-dashed lines). The standard error – or
uncertainty – of the mean (standard deviation divided by the square
root of the number of profiles) is shown every 5 km as horizontal
error bars on the VMR profiles. Note that in some figures they
are smaller than the profile line width and cannot be distinguished.
The number of coincident pairs used is given every 5 km. Middle:
Mean absolute differences (ACE-FTS−SAGE II) in ppmv (solid
line), with corresponding de-biased standard deviations (dashed
line), and standard error (uncertainty) of the mean reported as error
bars. Right: Mean relative differences in percent (solid line) shown
as 2×(ACE-FTS−SAGE II)/(ACE-FTS+SAGE II), de-biased stan-
dard deviations of the mean relative differences (dashed line), and
standard error (uncertainty) of the mean (error bars).

been extensively validated (Wang et al., 2002; Kar et al.,
2002; Iyer et al., 2003; Randall et al., 2003; P. H. Wang et
al., 2006). The current version (version 6.20) shows good
agreement with correlative measurements within±5% above
∼18 km. At lower altitudes, the relative differences increase,

with a persistent low bias of−10% or more below∼10 km
(e.g.,Borchi et al., 2005; Nazaryan and McCormick, 2005;
Froidevaux et al., 2008). This version (v6.20) was used for
the comparisons with ACE-FTS and ACE-MAESTRO.

Applying the coincidence criteria (±2 h, ±5◦ in latitude
and±10◦ in longitude), we found 229 matches in the period
between August 2004 and early May 2005. Among these,
199 correspond to SR occultations for both instruments, and
30 to both SS observations. The ACE-FTS comparison re-
sults are shown in Fig.1 for the SR/SR (top panel) and the
SS/SS (bottom panel) comparisons. ACE-FTS reports con-
sistently higher ozone values than SAGE II at all altitudes.
The mean relative differences are within +10 to +17% in
the range 12–18 km, which is comparable to the low bias of
SAGE II ozone values previously reported (e.g.,Borchi et al.,
2005; P. H. Wang et al., 2006). They are within 0 to +10%
between 18 and 42 km for both SR and SS events, with aver-
age values of about +5 and +6% for SR and SS, respectively.
Above 42 km, both SR and SS comparisons show larger pos-
itive differences of up to +20%. Comparisons for SS events
yield generally smaller mean relative difference values, no-
tably around 12 km and in the range 38–44 km (<3%). Be-
low ∼18 km, the de-biased standard deviation of the mean
relative differences is large (within 30 to 60% for SR and
within 20 to 50% for SS), which is explained by the lower
number of coincident pairs and by the large natural variabil-
ity of the ozone field at these altitudes. Above 18 km, the
de-biased standard deviation of the mean relative differences
remains lower than 10% for both SR and SS events up to
the top of the comparison range. Note also that there is high
consistency shown by the standard deviation of the ACE-FTS
and SAGE II mean profiles, which confirms that both instru-
ments sounded airmasses with similar variability. Finally, the
observed differences are statistically significant as shown by
the very small values of the standard errors of the mean.

Figure2 shows the comparisons between the SAGE II and
ACE-MAESTRO ozone retrievals for the ACE-MAESTRO
SR (top panel) and SS (bottom panel) profiles, respectively.
For the SR cases, the agreement is very good between 15 and
55 km with mean relative differences within±3% through-
out, except near 20 km. For the ACE-MAESTRO SS events,
the agreement is again quite good (within±5% between 16
and 45 km), except for a significant positive bias between
45–55 km, reaching a maximum of +17% at 54 km. This
is much larger than the SR bias at these altitudes. In con-
trast to ACE-FTS, the relatively large standard errors of the
mean relative differences for the ACE-MAESTRO compar-
isons show that the observed biases are only marginally sig-
nificant: below 20 km for both SR and SS events, and in the
upper stratosphere for the SS comparisons. The standard de-
viation of the mean VMR profiles shows a noticeable scatter
of the ACE-MAESTRO VMR values, also reflected in the
de-biased standard deviation of the mean absolute and rel-
ative differences. These are within 30 to 70% for the SR
comparisons and within 10 to 50% for the SS comparisons.
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Fig. 2. Same as Fig.1, but for the comparisons between ACE-
MAESTRO and SAGE II. Top: comparison with ACE-MAESTRO
SR observations; bottom: comparison with ACE-MAESTRO SS
observations.

The estimated biases in the stratosphere found for ACE-
FTS and ACE-MAESTRO are comparable to these found in
previous validation studies for SAGE II. Note also that this
analysis provides an incomplete test of biases in the ACE (or
SAGE II) datasets since the ACE SR (SS) occultations are all
coincident with SAGE II SR (SS) occultations.

5.1.2 UARS/HALOE

The Upper Atmosphere Research Satellite (UARS) (Reber et
al., 1993) was deployed from the Space Shuttle Discovery in
September 1991. The satellite circled the Earth at an alti-
tude of 585 km with an orbital inclination of 57◦. HALOE
(Russell et al., 1993) remained in operation until November
2005 and performed two occultation measurements per or-
bit. A nearly-global latitude range (75–80◦ S to 75–80◦ N)
was sampled in about 36 days.
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Fig. 3. Same as Fig.1, but for the comparisons between ACE-FTS
and HALOE. Because of the limited number of SR comparisons,
results are shown for ACE-FTS SS observations only.

HALOE observations used 8 channels to measure infrared
absorption bands between 2.45 and 10.04µm, providing
VMR profiles of trace constituents (including O3, H2O, NO2,
and CH4) with a vertical resolution of∼2 km. O3 profiles
are retrieved with an onion-peeling scheme from the 9.6µm
channel, which provides an accurate product from the upper
troposphere to the mesopause (Russell et al., 1993).

Extensive validation studies have been conducted for pre-
vious versions of the HALOE dataset (e.g., for version 17:
Brühl et al., 1996; for version 18:Bhatt et al., 1999). The
latest version, version 19 (hereinafter V19) has also been
compared to numerous correlative measurements. Good
agreement, to within∼10%, was found in comparisons with
various satellite-borne instruments for the mid-latitudes in
November 1994 (Manney et al., 2001). Differences of 4 to
11% were found between HALOE V19 and SAGE II ver-
sion 6.10 throughout the stratosphere (Randall et al., 2003).
The differences with the POAM III version 3 ozone profiles
were typically smaller than 5% and always within±10%
(Randall et al., 2003). Comparisons with the MIPAS IMK-
IAA version V3O O3 7 retrievals show a global agreement
within 10% in the middle and upper stratosphere (Steck et al.,
2007). The agreement of the HALOE V19 O3 profiles with
the most recent release (version 2.2) of the Aura-MLS ozone
data product is∼5% between 68 and 2 hPa (∼20–42 km) but
degrades to 15% at 100 and 147 hPa (∼15 and∼14 km, re-
spectively), with Aura-MLS values larger than the HALOE
values (Froidevaux et al., 2008). In this study, we use the
HALOE V19 ozone retrievals.

In the comparisons, only 49 pairs of coincident profiles
were found using±2 h, ±5◦ in latitude and±10◦ in lon-
gitude for the coincidence criteria. As for SAGE II, there
are no SR/SS collocations, but only SR/SR and SS/SS events
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Fig. 4. Same as Fig.1, but for the comparisons between ACE-
MAESTRO and HALOE. Because of the limited number of SR
comparisons, results are shown for ACE-MAESTRO SS observa-
tions only.

(respectively 8 and 41 coincidences). In Fig.3, we present
the results for the SS/SS comparisons only, because of the
limited number of coincidences for the SR events. The ACE-
FTS mixing ratios exhibit a positive bias over most of the alti-
tude range. Mean relative differences for the SS comparisons
are within +4 to +13% in the range 15–42 km, increasing to
about +28% at 60 km. These larger positive mean relative
differences are similar to those noted with SAGE II and are
a persistent feature in most of the profile comparisons pre-
sented in this paper. The de-biased standard deviation of the
mean relative differences remains small at all altitudes above
∼17 km (<8% throughout). As for SAGE II, the standard
errors of the mean show that the observed differences are
statistically significant.

The ACE-MAESTRO comparisons were also done sep-
arately for SR and SS events. As for ACE-FTS, only the
comparison between ACE-MAESTRO SS and HALOE SS
results is shown (Fig.4). For this comparison, there is good
agreement between 12 km and 40 km, with mean relative dif-
ferences within 0 to +10% (+5% on average). The mean rel-
ative differences increase thereafter to a maximum of about
+27% near 55 km. This is generally similar to the ACE-FTS
– HALOE comparison shown above. Contrary to the com-
parisons with SAGE II, there is little discrepancy in the stan-
dard deviations of the ACE-MAESTRO and HALOE mean
VMR profiles, except above 45 km. The de-biased standard
deviations of the mean relative differences are larger than
those found for ACE-FTS but remain within 10% between
15 and∼50 km.

5.1.3 POAM III

POAM III (Lucke et al., 1999) was launched in March 1998
onboard the fourth Satellite Pour l’Observation de la Terre
(SPOT-4) in a sun-synchronous orbit, with an altitude of
833 km, an inclination of 98.7◦ and ascending node crossing
at 22:30 (local time). It is a solar occultation instrument able
to provide high-resolution (∼1 km) vertical profiles of O3,
NO2, H2O and aerosol extinction using nine filter channels
from 0.353 to 1.02µm. POAM III measured in high latitude
ranges throughout the year (∼55◦–71◦ N and∼63◦–88◦ S),
with satellite sunrises in the Northern Hemisphere and satel-
lite sunsets in the Southern Hemisphere. POAM III was op-
erational from April 1998 to early December 2005.

Briefly, the retrieval algorithm for POAM III consists of
a spectral inversion for species separation, followed by the
limb (vertical) inversion. Ozone is retrieved primarily from
the 0.603µm channel where the Chappuis absorption domi-
nates the total optical depth between 15 and 60 km.

The retrieval and error budget for the version 3 (v3) data
products are described in detail inLumpe et al.(2002). The
ozone v3 retrievals have been extensively compared and val-
idated using observations from aircraft, balloon and satellite-
borne instruments (seeRandall et al., 2003, and references
therein). They were shown to be highly accurate from 13 to
60 km with a typical agreement of±5%. A possible slight
bias of ∼5% was noted between the SR (Northern Hemi-
sphere) and SS (Southern Hemisphere) profiles, and a high
bias (up to 0.1 ppmv) was found below 12 km (Randall et
al., 2003). For these comparisons, we use version 4 (here-
inafter v4) of the POAM III retrievals. This version was
improved to account for problems in the POAM III v3 re-
trievals, due in part to unexpected instrument degradation
over the course of the mission. Comparative studies simi-
lar to those conducted with v3 show that the general conclu-
sions ofRandall et al.(2003) can be applied to POAM III v4
ozone data (http://eosweb.larc.nasa.gov/PRODOCS/poam3/
documents/poam3ver4 validation.pdf).

The quality flag implemented for the POAM III v4
O3 product (http://eosweb.larc.nasa.gov/PRODOCS/poam3/
documents/poam3ver4 documentation.pdf) was used for
data screening: altitude levels with non-zero values of the
quality flag were excluded from the calculations. We used
±2 h, ±5◦ in latitude and±10◦ in longitude for the coin-
cidence search. A total of 376 coincidences was found in
the comparison period, with about 1/3 in the Northern Hemi-
sphere (POAM III SR) and the remainder in the Southern
Hemisphere (POAM III SS).

Results are shown in Fig.5 for the ACE-FTS SR (top)
and SS (bottom) occultations. Mean relative differences
are within ±10% (+2 to +5% on average) between∼12
and ∼42 km for both SR and SS. In particular, the ACE-
FTS SS/POAM III SS results show an excellent agreement
with mean relative differences within±3% in the range 23–
41 km and de-biased standard deviation of the mean relative
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differences lower than 5%. These are indicative of a good
combined precision for these events and therefore imply low
random errors for the ACE-FTS retrievals. The largest dif-
ferences are found for the ACE-FTS SR/POAM III SS com-
parisons (109 coincidences, with mean relative differences
within 0 to +13%). Below 16 km, ACE-FTS measures con-
sistently less ozone than POAM III, with large mean rela-
tive differences corresponding to mean absolute differences
of less than 0.1 ppmv. The de-biased standard deviation of
the mean relative differences is lower than 8% (SR/SS and
SS/SR) and 15% (SR/SR and SS/SS) between about 12 and
42 km. Above 42 km, mean relative differences increase to
a maximum of +34% around 60 km. The largest mean rela-
tive differences are found for the ACE-FTS SR/POAM III
SS events in the range 42–48 km and for the ACE-FTS
SS/POAM III SR pairs (∼230 coincidences) above 42 km. In
each panel of Fig.5, a discrepancy in the mean relative differ-
ence profiles can be seen, notably at high altitudes. However,
when comparing all ACE-FTS SR profiles against POAM III
(top panel) and all ACE-FTS SS profiles against POAM III
(bottom panel), the resulting differences between the ACE-
FTS SR and SS observations are always lower than 1–2%
(not shown). Therefore the observed differences should not
be interpreted as showing a SR/SS bias of the ACE-FTS data.

The ACE-MAESTRO and POAM III comparisons were
done byKar et al.(2007) using measurements from Febru-
ary 2004 to September 2005. This slightly shorter compar-
ison period did not significantly lower the number of coin-
cidences. Therefore, a short summary will be given but the
reader is referred to the analysis ofKar et al.(2007) for more
information and to their Figs. 6a and 6b for illustration of
the results. ACE-MAESTRO SR events show consistently
smaller VMRs from 20–50 km when compared to POAM III
SR or SS profiles, with mean relative differences within−5
to −15%. The comparison of the ACE-MAESTRO SS pro-
files with POAM III yields mean relative differences within
±10% in the altitude range∼18–40 km, with smallest val-
ues (within±4% from 20–35 km) for the comparisons of
ACE-MAESTRO SS and POAM III SR. Above∼40 km, the
ACE-MAESTRO SS profiles show larger ozone values than
POAM III (up to +20% for POAM III SR and +30% for
POAM III SS). As for SAGE II or HALOE, the shape of
the relative difference profile above∼45 km for the ACE-
MAESTRO SS events is qualitatively similar to the results
obtained for ACE-FTS at high altitudes. Here also, the de-
biased standard deviation of the mean relative differences is
larger than that found for ACE-FTS, within 10 to 25% over
the comparison altitude range (18–40 km) (Kar et al., 2007).

5.1.4 SAGE III

SAGE III was an upgraded version of SAGE II and was
launched in December 2001 aboard the Russian Meteor-3M
satellite. The satellite is in a sun-synchronous orbit at an
altitude of 1000 km, with an inclination of 99.3◦ and an as-
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Fig. 5. Mean profiles and differences for the ACE-FTS− POAM III
coincidences. Results are shown for ACE-FTS SR (top panel) and
SS (bottom panel) observations. In each panel: Left: Mean VMR
profiles from ACE-FTS and POAM III (solid lines) and associ-
ated 1-σ standard deviations (dot-dashed lines). POAM III SR
(blue) mean profiles are paired with ACE-FTS (red) mean pro-
files and POAM III SS (green) are paired with ACE-FTS (black)
mean profiles. The standard error (uncertainty) of the mean is
shown every 5 km by error bars on the VMR profiles. The num-
ber of coincident pairs used is given every 5 km. Middle: Mean
absolute differences (ACE-FTS−POAM III) in ppmv (solid line),
with corresponding de-biased standard deviations (dashed line),
and standard error (uncertainty) of the mean reported as error
bars. The ACE-FTS−POAM III SR and ACE-FTS−POAM III
SS differences are shown in red and black, respectively. Right:
Mean relative differences in percent (solid line) shown as 2×(ACE-
FTS−POAM III)/(ACE-FTS+POAM III), de-biased standard devi-
ations of the mean relative differences (dashed line), and standard
error (uncertainty) of the mean (error bars). The colour scheme used
is the same as that used in the middle panel.

cending node crossing at 09:00 (local time). SAGE III used
solar and lunar occultation as well as limb scatter to make
measurements in 87 spectral channels (at wavelengths from
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Fig. 6. Same as Fig.5, but for the comparisons between ACE-FTS
and SAGE III. Results are shown for ACE-FTS SR observations
(top panel) and ACE-FTS SS observations (bottom panel).

280 to 1035 nm) using a grating spectrometer (SAGE ATBD
Team, 2002a). The solar occultation observations produced
high-resolution (∼1 km) profiles of O3, NO2, H2O and
aerosol extinction. The SAGE III solar occultation mea-
surements occured at high latitudes in the Northern Hemi-
sphere (45◦ N–80◦ N, satellite SS) and at mid-latitudes in the
Southern Hemisphere (60◦ S–25◦ S, satellite SR). This pro-
vided increased opportunities for measurements coincident
with ACE occultation events, particularly in the Northern
Hemisphere. SAGE III took measurements from May 2002
through December 2005.

Two different processing algorithms have been used for
SAGE III ozone retrievals in the upper troposphere and the
stratosphere. One is a SAGE II type (least-squares) algo-
rithm using only a few wavelengths and the second one em-
ploys a multiple linear regression (MLR) technique to re-
trieve ozone number densities from the Chappuis absorp-
tion band (SAGE ATBD Team, 2002b). The recent study

of H. J. Wang et al.(2006), using the latest release (ver-
sion 3.0) of the retrievals, showed that both products are
essentially similar from 15 to 40 km. When compared to
correlative measurements, the SAGE II type retrievals pro-
vide better precision above 40 km and do not induce artifi-
cial hemispheric biases in the upper stratosphere, whereas the
MLR retrieval yields slightly better accuracy in the upper tro-
posphere/lower stratosphere (UT/LS) region. Comparisons
with ozonesondes, SAGE II and HALOE show that the esti-
mated precision of SAGE III for the least-squares (SAGE II
type) retrieval algorithm is better than 5% between 20 and
40 km and∼10% at 50 km, and the accuracy is∼5% down
to 17 km. In particular, excellent agreement was found with
SAGE II from 15 to 50 km, with ozone values reported by
SAGE III systematically larger than those of SAGE II by
only 2–3%. Below 17 km, SAGE III ozone VMR values
are systematically larger than those of the comparison instru-
ments, by 10% at 13 km (H. J. Wang et al., 2006). We use
version 3.0 of the ozone data product from the SAGE II type
algorithm for the comparisons detailed hereafter.

Of the solar occultation instruments, the most coinci-
dences were found with SAGE III (648 events). There is very
good overall agreement between ACE-FTS and SAGE III, as
shown in Fig.6. Mean relative differences are within±6%
from 12–42 km (except for the ACE-FTS SR/SAGE III SR
results at 17 km) and generally smaller than±2%. Above
42 km, ACE-FTS reports larger VMRs than SAGE III (by
up to +20%). This is consistent with other comparisons pre-
sented in this study. There is no significant difference be-
tween the ACE-FTS SR and SS comparisons below 42 km.
Above this altitude, the SR results show slightly smaller
mean relative differences (by−2 to−6%) but are based on a
considerably lower number of coincidences. Based on these
comparisons, there does not appear to be a systematic SR/SS
bias in the ACE-FTS retrievals. The de-biased standard devi-
ation of the mean relative differences is within 15% at all al-
titudes but often smaller than 6%, a value comparable to the
estimated precision of the SAGE III retrievals. This could
mean that the ACE-FTS contribution to the combined ran-
dom errors of the comparison is very small.

As for POAM III, comparisons of ACE-MAESTRO with
SAGE III were conducted byKar et al. (2007) using nar-
rower geographic criteria (maximum distance of 500 km)
and will not be reproduced here. Mean relative differ-
ences within±5% are found between 15 and∼40 km for
the larger samples (ACE-MAESTRO SS/SAGE III SR and
ACE-MAESTRO SS/SAGE III SS). Above this range, the
ACE-MAESTRO SS profiles exhibit a large positive bias
with mean relative differences of up to +30%, larger than
those found for ACE-FTS. The de-biased standard deviation
of the mean relative differences is quite large (within 10 to
20%), which suggests that the ACE-MAESTRO spectral fit-
ting errors to not entirely account for the random errors of
the retrieval. For the ACE-MAESTRO SR measurements,
the mean relative differences are consistently within−5 to

Atmos. Chem. Phys., 9, 287–343, 2009 www.atmos-chem-phys.net/9/287/2009/
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−15% in the altitude range 28–55 km, with smaller values of
the de-biased standard deviation (<7%) compared to the SS
events. This is shown in Figs. 5a and 5b ofKar et al.(2007).

5.2 Odin

The Swedish-led Odin satellite, launched in February 2001,
is in a sun-synchronous, near-terminator orbit at∼600 km
with a 97.8◦ inclination and an ascending node crossing at
18:00 (local time) (Murtagh et al., 2002). This orbit provides
the limb-scanning instruments with latitudinal coverage in
the orbit plane from 82.2◦ N to 82.2◦ S. Odin serves both as-
tronomy and aeronomy objectives and, while in normal op-
eration, it shares time equally between aeronomy and astron-
omy measurements. The stratospheric mode (measured for
one day out of every three) scans the Earth’s limb from 7 to
70 km with a vertical speed of 0.75 km per second.

5.2.1 Odin/OSIRIS

The Optical Spectrograph and InfraRed Imager System
(OSIRIS) is one of the two instruments on Odin. It mea-
sures limb-scattered solar radiance in the spectral range 280–
810 nm with∼1 nm resolution (Llewellyn et al., 2004). The
instrument’s vertical field-of-view is∼1 km at the tangent
point. OSIRIS provides approximately 30 ozone profiles per
orbit over the sunlit hemisphere (about 60 profiles per orbit
during orbital equinox periods).

There are presently two versions of the OSIRIS ozone data
product. The retrieval algorithm for the first product is devel-
oped and maintained at York University (Toronto, Canada).
It applies the inversion technique developed byFlittner et al.
(2000) andMcPeters et al.(2000) to OSIRIS radiances mea-
sured at three wavelengths in the Chappuis absorption band
(von Savigny et al., 2003). The resulting ozone number den-
sity profiles, version 3.0 (v3.0), are provided from 10–46 km
with a 2 km spacing. The York v3.0 data products are de-
scribed inHaley and Brohede(2007). The major change
in the York v3.0 data product is the correction of a point-
ing drift affecting the previous retrieval versions. Total error
estimates for the O3 retrievals are 6% at about 24 km, in-
creasing to∼14% at 10 km and 33% at 44 km (Haley and
Brohede, 2007). These will be referred to as the “York re-
trievals” hereinafter. There were two previous releases of
the York ozone product (v1.2 and v2.4), yielding very simi-
lar results (agreement better than 3%). Version 1.2 has been
validated against coincident ozonesonde and satellite mea-
surements (Petelina et al., 2004, 2005a). These comparisons
showed a good agreement of the OSIRIS York data product
with correlative measurements, within±7% over the altitude
range 16–32 km. Recently, v3.0 data were validated against
Odin/SMR, POAM III, balloon-borne and ground-based in-
struments. An overall low bias of the York retrievals, gener-
ally of about−15% (−0.3 to−0.7 ppmv depending on the
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Fig. 7. Mean profiles and differences for the ACE-FTS− OSIRIS
(York) coincidences. Results for ACE-FTS SR and SS observa-
tions are combined. Left: Mean VMR profiles from ACE-FTS and
OSIRIS (York) (solid lines) and associated 1-σ standard deviations
(dot-dashed lines). The standard error (uncertainty) of the mean
is shown every 5 km using error bars on the VMR profiles. The
number of coincident pairs is given every 5 km. Middle: Mean ab-
solute differences (ACE-FTS−OSIRIS (York)) in ppmv (solid line),
with corresponding de-biased standard deviations (dashed line), and
standard error (uncertainty) of the mean reported as error bars.
Right: Mean relative differences in percent (solid line) shown as
2×(ACE-FTS−OSIRIS (York))/(ACE-FTS+OSIRIS (York)), de-
biased standard deviations of the mean relative differences (dashed
line), and standard error (uncertainty) of the mean (error bars).

altitude), was found in the range 10–35 km (Brohede et al.,
2007; Jégou et al., 2008).

The second OSIRIS ozone retrieval algorithm,
SaskMART, is developed and maintained at the University
of Saskatchewan (Saskatoon, Canada). We also compare
the ACE-FTS and ACE-MAESTRO ozone profiles with
version 2.1 (v2.1) of this product (hereinafter “SaskMART
retrievals”). The SaskMART algorithm combines informa-
tion from the Chappuis and the Hartley-Huggins bands to
infer the ozone number density from the cloud tops to the
lower mesosphere. It is described byRoth et al.(2007) and
uses a Multiplicative Algebraic Reconstruction Technique
(MART) and the SASKTRAN radiative transfer model
(Bourassa et al., 2007). SaskMART zonal mean profiles
were compared with SAGE II v6.20 and SAGE III v3.0
O3 profiles byRoth et al.(2007). Results show an overall
agreement within±5% for SAGE II and±10% for SAGE III
from 20–40 km, with OSIRIS reporting less ozone over most
of the altitude range. Comparisons with SAGE II, using the
complete OSIRIS SaskMART dataset over the full altitude
range of the retrievals (10–60 km), were conducted byDe-
genstein et al.(2008). The results show very good agreement
with SAGE II, with mean relative differences within±2%
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Fig. 8. Same as Fig.7, but for the comparisons between ACE-FTS
and OSIRIS (SaskMART).

between 18 and 53 km, and a substantial low bias below and
above this range (−20% at 58 km) (Degenstein et al., 2008).

For OSIRIS, the ACE-FTS profiles were first compared
with the York retrievals (Fig.7). Following the develop-
ers’ recommendation, only profiles for which the measure-
ment response is greater than 0.9 (i.e., where 90% or more
of the information content comes from the observation and
not from the a priori (Rodgers, 2000)) were included in the
analysis. Furthermore, the data were screened to exclude al-
titude levels for which the estimated vertical resolution is
>5 km. A total of 913 coincidences was found with crite-
ria of ±2 h, ±5◦ in latitude and±10◦ in longitude. As ex-
plained in Sect.3, results for ACE-FTS will now be given
for averages over all coincident events, with no SR/SS sepa-
ration. ACE-FTS consistently reports more ozone than the
OSIRIS York retrievals except at the lowermost altitudes
(11–12 km). Above 12 km, the mean relative differences are
within +4 to +11% throughout, with largest values at 18 and
at 37 km (∼+11%). Here also, the standard error values are
very small, indicating that the observed differences are sta-
tistically significant. These are, however, compatible with
other validation studies of the York v3.0 retrievals. The de-
biased standard deviation of the mean relative differences is
lower than 15% above 20 km and increases below this alti-
tude. Note again the very good consistency of the standard
deviations of the ACE-FTS and York mean VMR profiles (as
seen in most comparisons presented in this work).

Results of the comparison of ACE-FTS with the
SaskMART retrievals are presented in Fig.8. In these com-
parisons, the ACE-FTS VMR values are also consistently
larger than those of OSIRIS, but with better agreement (with
mean relative differences within±6%) in the altitude range
9–45 km. Above 45 km mean relative differences increase,
up to +44% at 60 km. The de-biased standard deviation of
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Fig. 9. Same as Fig.1, but for the comparisons between ACE-
MAESTRO and OSIRIS (York). Top: comparison with ACE-
MAESTRO SR observations; bottom: comparison with ACE-
MAESTRO SS observations.

the mean relative differences remains lower than 20% at all
altitudes between 18 and 55 km. Considering the low bias
previously noted in the comparisons of OSIRIS SaskMART
with SAGE II and SAGE III, this suggests that this large pos-
itive difference may be the combination of the persistent high
bias of ACE-FTS between∼45 and 55–60 km and of a low
bias of the SaskMART retrievals above∼50 km.

Figure 9 shows the results of the comparison be-
tween ACE-MAESTRO and the York retrievals, for ACE-
MAESTRO SR (top panel) and SS (bottom panel) occulta-
tions. For both types of events, the mean relative differ-
ences are within±5% between 16 and 26 km and within
+6 to +12% between 26 and 40 km. However, the ACE-
MAESTRO SR profiles around 37 km seem to have a larger
positive bias compared to the SS profiles, which is oppo-
site to the known SR/SS bias seen with the solar occultation
comparisons. The reason for this is not clear at this time.
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For ACE-MAESTRO, the de-biased standard deviation of the
mean relative differences is larger than for ACE-FTS, with
values within 10 to 25% found above 18 km. The de-biased
standard deviation of the mean relative differences is slightly
smaller for the SS comparisons than for the SR events, but by
less than 2–3%. Since these are an estimate of the combined
precision of the instruments, the comparison of the results
for ACE-FTS and for ACE-MAESTRO could indicate that
ACE-MAESTRO retrievals have a noticeably poorer preci-
sion than those of ACE-FTS.

The comparison results for ACE-MAESTRO and OSIRIS
SaskMART retrievals are shown in Fig.10 for ACE-
MAESTRO SR (top) and SS (bottom) events. The agree-
ment is quite good for the SR events, with mean relative dif-
ferences within±7% over the altitude range 18–59 km. For
ACE SS events, ACE-MAESTRO ozone mixing ratios have a
large positive bias between 40 and 60 km, similar to compar-
isons with most other instruments. However, the maximum
mean relative difference of∼15% near 53 km is somewhat
smaller than the corresponding positive bias for ACE-FTS at
this altitude. A SR/SS bias in ACE-MAESTRO ozone mea-
surements can be seen, particularly in the upper stratosphere.
The fact that the mean relative differences at the uppermost
levels are negative while the mean absolute differences are
small but positive is due to very low VMR values in the ACE-
MAESTRO retrievals for more than half (∼240 out of∼450)
of the coincident events. The de-biased standard deviation
of the mean relative differences for the comparison of ACE-
MAESTRO with the SaskMART retrievals is very similar to
the York comparisons, with a minimum of∼10% and a max-
imum of ∼28% in the altitude range 18–50 km, for both the
SR and SS events.

5.2.2 Odin/SMR

The Sub-Millimetre Radiometer (SMR) is the second instru-
ment on board the Odin satellite. It uses four tunable hetero-
dyne radiometers to observe thermal limb emission from at-
mospheric molecules, in the frequency range 486–581 GHz.
In the stratospheric mode, SMR measures several species re-
lated to stratospheric ozone processes in two frequency bands
centered at 501.8 GHz and 544.6 GHz, namely O3, HNO3,
ClO and N2O (Urban et al., 2005).

The current best ozone data product for SMR is version 2.1
of the operational processing developed at the Chalmers
University of Technology, Gothenburg, Sweden (hereinafter
Chalmers-v2.1). It uses the observations of a weak O3 line
near 501.5 GHz to retrieve ozone VMRs mainly in the strato-
sphere (above∼17–18 km at mid-latitudes), with a retrieval
scheme based on the Optimal Estimation Method (Rodgers,
2000). The vertical resolution achieved is on the order of
2.5–3.5 km below∼40–45 km. Chalmers-v2.1 and two pre-
vious operational ozone data products (v1.2 and v2.0) were
compared with ozonesondes and with the MIPAS ozone pro-
files retrieved with the ESA Level 2 processor prototype
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Fig. 10. Same as Fig.1, but for the comparisons between ACE-
MAESTRO and OSIRIS (SaskMART), for the ACE-MAESTRO
SR (top panel) and SS (bottom panel) events.

(Raspollini et al., 2006) version 4.61 in the recent study of
Jones et al.(2007). The SMR ozone v2.1 is very similar
to the older versions in the altitude range 20–45 km, but
is significantly improved below 20 km and above∼45 km.
Comparisons with MIPAS show relative differences of about
−10% (smaller than 0.4 ppmv) between 17 and 55 km, with
SMR reporting VMR values systematically smaller than
those of MIPAS. Absolute differences with ozonesonde mea-
surements are typically within±0.3 ppmv below 27 km, but
the SMR ozone VMRs are smaller than the ozonesonde mea-
surements in the tropics around 30 km (by more than 10% or
0.9 ppmv;Jones et al., 2007). We used the Chalmers-v2.1
SMR ozone data product for the comparisons with the ACE
instruments.

The comparisons were made with coincidence criteria of
±2 h, ±5◦ in latitude and±10◦ in longitude. Following the
recommendations of the retrieval team, only SMR data with
a profile quality flag value of 0 were used at altitude levels
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Fig. 11.Same as Fig.7, but for the comparisons between ACE-FTS
and SMR.

where measurement response was greater than 0.9 (seeUr-
ban et al., 2005, for a description of the measurement re-
sponse and the quality flag). The vertical range was lim-
ited to altitudes where the SMR measurements have a good
signal-to-noise ratio (∼20–55 km). A total of 1161 coinci-
dences was found in the comparison period. The results are
presented in Fig.11. Between 20 and∼55 km, ACE-FTS
consistently reports more ozone than SMR. The mean rel-
ative differences are within +2 to +13% (0.5 ppmv) below
∼25 km and within +13 to +20% between 25 and 41 km. In
the altitude range 41–55 km, the mean relative differences
are larger (within +20 to +30%), which is consistent with
the other comparisons presented in this study. Here, the de-
biased standard deviation of the mean relative differences is
very large, within 30 to 60% between 20 and 55 km. The
large positive bias is consistent with previous validation stud-
ies for SMR, and the large de-biased standard deviations of
the mean relative differences may indicate that the SMR in-
strument has a relatively limited precision since such large
values are not found in most other comparisons.

Similar comparisons were conducted with ACE-
MAESTRO and are presented in Fig.12. Overall, the
mean relative differences for the SR and SS events are
similar and comparable to those of ACE-FTS. Mean relative
differences are within±10% below 25 km and within +10
to +20% in the altitude range∼25–44 km (25–40 km) for
the ACE-MAESTRO SR (SS) events. The ACE-MAESTRO
SR data show more ozone below 33 km than the SS data,
which translates into larger values of the mean relative
differences (by up to +5%) with SMR at these altitudes. A
larger positive bias is also observed in the ACE-MAESTRO
– SMR comparisons between 40 and∼50 km, with a
maximum mean relative difference of about +28%. For both
SR and SS comparisons, the de-biased standard deviation
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Fig. 12. Same as Fig.1, but for the comparisons between ACE-
MAESTRO and SMR. Top: comparison with ACE-MAESTRO SR
observations; bottom: comparison with ACE-MAESTRO SS obser-
vations.

of the mean relative differences is comparable to that found
for ACE-FTS (within 30 to 60% over the altitude range
25–44 km). Above 50 km, the mean relative differences
rapidly decrease and become smaller than +5% at the top of
the comparison range (∼55 km).

5.3 TIMED/SABER

The Sounding of the Atmosphere using Broadband Emission
Radiometry (SABER) instrument is one of the four instru-
ments onboard the Thermosphere, Ionosphere, Mesosphere
Energetics and Dynamics (TIMED) satellite. TIMED was
launched in December 2001 into an orbit with an altitude of
∼625 km and an inclination of 74◦ (Russell et al., 1999). The
latitude coverage alternates between 54◦ S–82◦ N and 82◦ S–
54◦ N, and the local time coverage is∼22 h in about 60 days.
SABER uses ten channels in the near- and mid-IR spectral
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region (1.27–15µm) to perform broadband limb emission
measurements of pressure, temperature, the O2(

11) and OH
Meinel volume emission rates, as well as VMR profiles for
CO2, O3 and H2O. The retrieval code takes into account
non-local thermodynamic equilibrium (non-LTE) effects in
the emissions measured above∼55 km (Mertens, 2001). The
ozone profiles are retrieved from the 9.6µm channel, in
the vertical range∼12–∼100 km with a vertical spacing of
∼0.4 km.

The temperature and wind data have been used extensively
for comparisons and scientific publications (e.g.,Sica et al.,
2008; Forbes et al., 2006; Petelina et al., 2005b; Mertens
et al., 2004). However, at the time of writing, there are no
published comparisons for the SABER trace gas data. The
present study thereby constitutes the first large-scale inter-
comparison for the SABER ozone dataset. The SABER O3
data product available at the time of writing, version 1.06
(hereinafter v1.06), is used for the comparisons. A new ver-
sion (v1.07) is currently being developed, but the reprocess-
ing was not completed in time for this analysis. Version 1.07
should show significant changes in the SABER temperature
and ozone retrievals. For O3, it should yield lower VMR
values (by a few percent) in the stratosphere and a larger de-
crease (by 10% or more) in the mesosphere (B. T. Marshall,
personal communication).

Results for the ACE-FTS and SABER comparisons are
shown in Fig.13. The shape of the difference profile is sig-
nificantly different from the comparisons presented above.
A total of 6210 coincidences was found between ACE-FTS
and SABER with the criteria:±2 h and±5◦ and±10◦ for
the latitude and longitude differences, respectively. Narrower
coincidence criteria did not induce significant changes in the
results. Good agreement is found in the altitude range 19–
46 km, with mean relative differences within±7%. ACE-
FTS reports less ozone than SABER around the peak in
ozone VMR (31–42 km), but shows larger VMRs around
20 km and at altitudes between 42 and 56 km. Below 19 km
and above 56 km, the O3 VMRs measured by ACE-FTS are
systematically lower than those of SABER. Note that the
standard deviation of the SABER mean VMR profile is al-
ways larger than that of ACE-FTS, with largest discrepancy
found below 25 km. The de-biased standard deviation of the
mean relative differences is within 13 to 30% between 19
and 50 km. The expected decrease in the ozone VMR for
the SABER v1.07 ozone data product should significantly
reduce the discrepancies, notably in the mesospheric part of
the comparison range. However, the reasons for this particu-
lar behavior cannot be explained at this time.

The comparisons of the ACE-MAESTRO retrievals with
the SABER ozone profiles are shown in Fig.14. Large
mean relative differences are found at the top and at the
bottom of the altitude range for both the SR and the SS
events (below∼20 km and above∼52 km). Between 20 and
52 km, the ACE-MAESTRO SR profiles show good agree-
ment with SABER (Fig.14, top panel), with mean relative
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Fig. 13.Same as Fig.7, but for the comparisons between ACE-FTS
and SABER.

differences within±7% and decreasing with increasing al-
titude above 27 km. The corresponding de-biased standard
deviation values are within 20 to 40% in the altitude range
20–52 km. The mean relative difference profile for the SS
occultations (Fig.14, bottom panel) is closer in shape to
the results found for ACE-FTS, with values within±4% be-
tween 20 and 42 km and de-biased standard deviations of the
mean relative differences comparable to, but slightly smaller
than for the SR events (within 15 to 30%). Between 42 and
54 km, ACE-MAESTRO SS measurements show VMR val-
ues significantly larger than those of SABER, with mean rel-
ative differences of up to +16% around 48 km. As was found
for the comparisons between ACE-MAESTRO and OSIRIS
SaskMART in Sect.5.2.1, the mean relative differences at the
uppermost level of the comparison vertical range are negative
for ACE-MAESTRO SS occultations. This is also explained
by unusually low values of the retrieved ACE-MAESTRO
VMRs.

5.4 Envisat

The ESA Environmental Satellite (Envisat) was launched in
March 2002 into a quasi-polar, sun-synchronous orbit at an
altitude of 800 km, with an inclination of 98.6◦ and an as-
cending node crossing at 22:00 (local time). For most of the
onboard sensors, this allows complete coverage of the Earth
in one to three days. Three of the ten instruments are ded-
icated to atmospheric chemistry: the GOMOS, MIPAS and
SCIAMACHY instruments.

5.4.1 Envisat/GOMOS

GOMOS is a stellar occultation instrument, that has been in
operation since the launch of Envisat (seeKyrölä et al., 2004,
and references therein). It is a UV/visible/near-IR grating

www.atmos-chem-phys.net/9/287/2009/ Atmos. Chem. Phys., 9, 287–343, 2009



306 E. Dupuy et al.: Validation of ACE ozone

0 1 2 3 4 5 6 7 8 9
 

10

 

20

 

30

 

40

 

50

 

60

 

70

VMR [ppmv]

A
lti

tu
de

 [k
m

]

 

 

2714

2733

2783

2791

2801

2799

2804

2778

2738

2596

MAESTRO SR
SABER

0  0.4  0.8  1.2  1.6  2

Standard deviation [ppmv]

−1.5 −1  −0.5 0  0.5 1  1.5
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Difference [ppmv]
 −40  −20  0  20  40  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Difference [%]

0 1 2 3 4 5 6 7 8 9
 

10

 

20

 

30

 

40

 

50

 

60

 

70

VMR [ppmv]

A
lti

tu
de

 [k
m

]

 

 

3240

3338

3356

3358

3369

3371

3373

3373

3269

3081

MAESTRO SS
SABER

0  0.4  0.8  1.2  1.6  2

Standard deviation [ppmv]

−1.5 −1  −0.5 0  0.5 1  1.5
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Difference [ppmv]
 −40  −20  0  20  40  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Difference [%]

Fig. 14. Same as Fig.1, but for the comparisons between ACE-
MAESTRO and SABER. Top: comparison with ACE-MAESTRO
SR observations; bottom: comparison with ACE-MAESTRO SS
observations.

spectrometer that can measure about 100 000 star occulta-
tions per year with a vertical sampling of better than 1.7 km.
From these observations, atmospheric concentration profiles
are retrieved for O3, NO2, NO3, H2O, O2, Na, OClO and
stratospheric aerosols. The range of latitudes sampled by
GOMOS depends on the suitable stars available during each
orbit and thus varies throughout the year. GOMOS sounds
the atmosphere at different local solar times depending on
the position of the star that is being observed.

The ozone measurements are made in the 250–687 nm
spectral range. GOMOS ozone profiles are produced using
a two step retrieval process (Kyrölä et al., 2004, 2006). First,
the spectral inversion uses a nonlinear Levenberg-Marquardt
method to fit the refraction-corrected atmospheric spectra si-
multaneously at all wavelengths. Then, the onion-peeling
method is used to perform the vertical inversion to obtain
profiles. The typical altitude range of the GOMOS ozone re-

trievals is 15–100 km. The GOMOS precision is strongly
influenced by the star magnitude and temperature as both
can impact the signal-to-noise ratio of the measured spec-
tra. The daytime (bright-limb) occultations suffer from ad-
ditional noise from scattered solar light. Because of this,
the comparisons shown here will be restricted to nighttime
(dark-limb) observations. The GOMOS ozone profiles have
been validated using measurements from ozonesondes, lidars
and MWRs (Meijer et al., 2004). Between 14 and 64 km, the
differences were found to be 2.5–7.5% with GOMOS mea-
suring less ozone than the comparison instrument. In com-
parisons with MIPAS and SCIAMACHY, the agreement for
GOMOS dark limb profiles was−5% from 20–50 km and
+1% from 20–40 km, respectively (Bracher et al., 2005). The
level 2 data product used for these comparisons was ver-
sion 6.0a. Version IPF 5.00 is used for the comparisons with
ACE-FTS and the difference between these versions is ex-
pected to be less than 1–2%.

The approach taken for the GOMOS comparisons dif-
fers from that used for the other satellite instruments. In-
stead of calculating the mean of the relative differences for
the GOMOS and ACE-FTS comparisons, the weighted me-
dian difference is determined. This approach, used in earlier
GOMOS validation studies (e.g.,Fussen et al., 2005), was
adopted because outliers in either dataset can significantly in-
fluence the results of the comparison. The weighted median
difference,m, is calculated by minimizing the expression,

D(m) =

∑
i

wi · |xACE(i) − xGOMOS(i) − m|, (7)

with respect tom, wherexACE(i) andxGOMOS(i) are the pro-
file values at a given altitude, for coincidencei and for ACE-
FTS and GOMOS, respectively, andwi is the weighting fac-
tor, equal to the inverse of the combined estimated experi-
mental errors from ACE-FTS and GOMOS. Figure15shows
the dependence of the weighted median difference at 24.5 km
on the number of collocated events and the spatial and tem-
poral coincidence criteria used for the comparisons. From
these results, it can be seen that a larger dataset improves
the statistical significance although a slight linear bias is ap-
parent. Using criteria of±12 h and 500 km, 1240 pairs of
collocated profiles were identified for the comparisons.

Because both datasets extend into the mesosphere (60–
80 km), we have used the Simulation of Chemistry, Radi-
ation, and Transport of Environmentally important Species
(SOCRATES) model to correct the GOMOS data for diurnal
variations between the observation time and the local sun-
set or sunrise. SOCRATES is a two-dimensional chemistry-
climate model which extends from the surface to the lower
thermosphere. The version used here is optimized to study
the heat budget and the photochemistry in the mesosphere
(Chabrillat and Fonteyn, 2003; Kazil et al., 2003). Because
the present study requires a precise representation of the
chemical composition at sunrise and sunset, the model was
run with a photochemical time step of 5 min over a whole
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Fig. 15. Dependence of the weighted median difference,m, on the ACE-FTS – GOMOS coincidence characteristics. In panels from left to
right: variation ofm relative to the number of coincident events, to the distance between the measurements and to the time difference. The
altitude shown is 24.5 km.

year with solar flux conditions representative of the year
2004. Each GOMOS observation was scaled by the mod-
eled ratio between ozone density at local sunset or sunrise
and ozone density at the observation time.

The results of the ACE-FTS – GOMOS comparisons are
presented in Fig.16. The differences shown in Fig.16
were calculated after applying the photochemical correction
from the SOCRATES model. A good agreement (median
relative differences within±10%) can be observed in the
stratosphere (15–40 km) with a slight positive bias increas-
ing slowly with altitude. However, there exists a larger bias
(up to +40%) between 40 and 60 km, similar to other com-
parisons. Above 60 km, the positive bias increases strongly
when comparing the ACE-FTS and corrected GOMOS pro-
files. Without applying the photochemical correction, ACE-
FTS reports significantly less ozone than GOMOS (with me-
dian relative differences down to about−80%, not shown).
Because of the photochemical correction method used and
the low ozone number densities, it is difficult to draw con-
clusions about the accuracy of the ACE-FTS profiles in the
mesosphere based on these relative differences.

The GOMOS observations have better vertical resolution
than the ACE-FTS profiles. Thus, we also performed an
additional qualitative comparison. Since the ACE-FTS re-
trievals do not produce averaging kernels, an empirical trian-
gular smoothing function was therefore applied to the GO-
MOS data. This was done to degrade their vertical resolution
(from initial values of 0.3 to 1.7 km) in order to minimize the
differences between the median profiles. The agreement be-
tween both datasets was considerably improved, as seen in
Fig. 16. However, this result was obtained using a convolu-
tion function with a FWHM of 10.5 km, which could indicate
that the effective resolution of the ACE-FTS measurements
is larger than 10 km in the upper mesosphere.

5.4.2 Envisat/MIPAS

MIPAS is a mid-IR Fourier transform emission spectrome-
ter designed to perform global-scale continuous (day/night)
limb-sounding measurements of VMR profiles for a range of
atmospheric species (Fischer et al., 2008). For this purpose,
it acquires spectra in five frequency bands over the range
685–2410 cm−1 (14.6–4.15µm). Global measurements are
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Fig. 16. Weighted median profiles and differences for the ACE-FTS and GOMOS coincidences. Left: Number density weighted median
profiles (thick red) and associated 16 and 84 percentiles (thin red) for ACE-FTS. For GOMOS, the weighted median profile photochemically
corrected by the SOCRATES model (“extrapolated” or “ext”, thick blue line) and the weighted median profile convolved with the empirical
triangular function (“convolved” or “conv”, dashed black line) are shown. Middle: Weighted median profile (thick line) and associated 16
and 84 percentiles (thin lines) for the absolute differences between the ACE-FTS and the photochemically corrected GOMOS profile (ACE-
FTS−GOMOS) in cm−3

× 1011. Right: Weighted median profile and 16 and 84 percentiles for the median relative differences between
ACE-FTS and the photochemically corrected GOMOS profiles expressed as (ACE-FTS−GOMOS)/GOMOS [%].

achieved every day (Cortesi et al., 2007). The pointing sys-
tem allows MIPAS to observe atmospheric parameters in a
maximum altitude range of 5–160 km with a vertical spacing
of 1–8 km depending on the altitude and on the measurement
mode (Fischer et al., 2008). Operational measurements at
full spectral resolution (0.025 cm−1) were conducted from
July 2002 to March 2004. However, anomalies affecting the
interferometer slide mechanism led to the suspension of op-
erations on 26 March 2004. Observations were resumed in
January 2005 with a new operation mode, on a finer verti-
cal grid and with reduced spectral resolution (0.0625 cm−1).
The following analyses present the comparisons of the ACE-
FTS data product with three MIPAS datasets: the operational
ESA processor (MIPAS full resolution mission), the ESA
prototype processor used for validation purposes (reduced
resolution observations) and the IMK-IAA scientific proces-
sor (full resolution observations). During the time period cor-

responding to the full resolution observations, ACE-FTS ac-
quired data from SS occultations only. Therefore, there are
no ACE-FTS SR events in the comparisons with the ESA
operational retrievals and the IMK-IAA retrievals.

Comparison of ACE-FTS with the operational ESA retrievals

The algorithm used for the ESA near-real-time Level 2 anal-
ysis is based on the Optimised Retrieval Model (ORM) sci-
entific prototype (Raspollini et al., 2006; Ridolfi et al., 2000).
Given the redundancy of measurements in MIPAS limb-
scanning sequences, vertical profiles do not need constraints
such as a priori information. Complementary information,
when available, can however be used to improve the quality
of the retrieved parameters (Ridolfi et al., 2000). The re-
trieval uses a set of microwindows designed to obtain maxi-
mum information on the target species while minimizing the
total error and the computing cost (Raspollini et al., 2006).
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The microwindow selection algorithm is described byDud-
hia et al.(2002). The standard products of the ESA pro-
cessor are the atmospheric pressure and temperature pro-
files along with the volume mixing ratio profiles of 6 “key
species”: H2O, O3, HNO3, CH4, N2O and NO2. These are
provided at the tangent heights of the MIPAS measurements
during the full resolution mission, i.e., from 68–6 km with a
variable vertical spacing ranging from 3 km below 42 km to
8 km above 52 km. A detailed validation analysis of the data
acquired during the full resolution mission can be found in
Cortesi et al.(2007). Briefly, the MIPAS profiles retrieved
with the ESA operational processor (version 4.61 and 4.62)
showed very good agreement with the correlative datasets in
the middle and upper stratosphere, with relative differences
within ±10% in the altitude range between∼20 and∼50 km
(50–1 hPa). In the UT/LS, MIPAS profiles show a significant
positive bias of +5 to +25% with respect to the coincident
observations (Cortesi et al., 2007).

Here, MIPAS operational ozone data version 4.62 (ESA-
v4.62) are compared with ACE-FTS. We found a total of 138
events at latitudes 70◦–80◦ N, using coincidence criteria of
±6 h and 300 km. The time constraint was relaxed to 6 h
(instead of the typical 2 h) in order to increase the statistics
of the comparison since it did not introduce notable biases
in the atmospheric sampling. For MIPAS, only profiles as-
sociated with a successful pressure/temperature and target
species retrievals have been considered. The results of the
comparison are summarized in Fig.17. Mean relative dif-
ferences are within±10% between 11 and 41 km, with a lo-
cal maximum of about +10% (+0.44 ppmv) at 30 km. Be-
tween 35 and 48 km, ACE-FTS reports increasingly larger
ozone values, with a pronounced maximum around 48 km
corresponding to mean relative differences of +58% (about
+1.4 ppmv). The amplitude of this peak is larger than the
high altitude bias noted in other comparisons, but is limited
to a narrower altitude range. The de-biased standard devia-
tion of the mean relative differences is low (<10%) between
17 and 25 km and increases above and below this range, but
remains within 25% at all altitudes between 11 and 41 km.
As for most comparisons, the standard error of the mean is
very small, showing that the observed biases are statistically
significant.

Comparison of ACE-FTS with the reduced-resolution mis-
sion ESA data product

New measurement scenarios were adopted for the reduced
resolution mission. These scenarios are characterized by a
finer vertical limb scanning step of 1.5 km from 6–21 km,
2 km from 21–31 km, 3 km from 31–46 km (i.e., equal to
the instrument field-of-view) and 4 km above 46 km. A de-
tailed description of these measurement scenarios can be
found inCeccherini et al.(2006). Since the retrieval is per-
formed at the tangent altitudes, the use of a limb scanning
step smaller than the width of the instrument field-of-view
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Fig. 17. Same as Fig.7, but for the comparisons between ACE-
FTS and the MIPAS ozone product retrieved from the full resolution
observations with the ESA operational processor v4.62.

introduces instabilities in the retrieval and requires a regular-
ization to avoid oscillations in the retrieved profiles. For this
reason, the ORM retrieval code was modified to implement
a Tikhonov regularization scheme that is described in detail
by Ceccherini et al.(2007). Furthermore, a new set of mi-
crowindows, optimised for the new measurement mode, was
selected using the same algorithm as for the full resolution
observations. In particular, a larger number of spectral points
is considered, in order to compensate for the loss of informa-
tion content caused by the reduced spectral resolution. Com-
parison of the results obtained for the full and reduced resolu-
tion measurements showed that the new algorithm yields im-
proved spatial resolution (horizontal and vertical) and lower
retrieval errors (Ceccherini et al., 2006). A first study of the
quality of the MIPAS reduced resolution ozone profiles was
reported byCeccherini et al.(2008). In general, the quality
of the ozone profile retrieved from reduced-resolution mea-
surements is comparable or better than that obtained from the
full-resolution dataset. The only significant change in MI-
PAS performance is found at altitudes around 40 km, where
a bias of approximately 3% is observed between full and
reduced-resolution datasets.

For this comparison, we used±5◦ and±10◦ for the lati-
tude and longitude criteria, respectively. Here also, the time
criterion was relaxed to±6 h to increase the number of coin-
cident pairs. A total of 160 coincidences was found. We used
the MIPAS profiles retrieved with the ESA MIPAS Level 2
processor prototype (version ML2PP/5.0). These are a pre-
liminary set of data that ESA generated for validation pur-
poses. Figure18 shows the results of the comparison. They
are qualitatively consistent in the stratosphere with those
from the full resolution observations. Mean relative differ-
ences are within±8% between 14 and 45 km, with closest
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Fig. 18.Same as Fig.7, but for the comparisons between ACE-FTS
and the MIPAS ozone product retrieved from the reduced resolution
observations with the ESA ML2PP/5.0 processor.

agreement around 20 and around 38 km (±3%). Correspond-
ing de-biased standard deviation values are within 12% in the
range 20–58 km and increase subtantially above and below.
At altitudes between 45 and 65 km, the mean relative differ-
ences are larger, with a maximum of +27% (55 km). This is
consistent with the comparisons with other satellite sensors.

Comparison of ACE-FTS with the IMK-IAA
scientific processor

The IMK-IAA retrieval scheme (von Clarmann et al., 2003,
and references therein) is a scientific processor complemen-
tary to ESA’s near-real-time analysis. It is based on regu-
larized inversion using a first-order Tikhonov-type smooth-
ing constraint (von Clarmann et al., 2003) and optionally
includes non-LTE calculations, implemented at the IAA, to
analyse cases (specific molecular species and/or altitude lev-
els) where the LTE assumption is not verified. Ozone re-
trievals use a set of 10 microwindows within the spectral
ranges 740–800 cm−1 and 1060–1110 cm−1 where non-LTE
emissions are mostly negligible (Glatthor et al., 2006). The
retrieved profiles are provided on a vertical grid with finer
spacing than the tangent height distances: 1 km up to 44 km
and 2 km from 44 to 70 km (von Clarmann et al., 2003). For
the analysis presented here, the current IMK-IAA ozone data
product (V3OO3 7) is used for the full spectral resolution
observation period. This product was compared bySteck
et al. (2007) with ground-based instruments, ozonesondes
and observations from HALOE and POAM III. They found
relative differences within±10% in the stratosphere, with
a precision of 5–10% and an accuracy of 15–20%. Below
18 km, the precision was reduced to 20% or more (Steck et
al., 2007).
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Fig. 19. Mean profiles and differences for the comparisons be-
tween ACE-FTS and the MIPAS ozone product retrieved from the
full resolution observations with the IMK-IAA processor. Results
are shown for MIPAS daytime (top panel) and nighttime (bottom
panel) observations. In each panel: Left: Mean VMR profiles
are shown for the ACE-FTS (red solid line), IMK-IAA original re-
trievals (black solid line) and IMK-IAA retrievals using the photo-
chemical correction from KASIMA (blue solid line, see text). Mid-
dle: Mean absolute difference profiles (ACE-FTS−IMK-IAA) in
ppmv for the IMK-IAA original retrievals (black) and the retrievals
corrected with KASIMA (blue), with corresponding de-biased stan-
dard deviations (dashed line), and standard error (uncertainty) of
the mean reported as error bars. Right: Mean relative differences
in percent (solid line) shown as 2×(ACE-FTS−IMK-IAA)/(ACE-
FTS+IMK-IAA), de-biased standard deviations of the mean rela-
tive differences (dashed line), and standard error (uncertainty) of
the mean (error bars) for comparisons with the IMK-IAA original
retrievals (black) and the retrievals corrected with KASIMA (blue).

Using criteria of±9 h and 800 km, we found a total of
333 (348) coincidences between ACE-FTS and the daytime
(nighttime) measurements from MIPAS. The results of the
comparisons are shown in Fig.19, for daytime (top panel)
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and nighttime (bottom panel) MIPAS profiles. To take into
account diurnal variations in the ozone abundance, the re-
trieved MIPAS data were corrected using the KArlsruhe SIm-
ulation model of the Middle Atmosphere (KASIMA) chem-
istry and transport model (Kouker et al., 1999). Mean rel-
ative differences between ACE-FTS and the MIPAS data
are within ±8% from 12 to 43 km in both the KASIMA-
corrected and uncorrected cases, with the ACE-FTS VMRs
generally larger than those of MIPAS. The de-biased stan-
dard deviation of the mean relative differences is smaller than
15% in this range for both daytime and nighttime observa-
tions and smaller than 10% above 18 km, with slightly better
results for the nighttime MIPAS measurements (up to 8%).
When compared with the precision estimates of the MIPAS
IMK-IAA product (previous paragraph), this seems to indi-
cate, as mentioned previously, that the ACE-FTS random er-
rors are small. This is also consistent with the results for
the ESA retrievals from the full and reduced resolution data
products. Above 40 km, the KASIMA correction generally
improves the comparison. Overall, the mean relative differ-
ences become larger with increasing altitude, with values of
about +40% (+0.9 ppmv) at 48 km. For daytime MIPAS mea-
surements, a sharp decrease of the mean absolute differences
can be noted around 52 km. The daytime mean relative dif-
ferences at these altitudes are more affected by outliers but
show a generally better agreement than the nighttime com-
parisons.

5.4.3 Envisat/SCIAMACHY

SCIAMACHY is a limb- and nadir-viewing imaging spec-
trometer, also capable of occultation measurements. It uses
eight channels in the UV, visible and near-IR spectral range
from 240 to 2380 nm, with a moderate resolution of 0.2–
1.5 nm (Bovensmann et al., 1999). Number density pro-
files of several atmospheric species (such as O3, NO2, BrO,
OClO), as well as polar stratospheric clouds and noctilucent
clouds, are routinely retrieved from the limb measurements
from the surface to∼92 km with a vertical spacing of 3.3 km
(e.g.,Brinksma et al., 2006).

The retrievals of stratospheric ozone density profiles in the
15–40 km altitude range from SCIAMACHY limb scattering
measurements, used in this study, are the scientific retrievals
done at the Institute of Environmental Physics (IUP, Bre-
men, Germany). They use version 1.63 of the Stratozone re-
trieval code (von Savigny et al., 2005a). Stratozone employs
limb radiance profiles at three discrete visible wavelengths
(525 nm, 600 nm, 675 nm) and exploits the differential ab-
sorption signature of ozone between the center and the wings
of the Chappuis absorption band. A nonlinear iterative Op-
timal Estimation scheme drives the radiative transfer model
SCIARAYS (Kaiser and Burrows, 2003), which is used as
the forward model.

As the SCIAMACHY limb tangent heights are affected
by errors of up to 2.5 km (von Savigny et al., 2005b), in

this study we used tangent height retrievals using the Tan-
gent height Retrieval by UV-B Exploitation (TRUE) algo-
rithm (Kaiser et al., 2004) version 1.7 to correct the tangent
heights prior to the O3 profile retrieval. TRUE version 1.7
uses pressure and temperature data from the European Cen-
ter for Medium-range Weather Forecast (ECMWF) for the
location, date and time of each limb measurement. The
ozone profile information required for the tangent height re-
trieval is taken from the dynamic ozone climatology ofLam-
sal et al.(2004), providing ozone profiles as a function of
total ozone columns for five latitude regimes, in combina-
tion with total ozone column measurements from the Earth
Probe – Total Ozone Mapping Spectrometer (EP-TOMS,
http://toms.gsfc.nasa.gov/indexv8.html) for the location and
date of each SCIAMACHY limb measurement. The tangent
height offsets derived for tropical latitudes, where TRUE
provides the most accurate results, are applied to all limb
measurements in the corresponding orbit. The mean tan-
gent height offset for 2004 is about−1.5 km. Previous
SCIAMACHY IUP ozone profiles (version 1.6) have been
validated extensively with lidars, ozonesondes, MWRs and
SAGE II and SAGE III data (Brinksma et al., 2006). Re-
sults showed that the SCIAMACHY-IUP v1.62 data product
is biased low between 16 and 40 km, by a few percent (3–
6% with a standard deviation of∼10%). In this analysis, we
use version 1.63 of the IUP ozone number density profiles
for SCIAMACHY. The difference between versions 1.62 and
1.63 is the improved pointing correction provided by TRUE
version 1.7 algorithm.

The criteria chosen for the ACE-FTS and SCIAMACHY
comparisons are a maximum difference of±6 h and a max-
imum distance of 500 km. This gives a total of 734 coinci-
dences between March and December of 2004, with more
than 75% occurring in the Arctic polar region in the lat-
itude range 60◦–82◦ N, out of which 90% or more of the
SCIAMACHY events are measured at high solar zenith an-
gle (70◦–85◦). The overall results are shown in Fig.20. The
vertical range was limited to 17–41 km, since the retrieval
below and above this range is dominated by the a priori and
there is no information from the measurement. Over the full
altitude range, the mean relative differences are within±4%
(with de-biased standard deviations, within 8 to 16%, consis-
tent with previous validation results for SCIAMACHY IUP
v1.62 data), except around 30 km where ACE-FTS reports
larger ozone values than those of SCIAMACHY by up to
+15%. This large bias around 30 km is noted in the high-
solar zenith angle SCIAMACHY observations, mostly in the
Arctic (564 events), but is not seen in other regions. It is
still present in the most recent version of the SCIAMACHY
ozone data product (v2.0, currently in development), but its
amplitude is significantly reduced (<10%) in comparisons
with HALOE and SAGE II. The source of this bias is still
unclear.
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Fig. 20. Same as Fig.7, but for the comparisons in number density
between ACE-FTS and the SCIAMACHY IUP v1.63 ozone data
product.

5.5 Aura-MLS

The Aura satellite (Schoeberl et al., 2006) was launched in
July 2004 in a sun-synchronous, quasi-polar orbit, with an
altitude of ∼700 km, an inclination of 98◦ and ascending
node crossing at 13:45 (local time). MLS aboard Aura scans
the Earth’s limb to measure thermal emission at millimeter
and submillimeter wavelengths, using seven radiometers de-
signed to cover five broad spectral regions from 118 GHz to
2.5 THz. The Aura-MLS instrument, calibration and perfor-
mance for the different channels are described byJarnot et al.
(2006), Cofield and Stek(2006) andPickett(2006). The orbit
geometry provides global coverage from 82◦ S to 82◦ N each
day. 240 vertical scans are performed during each orbit, al-
lowing the retrieval of∼3500 profiles per day for 17 primary
atmospheric parameters: pressure, temperature and cloud ice
water content, as well as 14 trace constituents such as O3,
H2O and CO. An overview of the instrument and observation
characteristics, main spectral lines and target species can be
found inWaters et al.(2006).

The retrieval scheme is based on the Optimal Estimation
Method (Rodgers, 2000). Taking advantage of the forward-
looking geometry of the instrument with respect to the space-
craft, the innovative approach of the Aura-MLS retrievals re-
sides in the combination of∼5–10 subsequent scans to re-
trieve atmospheric parameters on a two-dimensional grid, in
the vertical direction and along the line-of-sight. This re-
trieval approach is detailed byLivesey et al.(2006). The
vertical retrieval is provided on a standard pressure grid with
6 pressure surfaces per decade change in stratospheric pres-
sure, and 3 levels per decade for pressures smaller than
0.1 hPa. The corresponding vertical resolution is 3–5 km.
The ozone volume mixing ratio is retrieved from the obser-
vations of the radiometer centered at 240 GHz.

The Aura-MLS ozone version 1.5 dataset was compared
with numerous correlative datasets (including SAGE II,
HALOE, POAM III and the previous data version (v2.1) of
ACE-FTS O3) in the early validation study ofFroidevaux et
al. (2006) and with Odin/SMR (Bordeaux version 222 pro-
cessor) byBarret et al.(2006). An overall agreement of 5–
10% was found throughout the stratosphere, with Aura-MLS
biased high in the lower stratosphere but low in the upper
stratosphere. Extensive validation of the Aura-MLS version
2.2 (hereinafter v2.2) ozone product, with a limited time cov-
erage, showed better results than version 1.5 with respect to
the correlative datasets, with an agreement of 5–8% in the
stratosphere (Froidevaux et al., 2008; Boyd et al., 2007; Jiang
et al., 2007). Estimated precision is about 5% or better be-
tween 100 and 3 hPa.

The comparisons presented here extend the analyses of
Froidevaux et al.(2008) to the full Aura-MLS v2.2 dataset
processed (as of May 2007) and include comparisons with
ACE-MAESTRO. At the time of the analysis, coincidences
were available on 465 dates, with very few in 2004 (19) and
the remainder evenly distributed in the other years. A total of
3180 coincidences was found using the coincidence criteria:
±2 h, ±5◦ in latitude and±10◦ in longitude. We used the
recommended parameters for screening the Aura-MLS data:
quality value>0.4, positive precision, even values of the sta-
tus flag, and convergence<1.8 (Froidevaux et al., 2008). We
also limited the vertical range of the comparisons to the alti-
tudes∼10–65 km as recommended for Aura-MLS and ACE-
MAESTRO. For the comparison, the Aura-MLS vertical pro-
files were interpolated in log(pressure) onto the ACE-FTS
pressure levels and subsequently reported on the ACE-FTS
or ACE-MAESTRO altitude grid.

The results of the comparisons for ACE-FTS are shown
in Fig. 21. ACE-FTS reports consistently more ozone than
Aura-MLS over the comparison range. Between 12 km and
43 km (∼2 hPa), the mean relative differences are within 0 to
+10% and often smaller than +4%. Above 43 km and below
∼60 km, they are within +10 to +25%, with the maximum
value found at 53 km (∼0.6 hPa). This is consistent with
the findings ofFroidevaux et al.(2008) and with the other
comparisons presented in this paper. The de-biased standard
deviation of the mean relative differences is within 25% in
the full altitude range and smaller than 12% between 24 and
48 km.

The results for ACE-MAESTRO are presented in Fig.22,
recalling what was found for SABER. The ACE-MAESTRO
SR profiles show larger VMRs than Aura-MLS in the range
21–57 km, with mean relative differences within +2 to +15%
(+6% on average), in closest agreement with the Aura-MLS
data around 38 km (∼ +2%). Above and below this range, the
SR retrievals report VMR values increasingly smaller than
those of Aura-MLS, with mean relative differences down to
about−50% at the limits of the comparison range. In the
case of the ACE-MAESTRO SS events, the mean relative
differences increase with increasing altitude, with values
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Fig. 21.Same as Fig.7, but for the comparisons between ACE-FTS
and Aura-MLS.

ranging from−10% at 15 km (∼120 hPa) to a maximum
of +21% at 52 km (∼0.7 hPa), similar to that found for the
ACE-FTS comparisons. For both SR and SS comparisons
the de-biased standard deviation of the mean relative differ-
ences is within 10 to 25% between 19 and∼45 km, generally
larger than what was found for ACE-FTS, suggesting again a
poorer precision of the ACE-MAESTRO observations. Note
that the standard deviation of the mean VMR profiles shows
significant discrepancies for both SR and SS events.

6 Comparisons with airborne, balloon-borne and
ground-based instruments

6.1 Aircraft measurements from ASUR

ASUR is a microwave receiver operating in a tunable fre-
quency range between 604.3 and 662.3 GHz (von Koenig et
al., 2000). It measures atmospheric emission from various
trace gas molecules including O3, N2O, HNO3 and ClO.
Stratospheric measurements performed with the Acousto-
Optical Spectrometer (AOS) are used in this intercompari-
son exercise. The total bandwidth of the AOS is 1.5 GHz
and its resolution is 1.27 MHz. The heterodyne sensor is op-
erated on board a high-flying research plane to avoid strong
absorption signals from tropospheric water vapor. The in-
strument looks upwards at a stabilized constant zenith angle
of 78◦. Measured spectra are integrated during up to 80 s,
which leads to a horizontal resolution of about 18 km along
the flight path. Vertical abundance profiles are retrieved on
a 2 km-spacing altitude grid using the Optimal Estimation
Method (Rodgers, 2000). Vertical resolution of the ozone
measurements is about 6–18 km, and the vertical range is 16–
50 km. The precision of a single measurement is 0.1 ppmv (3
to 8% depending on the altitude) and the accuracy (includ-

0 1 2 3 4 5 6 7 8 9
 

10

 

20

 

30

 

40

 

50

 

60

 

70

VMR [ppmv]

A
lti

tu
de

 [k
m

]

 

 

1120

1147

1253

1254

1254

1254

1254

1248

1248

1248

765

MAESTRO SR
MLS

0  0.4  0.8  1.2  1.6  2

Standard deviation [ppmv]

−1.5 −1  −0.5 0  0.5 1  1.5
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Difference [ppmv]
 −40  −20  0  20  40  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Difference [%]

0 1 2 3 4 5 6 7 8 9
 

10

 

20

 

30

 

40

 

50

 

60

 

70

VMR [ppmv]

A
lti

tu
de

 [k
m

]

 

 

1366

1732

1845

1905

1908

1900

1892

1891

1885

1866

1227

MAESTRO SS
MLS

0  0.4  0.8  1.2  1.6  2

Standard deviation [ppmv]

−1.5 −1  −0.5 0  0.5 1  1.5
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Difference [ppmv]
 −40  −20  0  20  40  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Difference [%]

Fig. 22. Same as Fig.1, but for the comparisons between
ACE-MAESTRO and Aura-MLS. Top: comparison with ACE-
MAESTRO SR observations; bottom: comparison with ACE-
MAESTRO SS observations.

ing systematic uncertainties) is 15% or 0.3 ppmv, whichever
is greater. Details about the measurement technique and re-
trieval theory can be found inKuttippurath et al.(2007).

The ASUR ozone measurements used in this study were
performed aboard the NASA DC-8 aircraft during the Polar
Aura Validation Experiment (PAVE) (http://www.espo.nasa.
gov/ave-polar/). These were compared with ACE-FTS and
ACE-MAESTRO using coincidence criteria of±12 h and
1000 km. This resulted in a total of 39 (37) coincident ASUR
measurements with ACE-FTS (ACE-MAESTRO), from 5
flights out of Portsmouth (New Hampshire, USA) reaching
northern high latitudes (∼65◦ N) on 24, 29 and 31 January
and 2 and 7 February 2005. The corresponding ACE-FTS
and ACE-MAESTRO occultations were obtained exclusively
at sunrise. The ACE-FTS and ACE-MAESTRO VMR pro-
files were convolved with the ASUR averaging kernels to ac-
count for the lower vertical resolution of the ASUR profiles.
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Fig. 23.Same as Fig.1, but for the comparisons between ACE-FTS
and ASUR. Mean relative differences are here expressed as (ACE-
FTS−ASUR)/ACE-FTS [%]. All coincident ACE measurements
were SR occultations.

Figure23 shows the results from the comparison between
ACE-FTS and ASUR. The mean relative differences are
within ±19% (0.45 ppmv) over the full altitude range and
smaller than±8% between 18 and 38 km, with consistently
positive values above 22 km. Below 22 km, the ACE-FTS
VMRs are slightly smaller than the ASUR values, down to
−8% (−0.2 ppmv). The de-biased standard deviation of the
mean relative differences is smaller than 11% over the full
altitude range (<7% in the range 22–32 km). The agreement
between the datasets is best around the peak in ozone VMR
(mean relative difference of 0.8% at 32 km).

The results from the comparison between ACE-
MAESTRO and ASUR are presented in Fig.24. The
mean relative differences are within±16% (0.33 ppmv)
at all altitudes and within±3% from 22–38 km, with a
corresponding de-biased standard deviation of 6 to 13%
(<10% in the range 22–32 km), again slightly larger than for
ACE-FTS.

6.2 Balloon-borne observations from FIRS-2

The Far-InfraRed Spectrometer (FIRS)-2 is a remote-sensing
FTIR spectrometer designed and built at the Smithsonian As-
trophysical Observatory. It measures thermal emission from
the atmosphere in the wavelength range 8–120µm (∼80–
700 cm−1), with a spectral resolution of 0.004 cm−1 (John-
son et al., 1995). The balloon-borne observations are per-
formed in the limb-sounding geometry. To analyse the data,
first, the atmospheric pressure and temperature profiles are
retrieved using the 15µm band of CO2. Then, vertical
profiles of about 30 trace constituents are retrieved from
the float altitude (typically 38 km) down to the tropopause,
using a nonlinear Levenberg-Marquardt least-squares algo-
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Fig. 24. Same as Fig.1, but for the comparisons between ACE-
MAESTRO and ASUR. Mean relative differences are here ex-
pressed as (ACE-MAESTRO−ASUR)/ACE-MAESTRO [%]. All
coincident ACE measurements were SR occultations.

rithm (Johnson et al., 1995). Uncertainty estimates for FIRS-
2 contain random retrieval error from spectral noise and sys-
tematic components from errors in atmospheric temperature
and pointing angle (Jucks et al., 2002; Johnson et al., 1995).
In the case of the O3 profile used in this analysis, the to-
tal error is 10–20% below 20 km and 5–8% above. Bal-
loon flights of FIRS-2 have been used to validate obser-
vations from the Improved Limb Atmospheric Spectrome-
ter (ILAS) on board the Japanese Advanced Earth Observ-
ing Satellite (ADEOS) (e.g.,Nakajima et al., 2002) as well
as from the MLS, HALOE and the Cryogenic Limb Array
Emission Spectometer (CLAES) instruments aboard UARS
(Jucks et al., 2002, and references therein). Results from
FIRS-2 were also compared more recently with Aura-MLS
observations (Canty et al., 2006).

We compared a FIRS-2 observation acquired on 24
January 2007 (∼68◦ N, ∼22◦ E) with the ACE-FTS and
ACE-MAESTRO profiles from the SR occultation sr18561
(64.7◦ N, 15.0◦ E, distance:∼481 km) measured on 23 Jan-
uary 2007 at 08:25 UT (Fig.25). Scaled (Dunkerton and
Delisi, 1986; Manney et al., 1994) PV values for the times
and locations of the measurements indicate that both ACE
and FIRS-2 measured airmasses inside the polar vortex.
Since the FIRS-2 data is reported on a 1 km-spacing alti-
tude grid, we simply interpolated the FIRS-2 profile onto
the altitude grids of ACE-FTS (1 km) and ACE-MAESTRO
(0.5 km). For this particular observation, the float altitude
of the balloon carrying FIRS-2 was lower than usual, set-
ting the upper limit of the vertical range of the comparison
at 31 km. The relative differences between the O3 profiles
from ACE-FTS and FIRS-2 are within±15% over the verti-
cal range 13–30 km. ACE-FTS generally reports larger VMR
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Fig. 25. Comparison of a profile from FIRS-2 on 24 January 2007
at 10:11 UT with profiles from ACE-FTS and ACE-MAESTRO
SR occultation sr18561 obtained on 23 January 2007 at 08:25 UT.
Left: Measured VMR profiles from FIRS-2 (solid black), ACE-FTS
(dashed blue) and ACE-MAESTRO (dot-dashed red). Error bars
show uncertainty estimate for FIRS-2 (see text). Middle: Abso-
lute differences in ppmv for ACE-FTS−FIRS-2 (dashed blue) and
ACE-MAESTRO−FIRS-2 (dot-dashed red). Right: Relative differ-
ences 2×(ACE–FIRS-2)/(ACE+FIRS-2) in percent shown for com-
parison with ACE-FTS (dashed blue) and ACE-MAESTRO (dot-
dashed red).

values than those of FIRS-2 above 16 km, except around
26 km. The comparisons with ACE-MAESTRO yield simi-
lar results, with relative differences within±15% at altitudes
between 16 and 31 km but down to−20% at lower altitudes.

6.3 SAOZ-balloon measurements in the tropics

The Syst̀eme d’Analyse par Observation Zénitale (SAOZ)
sonde is a light-weight UV-visible diode array spectrometer
measuring the atmospheric absorption of sunlight during the
ascent of the balloon and during a sunset occultation from
float altitude (Pommereau and Piquard, 1994). Spectral anal-
ysis is performed using the Differential Optical Absorption
Spectroscopy (DOAS) technique which uses least-squares
fitting of the spectra with laboratory cross-sections. Ozone
is measured in the Chappuis band (visible spectral range at
450–620 nm) where the absorption cross-section is not sen-
sitive to temperature. The profiles are retrieved in the alti-
tude range 10–28 km with a vertical resolution of 1.4 km, us-
ing the onion peeling method within 1 km-thick atmospheric
shells. Data contaminated by clouds are removed by look-
ing at the atmospheric extinction at 615 nm. For O3, the
estimated precision is 1.5% at 20 km, degrading to 5% at
17.5 km, 10% at 15 km and 23% at 10 km. Accuracy is eval-
uated by adding a systematic error of 1.5% (uncertainty from
the ozone absorption cross-sections) to the precision values.
The SAOZ ozone profiles have been compared to a number
of satellite and sonde observations and were found to be very
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Fig. 26. Comparison of an ACE-FTS profile (ss16090, 8 Au-
gust 2006 at 17:40 UT) with results from three spatially coinci-
dent SAOZ flights (7, 10 and 19 August 2006). Left: the ACE-
FTS profile is shown in dashed black. SAOZ profiles obtained dur-
ing ascent (solid lines) and during SS occultation (dotted curves)
on 7, 10, and 19 August 2006 are shown in blue, red and green,
respectively. Middle: Absolute differences for ACE-FTS−SAOZ
(in ppmv) are shown using the same colour scheme as left panel.
Right: Relative differences (in percent) are given as 2×(ACE–
SAOZ)/(ACE+SAOZ) using the same colour scheme as left and
middle panels.

consistent with the most accurate data available (Lumpe et
al., 2003; Haley et al., 2004; Borchi and Pommereau, 2007).

The three SAOZ flights used in this study were part of the
African Monsoon Multidisciplinary Analysis (AMMA) bal-
loon campaign (Redelsperger et al., 2006) undertaken within
the framework of the Stratospheric-Climate Links with Em-
phasis on the Upper Troposphere and Lower Stratosphere
(SCOUT-O3) European project (http://www.ozone-sec.ch.
cam.ac.uk/scouto3/). They occured in August 2006 in Ni-
amey, Niger (13.48◦ N, 2.16◦ E) during the wet season. The
first flight (∼13.8◦ N, ∼0.8◦ E on 7 August 2006) reached
a float altitude of 22 km, while the other two (∼14.0◦ N,
∼0.0◦ E on 10 August 2006 and∼13.9◦ N, ∼0.0◦ E on 19
August 2006) reached 28 km. The measurements (ascent and
occultation) occured for all three flights around 18:00 UT.
The six resulting profiles (3 for ascent and 3 occultation pro-
files at float altitude) are compared with the spatially coin-
cident ACE profiles from SS occultation ss16090 (8 August
2006 at 17:40 UT). Since the vertical resolution of the SAOZ
balloon instrument is comparable to that of the ACE in-
struments, the SAOZ profiles were simply interpolated onto
the vertical grids of ACE-FTS (1 km) and ACE-MAESTRO
(0.5 km).

The results for ACE-FTS are presented in Fig.26. Relative
differences are within±10% (<0.4 ppmv) above 19 km for
all ascent (solid lines) and occultation (dotted lines) SAOZ
profiles. Below 19 km the relative differences increase, with
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Fig. 27. Same as Fig.26but for ACE-MAESTRO and SAOZ.

maximum values between−40 and−60% at 16 km for all
SAOZ profiles. Figure27 shows the comparison for ACE-
MAESTRO. The ACE-MAESTRO and the SAOZ profiles
are in good agreement, with relative differences within−15
to +5% above 19 km. As was found for ACE-FTS, ACE-
MAESTRO reports significantly less ozone than SAOZ in the
range 15–19 km, with maximum relative differences larger
than−70%. Below 16 km, the ACE-MAESTRO VMRs are
considerably larger than those of SAOZ. The large differ-
ences noted for ACE-FTS as well as for ACE-MAESTRO
below∼18 km may be explained by the fact that the SAOZ
measurements used in this study were deliberately performed
in the vicinity of high altitude (up to 18 km) convective
clouds. Because the effects of these clouds can be highly
localized, it is possible that the ozone field at the lowest alti-
tudes measured by SAOZ and ACE could be quite different.

6.4 Balloon-borne SPIRALE observations

The SPectroscopie Infra-Rouge d’Absorption par Lasers
Embarqúes (SPIRALE) instrument is operated from a
balloon-borne gondola by the Laboratoire de Physique et
Chimie de l’Environnement (LPCE, Orléans, France) and is
routinely used at all latitudes, in particular as part of Eu-
ropean validation campaigns for the Odin and Envisat mis-
sions. The six tunable diode laser absorption spectrometer
(TDLAS) has been previously described in detail (Moreau
et al., 2005). In brief, it can perform simultaneous in situ
measurements of about ten chemical species over the verti-
cal range 10–35 km. The high frequency sampling (∼1 Hz)
yields a vertical resolution of a few meters, depending on
the ascent rate of the balloon. The diode lasers emit at mid-
IR wavelengths (3–8µm) and the beams are injected into a
multipass Heriott cell, located under the gondola and largely
exposed to ambient air. The cell (3.5 m long) is deployed
during ascent when the pressure is lower than 300 hPa. The
multiple reflections obtained between the two cell mirrors
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Fig. 28. SPIRALE profile measured on 20 January 2007 com-
pared with ACE-FTS profile obtained from SR occultation sr13151
on 21 January 2007 at 08:00 UT. Left: VMR profiles from
ACE-FTS (red diamonds) and SPIRALE (solid blue line) are
shown along with the smoothed SPIRALE profile (black cir-
cles, see text). Uncertainties in the SPIRALE profiles are re-
ported as error bars. Middle: Absolute differences in ppmv, ex-
pressed as (ACE-FTS–SPIRALE(smoothed)), with combined ran-
dom errors given as error bars. Right: Relative differences
in percent given as 2×(ACE-FTS−SPIRALE(smoothed))/(ACE-
FTS+SPIRALE(smoothed)), with combined random errors given as
error bars.

give a total optical path of 430.78 m. Species concentra-
tions are retrieved from direct IR absorption, by fitting exper-
imental spectra with spectra calculated using the HITRAN
2004 database (Rothman et al., 2005). Specifically, the ro-
vibrational lines at 2086.0191 and 2086.4294 cm−1 were
used for the SPIRALE O3 retrievals. Simultaneous mea-
surements of pressure and temperature onboard the gondola
allow the number densities to be converted to VMRs. Es-
timates of the uncertainties in the SPIRALE measurements
were detailed byMoreau et al.(2005). Total root-sum-square
uncertainties are about 6% above 18 km (<80 hPa) and 8%
below (>80 hPa).

For this study, we compared a SPIRALE profile (obtained
during ascent) from 20 January 2006 (17:34–19:47 UT) with
the coincident ACE-FTS and ACE-MAESTRO profiles from
the SR occultation sr13151. The SPIRALE O3 vertical
range was 10.8–27.3 km. The balloon position remained
rather constant around a mean location of 67.6±0.2◦ N and
21.6±0.2◦ E. The ACE occultation occurred 13 h later (on
21 January 2006 at 08:00 UT) and was located at 64.28◦ N–
21.56◦ E at a distance of 413 km from the SPIRALE mean
position. Potential vorticity (PV) maps were calculated with
the Mod́elisation Isentrope du transport Méso-́echelle de
l’Ozone Stratosph́erique par Advection (MIMOSA) contour
advection model (Hauchecorne et al., 2002). They confirmed
that SPIRALE and ACE sounded similar air masses in the
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Fig. 29. Same as Fig.28, but for comparison of ACE-MAESTRO
and SPIRALE coincident profiles.

well established polar vortex at this time, for the whole range
of altitudes, with PV differences of less than 10%.

Since the vertical resolution for SPIRALE is of the order
of meters, we smoothed the SPIRALE data using triangular
or Gaussian convolution functions as described in Sect.4.
The ACE-FTS (Fig.28) and ACE-MAESTRO (Fig.29) O3
profiles are in good agreement with the SPIRALE profile be-
tween 15 and 25 km, where the relative differences remain
within the error bars of the comparison.

6.5 Ozonesonde measurements

Ozonesondes are balloon-borne instruments launched (typi-
cally) weekly from various stations around the globe. They
perform in situ measurements of pressure, temperature, hu-
midity and O3 abundances from the surface to the balloon’s
burst altitude (typically∼35 km) with a resolution of 100–
150 m. There are three types of ozonesondes currently in
operation: the Electrochemical Concentration Cell (ECC)
(Komhyr et al., 1995), Brewer-Mast (BM) (Brewer and Mil-
ford, 1960) and Carbon-Iodine (CI) (Kobayashi and Toyama,
1966) ozonesondes. The accuracy of ozonesonde observa-
tions is generally estimated to be 5% (e.g.,SPARC, 1998)
but in fact depends on numerous parameters (for instance,
for ECC ozonesondes, the concentration of the sensing solu-
tion or the manufacturer influence the accuracy). Depending
on the type of ozonesonde and the altitude, typical values
for the precision and accuracy are∼3–8% and∼5–15%, re-
spectively, up to 30 km (seeSmit et al., 2007, and references
therein).

For the statistical comparison of ACE-FTS and ACE-
MAESTRO with ozonesonde observations, we used mea-
surements from the World Ozone and Ultraviolet Data
Center (WOUDC), the Southern Hemisphere ADditional
OZonesonde (SHADOZ) archive and the 2004 INTEX
Ozonesonde Network Study (IONS) campaign (see Table2
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Fig. 30. Results of statistical comparisons of ACE-FTS and
ozonesonde profiles. Left: Mean VMR profiles from ACE-FTS
(solid red) and ozonesondes (solid blue) are shown along with the
1-σ standard deviation of the mean (dot-dashed lines). The stan-
dard error (uncertainty) of the mean is reported as error bars on the
VMR profiles. The number of coincident pairs is given every 5 km.
Middle: Mean absolute differences (ACE-FTS−ozonesonde) in
ppmv (solid line), with corresponding de-biased standard deviations
(dashed line) and standard error (uncertainty) of the mean shown as
error bars every 5 km. Right: Mean relative differences in percent
(solid line) shown as (ACE-FTS−ozonesonde)/(ozonesonde), de-
biased standard deviations of the mean relative differences (dashed
line), and standard error (uncertainty) of the mean (error bars).

for URLs and references). We defined coincidence criteria
of ±24 h and 800 km. Table2 lists the stations for which
coincidences were found. Because of their high vertical res-
olution, the ozonesonde data were smoothed using the con-
volution functions described in Sect.4. When several ACE-
FTS or ACE-MAESTRO profiles were coincident with the
same ozonesonde measurement, they were averaged and the
resulting mean profile was compared with the ozonesonde
data (Randall et al., 2003). From the initial total of 547 coin-
cidences, we compared 376 profiles.

Figure30shows the results for the comparison with ACE-
FTS. There is good agreement with the ozonesonde obser-
vations in the altitude range 11–35 km. In this range, ACE-
FTS reports systematically larger VMRs than the ozoneson-
des, with mean relative differences within−1 to +10% and
corresponding de-biased standard deviations within 12 to
15% (17 to 30%) above (below) 20 km. Note that ACE-FTS
and the ozonesondes sample airmasses with similar variabil-
ity, as demonstrated by the standard deviations of the mean
VMR profiles. Below 11 km, the variability of the mea-
sured profiles is high (de-biased standard deviation of the
mean relative differences of 40% and larger) and the mean
relative differences increase significantly. Above 35 km, the
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Table 2. List of the ozonesonde stations which provided data for the analyses, including location (column 2) and operating agency (column 3).
The type of sensor used by each station is indicated in column 5. The source of the data used for these studies is indicated in column 6. In
column 1, normal font indicates the stations included only in the statistical comparisons (Sect.6.5); bold font shows the stations used in the
studies presented in Sects.6.5and6.6; italicized font applies to stations used in the detailed NDACC study described in Sect.6.6.

Station Coordinates Agency GAW ID Type Source

Alert 82.5◦ N, 62.3◦ W MSC CAN ECC WOUDC/MSCa

Eureka 80.1◦ N, 86.4◦ W MSC CAN ECC WOUDC/MSCa

Ny Ålesund 78.9◦ N, 11.9◦ E AWI NOR ECC WOUDC/AWIa

Thule 76.5◦ N, 68.7◦ W DMI GRL ECC DMIa

Resolute 74.7◦ N, 95.0◦ W MSC CAN ECC WOUDC/MSCa

Summit 72.60◦ N, 38.50◦ W NOAA-CMDL GRL ECC NDACC
Scoresbysund 70.5◦ N, 22.0◦ W DMI DNK ECC DMIa

Sodankyl̈a 67.37◦ N, 26.67◦ E FMI FIN ECC NDACC
Keflavik 63.97◦ N, 22.60◦ E INTA ISL ECC NDACC
Orlandet 63.42◦ N, 9.24◦ E NILU NOR ECC NDACC
Jokioinen 60.82◦ N, 23.48◦ E FMI FIN ECC NDACC
Churchill 58.8◦ N, 94.7◦ W MSC CAN ECC NDACC
Edmonton 53.6◦ N, 114.1◦ W MSC CAN ECC WOUDC/MSCa

Goose Bay 53.3◦ N, 60.4◦ E MSC CAN ECC WOUDC/MSCa

Legionowo 52.4◦ N, 21.0◦ E PIMWM POL ECC WOUDC
Lindenberg 52.2◦ N, 14.1◦ E DWD DEU ECC WOUDC
Vanscoy 52.1◦ N, 107.2◦ W MSC CAN ECC WOUDC
Debilt 52.1◦ N, 5.1◦ E KNMI NLD ECC WOUDC
Uccle 50.8◦ N, 4.4◦ E RMI BEL ECC WOUDC
Bratts Lake (Regina) 50.2◦ N, 104.7◦ W MSC CAN ECC IONSb

Prague 50.0◦ N, 14.5◦ E CHMI CZE ECC WOUDC
Kelowna 49.9◦ N, 119.4◦ W MSC CAN ECC IONSb

Hohenpeißenberg 47.8◦ N, 11.0◦ E DWD DEU B.-M. WOUDC
Payerne 46.5◦ N, 6.6◦ E MeteoSwiss CHE ECC WOUDC
Egbert 44.2◦ N, 79.8◦ W MSC CAN ECC IONSb/WOUDC
Sable Island 44.0◦ N, 60.0◦ W MSC CAN ECC IONSb

Haute-Provence 43.94◦ N, 5.71◦ E CNRS FRA ECC NDACC
Yarmouth 43.9◦ N, 66.1◦ W MSC CAN ECC IONSb

Sapporo 43.1◦ N, 141.3◦ E JMA JPN C.-I. WOUDC
Madrid 40.8◦ N, 12.2◦ W INME ESP ECC WOUDC
Boulder 40.03◦ N, 105.25◦ W NOAA-CMDL USA ECC IONSb/NDACC
Trinidad Head 40.5◦ N, 3.7◦ W NOAA-CMDL USA ECC IONSb

Wallops Island 37.9◦ N, 75.5◦ W NASA-WFF USA ECC IONSb

Tateno (Tsukuba) 36.1◦ N, 140.1◦ E JMA JPN C.-I. WOUDC
Isfahan 32.5◦ N, 51.4◦ E MDI IRN ECC WOUDC
Honk Kong Obs. 22.3◦ N, 114.2◦ E HKO HKG ECC WOUDC
Paramaribo 5.8◦ N, 55.2◦ W KNMI SUR ECC SHADOZc

Nairobi 1.3◦ S, 36.8◦ E MeteoSwiss KEN ECC SHADOZc

Malindi 3◦ S, 40.2◦ E CRPSM KEN ECC SHADOZc

Maxaranguape (Natal) 5.4◦ S, 35.4◦ W INPE BRA ECC SHADOZc

American Samoa 14.3◦ S, 170.6◦ W NOAA-CMDL ASM ECC SHADOZc

Irene 25.9◦ S, 28.2◦ E SAWS ZAF ECC SHADOZc

Lauder 45.0◦ S, 169.7◦ E NIWA NZL ECC WOUDC/NIWAa

Marambio 64.2◦ S, 56.7◦ W FMI ATA ECC WOUDC
Dumont d’Urville 66.67◦ S, 140.01◦ E CNRS ATA ECC NDACC
Davis 68.6◦ S, 78.0◦ E ABM ATA ECC WOUDC/AADa

Syowa 69◦ S, 39.6◦ E JMA JPN C.-I. WOUDC
Neumayer 70.7◦ S, 8.3◦ W AWI ATA ECC WOUDC/AWIa

McMurdo 77.85◦ S, 166.67◦ E UWYO ATA ECC NDACC
Belgrano 77.87◦ S, 34.63◦ W INTA ATA ECC NDACC

a Data obtained from the WOUDC database (http://www.woudc.org/). In the case of missing data (e.g., in 2006), the corresponding results
were provided directly by the station P.I.
b Summer 2004 sounding was part of the IONS protocol optimized for Aura validation (Thompson et al., 2007b,c); data available athttp:
//croc.gsfc.nasa.gov/intex/ions.html.
c Data acquired from the SHADOZ archive (http://croc.gsfc.nasa.gov/shadoz/; Thompson et al., 2003a,b, 2007a).
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Fig. 31. Same as Fig.30, but for statistical comparisons between
ACE-MAESTRO and ozonesondes. Top (bottom) panel shows
comparisons for ACE-MAESTRO SR (SS) occultations.

number of coincident events drops sharply and the statistical
significance of the results is limited, therefore these results
are not shown.

Comparison results for ACE-MAESTRO are shown in
Fig. 31 for the SR (top panel) and SS (bottom panel) events.
Overall, the mean relative differences are within±5% from
16–30 km, increasing above and below this altitude range,
with corresponding de-biased standard deviation within 12 to
30% and 15 to 40% for the SR and for the SS comparisons,
respectively. Using a rather limited sample,Kar et al.(2007)
had earlier shown a small bias (of about +5%) between
the ACE-MAESTRO SR and SS retrievals in the altitude
range 20–30 km, when compared with the ozonesondes, with
larger mean relative differences for the ACE-MAESTRO SR
events. This bias is not seen for this larger sample of co-
incidences. The mean relative differences are larger below
15 km and reach−20% (SS) and−40% (SR) at the lowest
altitudes, with ACE-MAESTRO reporting consistently lower

Table 3. Name, location and operating agency for the lidar stations
which provided data for the detailed NDACC analyses (Sect.6.6).

Station Coordinates Agency

Eureka 80.05◦ N, 86.42◦ W MSC
Ny-Ålesund 78.91◦ N, 11.88◦ E AWI
Andoya 69.28◦ N, 16.02◦ E NILU
Hohenpeißenberg 47.8◦ N, 11.02◦ E DWD
Haute-Provence 43.94◦ N, 5.71◦ E CNRS

VMRs than the ozonesondes, while the de-biased standard
deviation at these altitudes exceeds 35%.

The bias and de-biased standard deviation values found
here are compatible with the second study including
ozonesonde data (following section) for both ACE instru-
ments.

6.6 NDACC ozonesonde and lidar measurements

Detailed comparisons were performed for individual sites
with two types of ozone profiling instruments, ozoneson-
des and lidars. These are operated within the framework
of the Network for the Detection of Atmospheric Compo-
sition Change (NDACC, formerly the Network for the De-
tection of Stratospheric Change or NDSC), a major compo-
nent of the World Meteorological Organization’s Global At-
mosphere Watch program (WMO-GAW). The ozonesonde
measurements have been described in the previous section.
DIfferential Absorption Lidar (DIAL) systems provide the
vertical distribution of night-time ozone number density at
altitudes between∼10 km and∼45 km, with a vertical reso-
lution of 300 m to 3 km, depending on the altitude. Typical
values for lidar accuracies are 3–7% between 15 and 40 km.
At 40 km and above, due to the rapid decrease in signal-to-
noise ratio, the errors increase and a significant bias of up to
10% may appear (Godin et al., 1999; Keckhut et al., 2004).

Coincidence criteria of±12 h and 500 km were used to
select available data from a total of 31 ozonesonde stations
(Table2) and 5 lidar stations (Table3). Figure32 shows the
time and latitude coverage of all coincidences stored in the
database used for this study. However, to ensure a minimum
statistical significance of the comparison results at all sta-
tions, only those for which at least three coincidences were
found with the ACE instruments were included in the analy-
ses. Therefore, stations visible in Fig.32but for which there
were less than three coincident observations are not listed in
Tables2 and3.

The analyses were conducted in three steps. First, the indi-
vidual coincident events were examined to check the quality
of the retrieved profiles. Then, time series for the ACE and
the ground-based measurements and their relative differences
were analyzed. This allowed time periods to be identified
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Fig. 32. Time and latitude coverage of the collocations between
ACE and the NDACC ground-based ozone instruments for coinci-
dence criteria of±12 h and 500 km. Note, not all collocations noted
here were used in the calculations (see text).

in which homogeneous results, and hence meaningful statis-
tics, could be obtained. Finally, the vertical structure of the
differences was investigated within these homogeneous time
periods, by grouping the stations where similar results were
found. The second and third steps will be described be-
low. The integration methodology applied in smoothing the
high-resolution ozonesonde and lidar profiles is described in
Sect.4.

In the detailed analysis of the time series, mean relative
differences between the ACE-FTS profiles and the ground-
based data were within±10%, in the altitude ranges 10–
30 km for the ozonesondes and 15–42 km for the lidars.
For ACE-MAESTRO, the mean relative differences with
ozonesondes were mostly negative, with values of about
−10% in the altitude range 15–30 km and down to−16%
below. When compared to lidars, ACE-MAESTRO also re-
ported lower ozone VMRs (mean relative difference of about
−7%) in the range 15–37 km, whilst larger negative values
(down to−18%) were found below 15 km, and positive mean
relative differences (∼+8%) were found in the range 37–
41 km. This analysis showed that the temporal variations of
the ozone layer are well captured by ACE-FTS and ACE-
MAESTRO, but that the limited temporal sampling does not
allow finer-scale variations to be revealed. Within the strato-
sphere, no important structure or seasonal variation was iden-
tified in the time series which allowed us to derive meaning-
ful statistics for the ACE-FTS and ACE-MAESTRO ozone
data products by combining the three years of the compari-
son period.

We also investigated the height-resolved statistical differ-
ences over the full comparison time period for each sta-
tion. An example of these relative difference profiles is
shown in Fig.33 for the coincidences between ACE-FTS

Fig. 33. Relative differences for each pair of coincident ACE-
FTS and Haute-Provence lidar measurements plotted versus alti-
tude (grey lines). Corresponding mean (solid black line) and 1-σ

de-biased standard deviation (dashed line). The standard error – or
uncertainty – of the mean is shown as horizontal error bars on the
mean relative difference profile.

and lidar measurements at the Haute-Provence station. Fig-
ure 34 shows a similar example for ACE-MAESTRO and
the ozonesonde data obtained at Eureka. The overall com-
parison results are summarized as zonally averaged (within
5◦ bins) distributions shown in Figs.35 and 36 for ACE-
FTS and ACE-MAESTRO, respectively. Figure35shows the
mean relative differences between ACE-FTS and NDACC
ozonesondes (top panel) and lidars (bottom panel), while the
results for ACE-MAESTRO are summarized in Fig.36. Fig-
ures35 and 36 also illustrate the good consistency of the
ACE data with respect to latitude, since there is no systematic
meridional bias in the mean relative differences.

For the ACE-FTS and ozonesonde comparisons, the mean
relative differences were within±7% in the range 10–35 km
and larger below this range. For the comparisons with li-
dars, the mean relative differences were within±10% in
the range 10–45 km. These values can be accounted for by
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known contributions to the systematic errors of the compar-
ison, which indicates that ACE-FTS systematic errors are
small. For the comparisons of ACE-MAESTRO retrievals
with ozonesondes and lidar observations, the mean relative
differences were globally negative, with an average value
of about −7% above 15 km. Below this altitude, ACE-
MAESTRO reported significantly less ozone than either of
the ground-based instruments, with mean relative difference
values within−20 to−40%. The negative biases observed
for ACE-MAESTRO cannot be accounted for by the contri-
butions from known sources, but are indicative of a system-
atic underestimation of the ozone VMR by the instrument.

The de-biased standard deviations of the mean relative
differences, for both ACE-FTS and ACE-MAESTRO, were
lower than 10% in the stratosphere but much larger in the tro-
posphere. This can be explained by the atmospheric variabil-
ity and the different horizontal smoothing by the occultation
and ground-based measurements, which means that the con-
tribution from the ACE retrievals to the combined of random
errors of the comparison is small. The different horizontal
smoothing of the ozone field is an important contribution to
the random error budget of the comparisons, since it can con-
tribute to about 10% of the standard deviation of the differ-
ences in the middle and upper stratosphere and more at lower
altitudes (Cortesi et al., 2007).

6.7 Eureka DIAL measurements

A DIAL instrument has been in operation at the Arctic
Stratospheric Ozone (AStrO) Observatory/Polar Environ-
mental Atmospheric Research Laboratory (PEARL) in Eu-
reka (80.05◦ N, 86.42◦ W) since 1993. In February–March
2004, 2005 and 2006, it measured temperature and ozone
profiles as part of the Canadian Arctic ACE Validation Cam-
paigns (Kerzenmacher et al., 2005; Walker et al., 2005; Sung
et al., 2007; Manney et al., 2008; Fraser et al., 2008; Fu et
al., 2008; Sung et al., 2009). The measurements use radia-
tion from a XeCl excimer laser at two wavelengths, one with
a strong absorption signature of O3 (the “on” wavelength,
308 nm for the Eureka lidar) and one with little absorption
(the “off” wavelength, hydrogen Raman-shifted to 353 nm at
Eureka) (Donovan et al., 1995). A detailed description of the
system is given byCarswell et al.(1991). The Eureka DIAL
is operated exclusively at night and provides vertical profiles
of ozone from the tropopause level to∼45 km with a vertical
resolution of 300 m and an estimated accuracy for ozone of
1–2% (e.g.,Bird et al., 1997).

Data from the Eureka DIAL measurements obtained dur-
ing the 2004 Canadian Arctic ACE Validation Campaigns
were used for validation of the previous release of the ACE-
FTS and ACE-MAESTRO data (Kerzenmacher et al., 2005).
Comparisons of the DIAL temperature profiles with ACE
observations can also be found in companion papers (e.g.,
Manney et al., 2008; Sica et al., 2008). We present the com-
parisons of DIAL O3 with ACE-FTS and ACE-MAESTRO.

Fig. 34. Same as Fig.33 but for comparison between ACE-
MAESTRO and ozonesonde measurements at Eureka.

We used coincidence criteria of±12 h and 500 km, yielding
10 (8) coincidences for ACE-FTS (ACE-MAESTRO) for the
2004–2006 winters.

The results are presented in Fig.37 for ACE-FTS and
Fig. 38 for ACE-MAESTRO. The mean relative differences
between the lidar measurements and the ACE-FTS profiles
are within −10 to +3% (on average−7% and down to
−0.8 ppmv) between 15 and 34 km. The corresponding de-
biased standard deviation is within 10% between 21 and
31 km and increases above and below this range. At the
lowermost altitudes, the mean relative differences are larger
(down to−27%). Above 35 km, the lidar profiles appear very
noisy and the low statistics prevent us from drawing mean-
ingful conclusions.

The shape of the difference profile for the comparison
with ACE-MAESTRO is quite similar, but ACE-MAESTRO
shows a larger negative bias with respect to the Eureka DIAL
observations. Mean relative difference values range from
−20 to +7% (on average−13%) in the range 12–38 km. The
de-biased standard deviation of the mean relative differences
is within 10% between 19 and 30 km and increases above
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Fig. 35. Mean relative differences for comparisons between ACE-
FTS and ozonesonde data, plotted versus altitude and latitude (top);
same information as above for comparisons with lidar data (bot-
tom). Uncertainties are discussed in the text.

and below this range. This result is comparable to the values
found for ACE-FTS. The maximum mean absolute differ-
ence is−1.1 ppmv at 28 km. These results are qualitatively
comparable with those described in Sect.6.6 for other lidars
but show an unusual (especially for ACE-FTS) low bias of
the ACE instruments with respect to the Eureka DIAL.

6.8 Ground-based FTIR observations

In this section, we compare partial columns derived from the
ACE-FTS and ACE-MAESTRO observations with ground-
based measurements obtained by FTIR spectrometers, at ten
NDACC stations (Table4). Although the coarse vertical res-
olution of FTIR measurements limits their use for profile
comparisons, they provide regular observations at different
locations under clear-sky conditions and offer possibilities
that complement the ozonesonde and lidar measurements for
evaluating the temporal variations of the ACE dataset.

The FTIR instruments involved in the comparisons use mi-
crowindows in the range 780–3060 cm−1 and have spectral
resolutions ranging from 0.001 to 0.012 cm−1. They pro-

Fig. 36. Same as Fig.35 but for differences between ACE-
MAESTRO and ozonesonde (top) and lidar (bottom) data.

vide information on numerous species including O3 from
the lower troposphere to the middle and upper stratosphere.
Two different retrieval codes are used (depending on the sta-
tion): SFIT2 (Pougatchev and Rinsland, 1995; Pougatchev
et al., 1995; Rinsland et al., 1998) and PROFITT92 (Hase,
2000). They were compared byHase et al.(2004), who
found that these algorithms are in excellent agreement (gen-
erally better than 1%) for both VMR retrievals and total col-
umn calculations. Both processing codes are based on the
Optimal Estimation Method (Rodgers, 2000), thus provid-
ing averaging kernels which are useful for determining the
information content and for smoothing higher vertical reso-
lution measurements such as those from ACE-FTS and ACE-
MAESTRO.

In this study, we used the coincidence criteria listed in
Table4. Because of the limited number of coincidences at
some stations, the time period for the comparison exercise
was extended to the end of 2006. The ACE-FTS and ACE-
MAESTRO profiles were interpolated on the FTIR retrieval
grid for each station and extended below the lowest retrieved
altitude using the FTIR a priori VMR values. The resulting
composite profile was smoothed using the FTIR averaging
kernels and a priori profile, as described in Sect.4. Partial
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Table 4. List of the FTIR stations which provided data for the analyses (Sect.6.8). The latitude and longitude of the station are provided,
together with the altitude above sea level in meters (m a.s.l.) (columns 3-4). The coincidence criteria used in this study are indicated for each
station (column 5). References describing the stations, measurements and analyses are given in column 6.

Station Location Coordinates Alt. [m a.s.l.] Coincidence Criteria Reference

Thule Greenland 76.5◦ N, 68.7◦ W 225 ±24 h, 1000 km Goldman et al.(1999)
Kiruna Sweden 67.8◦ N, 20.4◦ E 420 ±12 h, 500 km Blumenstock et al.(2006)
Poker Flat Alaska 65.1◦ N, 147.4◦ W 610 ±24 h, 1000 km Kasai et al.(2005)
Harestua Norway 60.2◦ N, 10.8◦ E 600 ±24 h, 1000 km Paton-Walsh et al.(1997)
Zugspitze German Alps 47.4◦ N, 11◦ E 2962 ±24 h, 1000 km Sussmann and Borsdorff(2007)
Jungfraujoch Swiss Alps 46.5◦ N, 8.0◦ E 3580 ±48 h, 1000 km Zander et al.(2008)
Toronto Canada 43.7◦ N, 79.4◦ W 174 ±48 h, 1000 km Wiacek et al.(2007)
Izaña Canary Islands 28.3◦ N, 16.5◦ W 2367 ±24 h, 1000 km Schneider et al.(2008a,b)
La Réunion Indian Ocean 20.9◦ S, 55.5◦ E 50 ±24 h,±10◦ lat.,±15◦ lon. Senten et al.(2008)
Wollongong Australia 34.5◦ S, 150.9◦ E 30 ±24 h, 1000 km Griffith et al. (1998)
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Fig. 37.Same as Fig.1, but for the comparisons between ACE-FTS
and the Eureka DIAL. All coincident ACE measurements were SS
occultations.

columns were calculated for a specific altitude range for each
station. To calculate the ACE-FTS and ACE-MAESTRO
partial columns, we used the atmospheric density derived
from the ACE-FTS measurements. For the FTIR instru-
ments, we calculated a density profile from the pressure and
temperature profiles used in their retrievals.

The lower limit of the partial column range was given by
the ACE-FTS or ACE-MAESTRO lowest measured altitude,
while the upper limit was determined from the sensitivity of
the FTIR measurements. We used an approach similar to that
of Vigouroux et al.(2007): the sensitivity (also called mea-
surement response) at one altitude is given by the area under
the corresponding averaging kernel. The useful range for the
FTIR is defined as the altitudes where the FTIR sensitivity
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Fig. 38. Same as Fig.1, but for the comparisons between ACE-
MAESTRO and the Eureka DIAL. All coincident ACE measure-
ments were SS occultations.

is greater than 0.5 (i.e., where the information comes pri-
marily from the measurement). The resulting vertical ranges
vary from station to station and for ACE-FTS and ACE-
MAESTRO, with lower limits of 10–18 km and upper limits
of 38–47 km. For the partial columns, this yields a number
of degrees of freedom for signal (DOFS, defined as the trace
of the averaging kernel matrix over the altitude range of the
partial column) ranging from∼1.7 for Toronto to∼3.9 for
Izaña.

In Figs.39 (for ACE-FTS) and40 (for ACE-MAESTRO),
we present time series of the partial columns and relative dif-
ferences for the comparisons with each FTIR instrument. In
some cases, the comparison period is limited to several days
of measurements in 2004 (Poker Flat and La Réunion). The
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Fig. 39. Time series of ozone partial column comparisons for ACE-FTS with each ground-based FTIR instrument listed in Table4. For
each station, the bottom panel shows the partial column values for ACE-FTS (open triangles) and for the correlative FTIR measurements
(filled diamonds). The top panel gives the relative differences between the partial column values for ACE-FTS and for the FTIR instruments.
Latitude and longitude of the ground-based station are indicated in the upper right-hand corner. The horizontal black lines show the mean
relative differences (dashed, thick), the associated de-biased standard deviations (dotted) and the 0% line (solid, thin). The comparison
results are colour-coded according to the year of the observation: blue for 2004, red for 2005 and green for 2006. Note that the x- and y-axis
scales used for each station are different.
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Fig. 39. Continued.

partial columns derived from the ACE-FTS profiles are in
acceptable agreement (±20%) with the FTIR values, with
mean relative differences within−10 to +7% and corre-
sponding de-biased standard deviation ranging from∼2%
for Izaña to about 10% for Jungfraujoch and Wollongong.
The results are slightly better for ACE-MAESTRO, with
mean relative differences within−9 to +2%. For ACE-
MAESTRO, the de-biased standard deviation of the mean
relative differences is about 6% except for Harestua (∼10%)
as well as Wollongong and Thule (16%). Furthermore, the
scatterplots presented in Fig.41 for ACE-FTS and in Fig.42
for ACE-MAESTRO show very good correlation between
the O3 partial columns for the ACE instruments and the
ground-based FTIR spectrometers, with correlation coeffi-
cients of 0.88 for ACE-FTS and 0.84 for ACE-MAESTRO.
When comparing the results for the northern high latitude
stations, a larger scatter in the mean relative differences (es-
pecially for ACE-MAESTRO) can be noted for Thule than
for Kiruna. This is most likely due to the coincidence cri-

teria which were broader for Thule than for Kiruna (Ta-
ble 4). Additional tests were done with a stricter distance
criterion (500 km) for comparison with Thule and showed
significantly less scatter. However, it did not modify the
mean agreement between the ACE data and the ground-based
measurements. The results of the analysis for ACE-FTS and
ACE-MAESTRO are presented in Table5, showing the alti-
tude range used for the calculations, the DOFS values, and
the mean relative differences and associated de-biased stan-
dard deviations for each ground-based station. The latter are
useful for quantitative evaluation of the results, even though
the statistical relevance can be limited by the low number
of coincidences for some stations. Since we have calcu-
lated (and described) the de-biased standard deviations of the
mean relative differences, the values given above and in Ta-
ble5 represent an estimate or an upper limit to the combined
precision of the FTIR and ACE instruments.

www.atmos-chem-phys.net/9/287/2009/ Atmos. Chem. Phys., 9, 287–343, 2009



326 E. Dupuy et al.: Validation of ACE ozone

60  70  80
6
7
8
9

10
11
12
13
14

Day of year

P
ar

t. 
co

l. 
[c

m
−

2 × 
10

18
]

 

 

2004
2005
2006

Thule
ACE−MAESTRO

     
−40

−20

0

20

40

D
iff

. [
%

]

76.5°N,68.8°W

2004
2005
2006

20  60  100  140  180  220  260  300  
4
5
6
7
8
9

10
11

Day of year

P
ar

t. 
co

l. 
[c

m
−

2 × 
10

18
]

 

 

2004
2005
2006

Kiruna
ACE−MAESTRO

                

−20

−10

0

10

D
iff

. [
%

]

67.8°N,20.4°E

2004
2005
2006

70  80  90
7

8

9

10

11

12

13

Day of year

P
ar

t. 
co

l. 
[c

m
−

2 × 
10

18
]

 

 

2004

PokerFlat
ACE−MAESTRO

     

−20

−15

−10

−5

0

D
iff

. [
%

]

65.1°N,147.4°W

2004

0  40  80  120  160  200  240  280  320  
4

5

6

7

8

9

10

Day of year

P
ar

t. 
co

l. 
[c

m
−

2 × 
10

18
]

 

 

2004
2005
2006

Harestua
ACE−MAESTRO

                  

−20

−10

0

10

20

30

D
iff

. [
%

]

60.2°N,10.8°E2004
2005
2006

80  120  160  200  240

5

6

7

8

Day of year

P
ar

t. 
co

l. 
[c

m
−

2 × 
10

18
]

 

 

2004
2005
2006

Zugspitze
ACE−MAESTRO

         

−20

−10

0

10

D
iff

. [
%

]

47.4°N,11.0°E2004
2005
2006

80  120  160  200  240  280  320  

6

7

8

9

Day of year

P
ar

t. 
co

l. 
[c

m
−

2 × 
10

18
]

 

 

2004
2005
2006

Jungfraujoch
ACE−MAESTRO

              

−20

−10

0

10

D
iff

. [
%

]

46.5°N,8.0°E

2004
2005
2006

Fig. 40. Same as Fig.39but for ACE-MAESTRO comparisons.
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Fig. 40. Continued.

6.9 Comparison with ground-based microwave radiometer
measurements

Stratospheric and mesospheric profiles from the MWRs
at the Lauder, New Zealand and Mauna Loa, Hawaii
NDACC sites have been compared with ACE-FTS and ACE-
MAESTRO measurements. These have also been used to
perform non-coincident comparisons with other satellite-
borne and ground-based instruments, in a manner previously
employed byBoyd et al.(2007). This method allows com-
parison of datasets that would otherwise have limited or no
coincident or collocated measurements. Here we compare a
set of historical and current satellite-borne datasets as well as
ground-based lidar measurements with the MWR measure-
ments and, by using the MWRs as transfer standards, de-
termine the agreement between the ACE instruments and a
consensus of these other instruments.

The MWR instruments (Parrish et al., 1992; Parrish,
1994) observe atmospheric thermal emission of ozone at

110.836 GHz and the pressure-broadened line shape is an-
alyzed to obtain the altitude distribution of ozone using the
Optimal Estimation Method ofRodgers(2000). The obser-
vations are made 24 h a day and routinely averaged over 4–
6 h to provide up to four VMR profiles per day. The lower
altitude limit for the profiles is about 20 km based on the in-
fluence of the a priori on the retrieval, and the quality of the
measurement averaging kernels. The upper altitude limit is
between 64 km for daytime measurements and about 72 km
during night, due to the increased mesospheric ozone signal.
The expected precision is 4–5% between 20 and 57 km, and
7% at about 64 km. The expected accuracy (i.e., combined
random and systematic error) is 6–9% between 20 and 57 km
and 11% at about 64 km. The vertical resolution of the MWR
profiles is 6–10 km between 20 and 50 km and about 13 km at
64 km. A detailed description of the error analysis approach
used for this work is included in the work ofConnor et al.
(1995).
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Fig. 41. Scatter plot of the ACE-FTS and ground-based FTIR par-
tial columns of ozone shown in Fig.39. The correlation value is
0.877. The least-squares linear fit of the data is also shown (dashed
black).

In the ACE−MWR comparisons, broad coincidence crite-
ria of ±24 h,±6◦ latitude and±12◦ longitude were used to
increase the number of coincidences available. In the event
that there was more than one ACE measurement fitting this
criterion, the one closest in time to the MWR measurement
is chosen. To avoid the effects of the significant diurnal vari-
ations in ozone amounts in the upper stratosphere and meso-
sphere, comparisons are restricted to below 52 km. To ac-
count for the different vertical resolutions of the instruments
each ACE measurement is convolved with the averaging ker-
nels of the MWR measurement as described byConnor et al.
(1995), using Eq. (2) (Sect.4). The profiles used here are
interpolated onto an altitude grid with 2 km vertical spacing.
The differences in the VMR profiles are determined with re-
spect to the correlative dataset ((ACE−MWR)/MWR).

The mean relative differences between the ACE and MWR
measurements, as well as the corresponding mean ozone
VMR profiles, are presented in Fig.43. Despite the small
number of comparison pairs at Mauna Loa (less than 15), the
difference profiles at both sites are generally similar. Below
44 km, the mean relative differences between the ACE in-
struments and the MWRs are within±10%, and often better
than±5%, except for the ACE-MAESTRO – MWR mean
relative differences at Lauder from 32–36 km, which are be-
tween +10 and +15%. Above 42 km, the ACE instruments
have a positive bias, compared with the MWR, with mean
relative differences within +3 to +25% and larger for ACE-
FTS than for ACE-MAESTRO by 5–8%. Apart from a re-
gion between about 28 and 38 km at Lauder, ACE-FTS ozone
retrievals yield larger VMRs than ACE-MAESTRO, though
the differences are always within the indicated error bars.

A noticeable feature in the plots is the oscillation in the
profile around the VMR peak at 34 km. This feature is
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Fig. 42. Same as Fig.41 but for ACE-MAESTRO. The correlation
value is 0.841.

also seen in comparisons between MWR measurements and
those made with other instruments, as shown in Fig.44,
and can therefore be attributed to the MWR. Ground-based
microwave measurements tend to produce retrievals with a
small oscillatory component. The origin of this oscillation
is discussed inBoyd et al.(2007) andConnor et al.(1995).
These are effects of systematic spectral measurement errors
that propagate through the process of averaging multiple
spectra and can produce artifacts in difference profiles such
as those seen in the figure.

To extend our validation comparisons, the MWR measure-
ments were used as a transfer standard. The method com-
pares data from the SAGE II, HALOE, Aura-MLS, GOMOS,
and MIPAS satellite-borne instruments, as well as ground-
based lidars, with the MWRs at Mauna Loa and Lauder.
The difference profiles from these comparisons are then av-
eraged to obtain a consensus difference profile. Also in-
cluded in the averaging are MWR-MWR “zero-line” profiles
so that the MWRs, themselves, are included in the consensus.
These are then subtracted from the ACE-FTS – MWR and
ACE-MAESTRO – MWR difference profiles from Fig.43,
to obtain profiles which show the agreement between the
ACE instruments and the consensus of the other instruments.
Instrument comparisons with the MWRs were made using
criteria similar to those used for the ACE−MWR compar-
isons discussed above, except the geolocation window for the
satellite-borne measurements extends to±5.0◦ latitude and
±10.0◦ longitude of the two sites. All the instruments have
relatively high vertical resolutions compared to the MWRs
and have been convolved using the MWR averaging kernels
for the comparison.

All available measurements made by the satellite- and
ground-based instruments, in the three year period from 2004
through to the end of 2006, were used to determine the
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Table 5. Results of the comparisons between ACE-FTS, ACE-MAESTRO and the ground-based FTIRs. The microwindow(s) used in the
FTIR retrievals are listed in column 2. For each ACE/FTIR instrument pair, the number of comparison pairs, the vertical range used to
calculate the partial columns, the corresponding degrees of freedom (DOFS) and the mean difference and 1-σ standard deviation of the mean
are indicated. The retrieval code (with version number) and spectroscopic database used by each station are given in the footnotes.

FTIR Microwindowsb,c ACE-FTS ACE-MAESTRO

Stationa [cm−1] # of Range DOFS Mean diff. # of Range DOFS Mean diff.
pairs [km] FTIR ±Std. Dev. pairs [km] FTIR ±Std. Dev.

Thule 1130.0–1133.00 48 12.2–41.1 2.8 −9.1±6.4 41 12.2–41.1 2.8 −0.7±16.4
Kiruna 782.56–782.86 27 14.3–46.7 3.3 3.2±4.7 27 13.2–46.7 3.4 −4.6±5.8

788.85–789.37
993.30–993.80

1000.00–1005.00d

Poker Flat 3051.29–3051.90 12 10–38 3.1 −0.4±4.9 10 11–38 3.0 −8.7±4.7
Harestua 1000.00–1005.00d 60 15.5–46.9 2.7 2.6±9.9 52 14.7–46.9 2.9 −0.5±10.8
Zugspitze 1000.00–1005.00d 25 15.4–36.3 1.8 3.7±6.2 22 14.7–36.3 2.0 −2.0±6.0
Jungfraujoch 1000.00–1005.00d 32 15.4–42.4 ∼2.5 −9.9±6.5 29 14.2–42.4 ∼2.5 −3.7±4.7
Toronto 3045.10–3045.35 54 17.8–40.9 1.7 1.7±5.6 39 16.3–40.9 1.8 −5.2±6.0
Izaña 782.56–782.86 10 14.3–46.7 3.9 6.3±1.9 7 14.3–46.7 3.9 1.4±3.8

788.85–789.37
993.30–993.80

1000.00–1005.00d

La Réunion 1000.00–1005.00d 4 16.6–44.9 3.0 3.2±4.6 4 15.4–44.9 3.1 −1.1±6.2
Wollongong 1002.58–1003.50 7 14–42 2.8 1.2±10.3 5 12–42 3.1 −6.6±16.4

1003.90–1004.40
1004.58–1005.00

a Retrieval codes: PROFITT92 is used in Kiruna and Izaña. The other stations use SFIT2: Thule (v3.92b), Toronto, La Réunion and
Wollongong (v3.92), Jungfraujoch (v3.91), Zugspitze (v3.90), Harestua (v3.81) and Poker Flat (v3.7).
b Spectroscopic linelist: HITRAN 2001 for Kiruna and Izaña. All other stations use HITRAN 2004.
c When multiple microwindows are listed for a station, they are fitted simultaneously during the retrieval process.
d The 1000.00–1005.00 cm−1 microwindow was selected following the studies ofBarret et al.(2002, 2003), for use within the European
project UFTIR: “Time series of Upper Free Troposphere observations from a European ground-based FTIR network” (http://www.nilu.no/
uftir/).

difference profiles. Table6 summarizes the datasets used
in this study, including the processing version number, the
number of collocated pairs used in determining the difference
profiles presented here and the gaps in the datasets. Results
from the comparisons between the various instruments and
the MWRs are presented in Fig.44 for Mauna Loa (panel a)
and for Lauder (panel b).

The resulting (ACE-consensus) difference profiles are
again generally similar at both sites. Below 40 km, ACE-
FTS shows a consistent positive bias, relative to the con-
sensus, with mean relative differences within +2 to +7% at
Mauna Loa and +4 to +8% at Lauder. ACE-MAESTRO also
shows generally positive mean relative differences within +1
to +9%, in this altitude region, at Lauder. At Mauna Loa, the
ACE-MAESTRO mean relative differences with the consen-
sus are within±5% up to 40 km, starting as a small negative
bias but then tending positive. Above 40 km, both ACE in-
struments have an increasing positive bias, with mean rela-
tive differences between ACE-FTS and the consensus of up

to +24% and, for ACE-MAESTRO, of up to +19%. Diur-
nal variation in ozone amounts becomes a factor above about
45 km, with rapid changes in ozone occurring around sun-
rise and sunset. The solar occultation SAGE II instrument
has a small positive bias above this height, compared to the
other consensus instruments, but still measures less ozone
than the ACE instruments, suggesting other systematic er-
rors are contributing to the higher positive bias in the ACE
instruments. While HALOE is also a solar occultation in-
strument, the HALOE retrieval incorporates a photochemi-
cal model intended to account for diurnal variation of ozone
along the instrument’s line of sight at sunrise and sunset.

7 Summary – discussion

Here we summarize and discuss the VMR profile and par-
tial column comparison results described in the previous sec-
tions. The mean relative differences from the vertical profile
comparisons are presented in Figs.45 and46 for ACE-FTS

www.atmos-chem-phys.net/9/287/2009/ Atmos. Chem. Phys., 9, 287–343, 2009
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and ACE-MAESTRO, respectively. In these plots, the verti-
cal range has been limited to 60 km except for the compar-
isons with the Eureka DIAL, where the plotting limit was set
to 38 km because of the large oscillations noted above this
altitude. Only statistical comparisons are included in these
summary plots, hence the comparisons with individual FIRS-
2, SAOZ and SPIRALE measurements are not included. The
corresponding results are given in Table7.

7.1 ACE-FTS

Figure45shows the mean relative differences of all statistical
comparisons of VMR profiles for ACE-FTS. As can be seen,
the results are highly consistent in the stratosphere between
∼16 km and 44 km for nearly all comparison datasets. In
this vertical range, ACE-FTS reports on average +4% more
ozone than the comparison instruments, with a spread of the
mean relative differences on the order of±5%. In this al-
titude range, two outliers for which much larger mean rel-
ative differences were found can be noted. In one case the
mean relative differences are larger and positive, while in the
other case the mean relative difference values are larger but
negative. The former profile is the result of the compari-
son with Odin/SMR, for which the ACE-FTS VMR is con-
sistently larger than that of SMR in the stratosphere (with
mean relative differences within +3 to +20%), and the lat-
ter was obtained when comparing ACE-FTS with the Eu-
reka DIAL, which shows negative mean relative differences
of about−7%. The low bias of SMR ozone was noted in
the validation study ofJones et al.(2007). The reason for
the significant negative differences between ACE-FTS and
the Eureka DIAL is still unclear. Furthermore, the indi-
vidual comparisons with the balloon-borne instruments (not
included in Fig.45) show a similar agreement (with rela-
tive differences within±10%). Additionally, the (ACE-FTS-
consensus) mean relative difference profile (shown in Fig.44
but not included in Fig.45) obtained in the MWR study is an
example of what can be obtained by combining the correla-
tive observations from different instruments (Sect.6.9). This
shows results similar to what can be seen in Fig.45, with a
small positive bias of ACE-FTS with respect to the consensus
at altitudes below 40 km, where the mean relative differences
are within +2 to +8% at Mauna Loa and Lauder.

Below 16 km, the relative differences are more scattered.
This can be explained by both geophysical and instrumental
factors. The lower stratosphere is an atmospheric region with
intrinsically large variability in the ozone VMR (as expressed
by the large increase of the standard deviation of the mean
VMR profiles at these altitudes), where the observations can
encounter clouds or where the sensitivity of satellite sensors
can decrease. Therefore, the methology used here is not opti-
mal for quality assessment of the ACE-FTS measurements at
the lowest levels of the comparison. For detailed validation
in the upper troposphere/lower stratosphere using alternative
methods, the reader is referred toHegglin et al.(2008).

Table 6. List of instruments used in comparisons with the MWRs
at Mauna Loa and Lauder. The retrieval version number (col-
umn 2) and number of coincident pairs for Mauna Loa (column 3)
and Lauder (column 4) are listed. All available measurements from
2004–end of 2006 were used with the exceptions noted below. Note,
the MWR located at Lauder had a receiver failure at the end of 2003,
with regular measurements commencing again in May 2004.

Instrument Version No. of pairs
Mauna Loa Lauder

ACE-FTS 2.2 Update 14 29
ACE-MAESTRO 1.2 11–12f 26–29g

SAGE IIa 6.20 19–20f 29
HALOEb 19 32 43
Aura-MLSc 2.2 780–781f 514
GOMOSd 6.0f 56–87f 52–64f

MIPASe 4.62/4.65 53–76f 11
Lidar (Mauna Loa) 5.0 79–405g –
Lidar (Lauder) 7.0 – 82–142g

a Measurements ended in August 2005.
b Measurements ended in November 2005.
c Measurements began in September 2004.
d Instrument offline from January–August 2005 due to an instru-
ment anomaly.
e Full resolution measurements from January–March 2004 (ver-
sion 4.62) and reduced resolution measurements from August–
September 2004 (version 4.65) used in comparison.
f First number is the number of coincident measurements used at
the bottom of the comparison vertical range; second number is the
maximum number of coincident pairs.
g First number is the number of coincident measurements used at
the top of the comparison vertical range; second number is the max-
imum number of coincident pairs.

The persistent high bias of ACE-FTS in the mesosphere
(45–60 km), noted frequently in previous sections, is clearly
seen in Fig.45. The mean relative differences are gener-
ally of about +20% at an altitude of about 55 km. Similar
high VMR values were already noted in the initial validation
for version 1.0 of the ACE-FTS data product (e.g.,Walker
et al., 2005; McHugh et al., 2005). The natural diurnal cy-
cle of ozone in the mesosphere may be a factor in explain-
ing the discrepancies, since the nighttime VMR values can
be as much as 30 to 60% higher than the daytime values in
the range 48–60 km (Schneider et al., 2005). However, these
large differences are observed for comparisons with differ-
ent instruments operating from different platforms, in differ-
ent spectral ranges and with different viewing geometries.
Therefore, it is unlikely that this difference at altitudes be-
tween∼45 and 60 km arises solely due to the ozone diurnal
cycle.

In addition, the comparison of partial columns derived
from the ACE-FTS and ground-based FTIR measurements
provide an alternate test of the overall quality of the
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Fig. 45. Summary plot of the mean relative difference profiles for
all statistical comparisons with ACE-FTS. Results are shown for
ACE-FTS SR (solid red line) and SS (dashed blue line) when anal-
yses were made separately. Mean relative difference profiles when
no SR/SS separation was made are shown in black dot-dashed lines.

ACE-FTS retrievals in the stratosphere. The partial col-
umn mean relative differences are within±10% and gen-
erally positive, except for Thule (−9.1%) and Jungfraujoch
(−9.9%), with de-biased standard deviation of the mean rel-
ative differences ranging from∼2% for Izãna to 10% for
Jungfraujoch and Wollongong. There is a good global cor-
relation (∼0.88) between the values derived from the ACE-
FTS measurements and those calculated for the FTIR obser-
vations.

For all statistical comparisons, we calculated the uncer-
tainty of the mean (standard error) whose values are very
small over the altitude range 16–44 km for most compar-
isons, and larger but still small at mesopheric altitudes. This
indicates that the biases characterized in this work are sta-
tistically significant, since they are very rarely within the
standard error bars of the comparison. Furthermore, we re-
ported the de-biased standard deviation of the mean relative
differences, which remains within 5 to 15% between 16 and
44 km and increases very rapidly below and above this al-
titude range. A large part of the de-biased standard devia-
tion of the mean relative differences can be accounted for
by the stated uncertainties of the correlative measurements.
This seems to show that the contribution of the ACE-FTS re-
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Fig. 46. Summary plot of the mean relative difference profiles for
all statistical comparisons with ACE-MAESTRO. Results are sepa-
rated between ACE-MAESTRO SR (solid red line) and SS (dashed
blue line) occultations. The detailed NDACC study results are for
the combined SR/SS results and are shown using the black dot-
dashed lines.

trievals to the combined random errors of the comparisons is
small and well estimated by the statistical fitting errors.

Several tests were performed with the ACE-FTS retrieval
scheme to evaluate potential sources for systematic bi-
ases. The next processing version of the ACE-FTS software
features an improved instrumental line shape (ILS) for the in-
strument. The ILS used for ACE-FTS version 2.2 processing
gave an apparent 3–5% high bias in retrievals above∼40 km
for N2 and HCl (and presumably other molecules as well).
There is also an improvement in the retrieval process for
pressure and temperature developed for the next version of
the ACE-FTS analysis software. Neither the new ILS nor the
improvements in the pressure/temperature processing elimi-
nate the systematic high bias in ACE-FTS O3 retrievals be-
tween 45 and 60 km. A more promising explanation for the
high bias may be spectroscopy for the microwindows em-
ployed in the retrievals. An alternative set of microwindows
was tested for this altitude region that appears to yield im-
proved agreement with other datasets, but this issue remains
under investigation.

Finally, no systematic difference has been found between
the ACE-FTS SR and SS profiles for all comparisons. There
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is very good consistency between the comparisons for ACE-
FTS SR and SS occultations, as seen in Fig.45.

7.2 ACE-MAESTRO

The current analyses have extended the results ofKar et al.
(2007) to a broader range of correlative datasets. Figure46
shows the mean relative differences of all statistical compar-
isons. These are separated into ACE-MAESTRO SR and
ACE-MAESTRO SS events. For completeness, we have in-
cluded the results ofKar et al. (2007) for POAM III and
SAGE III in this plot.

The most obvious result is the bias between the MAE-
STRO SR and SS observations, at all altitudes between∼35
and 55 km. The amplitude of this bias varies with altitude and
with the comparison instrument. Below 35 km, the results are
essentially comparable for both SR and SS, although the SR
comparisons show generally positive and larger mean rela-
tive differences than the SS results in the range 25–35 km.
Above ∼35 km and up to∼55 km, the ACE-MAESTRO
SR observations are systematically lower than the SS re-
sults for the same correlative dataset, and yield more scat-
tered mean relative differences. The SR/SS bias is largest
for POAM III and SAGE III around 50 km. For these in-
struments, the discrepancy can reach 25–30%, with mean
relative differences of−10% for the ACE-MAESTRO SR
occultations and +20% for the ACE-MAESTRO SS occul-
tations. It should be noted that the ACE-MAESTRO mea-
surements are known to have a variable timing error of up
to one second with respect to the ACE-FTS measurements.
Since the ACE-MAESTRO retrievals use the tangent heights
retrieved for ACE-FTS, this can lead to an offset of a few
kilometers in the ACE-MAESTRO tangent heights, result-
ing in VMR profiles that can be significantly lower or higher
than those retrieved from ACE-FTS or the comparison in-
strument (Manney et al., 2007). This issue is under inves-
tigation and has not been resolved yet. In particular, the
v1.2 ACE-MAESTRO data used in the present study have
not been corrected for this timing error. While this affects
both SR and SS profiles, the effect is more pronounced for
the SR profiles. This might explain the fact that, in general,
the de-biased standard deviations of the mean relative dif-
ferences for the comparisons involving the ACE-MAESTRO
SR profiles are significantly larger than those obtained using
the ACE-MAESTRO SS profiles. Part of the large spread in
the SR differences seen in Fig.46might also be attributed to
this.

For most instruments apart from POAM III and SAGE III,
the comparisons with ACE-MAESTRO SR measurements
show mean relative differences generally within±5% but
with an average close to 0% over the altitude range 20–
55 km. However, the spread of the results is about±10%
around the average difference, larger than for ACE-FTS. In
contrast, the ACE-MAESTRO SS results are more consis-
tent. They show good agreement between 18 and 40 km,

here also with an average difference close to 0%, and mean
relative differences starting negative (−5% at 18 km) but be-
coming increasingly positive with increasing altitude (+5%
at 40 km). As was found for ACE-FTS, the largest discrep-
ancies in the altitude range∼18–40 km are seen in the com-
parisons with Odin/SMR (+2 to +17%) and with the Eureka
DIAL (about−13%). It is interesting to note that the SR/SS
bias is not apparent in the comparisons with SMR. Consistent
results were found using the MWR instruments as a transfer
standard (Sect.6.9), for which no separation of SR/SS was
made. The mean relative differences below 40 km for (ACE-
MAESTRO – consensus) are within +1 to +9% at Lauder and
within ±5% at Mauna Loa.

In the upper stratosphere/lower mesosphere altitude range,
the ACE-MAESTRO SS occultations show significantly
more ozone than the comparison instrument, typically by
up to +20%. This is comparable to the high altitude pos-
itive bias already noted for ACE-FTS in the mesosphere.
Potential explanation for this similarity between the ACE-
FTS and the ACE-MAESTRO SS results may reside in the
fact that the pressure and temperature profiles used in the
ACE-MAESTRO retrievals are the profiles calculated from
the ACE-FTS observations. This is also under investigation.

Below ∼18 km and above∼55 km, the mean relative dif-
ferences increase in magnitude and reach large negative val-
ues both for SR and SS observations. Above 55 km, the low
signal-to-noise ratio in the O3 Chappuis band affects the re-
trievals and may be responsible for the larger negative differ-
ences noted at these altitudes.

Finally, comparisons of partial columns with the ground-
based FTIR instruments show good agreement in the range
used for calculations, with mean relative differences within
±9% but generally around±2% and corresponding de-
biased standard deviations of 6 to 16%. The correlation co-
efficient (0.84) is slightly lower than that found for the ACE-
FTS comparisons.

As was found for ACE-FTS, the standard errors are very
small for most statistical comparisons of VMR profiles,
showing that the biases found in this study are statistically
significant. The de-biased standard deviation of the mean rel-
ative differences is within∼10 to 20% at most altitudes be-
tween 18 and 40 km and increases rapidly above and below
this range. Unlike for ACE-FTS, the spectral fitting errors
cannot account for the full contribution of ACE-MAESTRO
retrievals to the de-biased standard deviation of the mean
relative differences. Therefore, other sources will need to
be taken into account in the ACE-MAESTRO random error
budget.

8 Conclusions

We have completed a comprehensive bias determination
study for the ozone profiles retrieved from measurements
by the Atmospheric Chemistry Experiment satellite-borne
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Table 7. Summary of results for the ACE-FTS and ACE-MAESTRO profile comparisons with correlative measurements. For cases when
the SR and SS comparisons were performed separately or when only one type of occultation was used, the mean relative differences are
labeled this way. SR/SS is used when the comparison was not separated by occultation type. Columns 2–5: for ACE-FTS, number of
comparison pairs, continuous altitude range in which the mean relative differences are globally within±10%, mean value (column 4) and
maximum/minimum values (column 5) in this range. Columns 6–9: same information for ACE-MAESTRO.

Instrument ACE-FTS ACE-MAESTRO
Number Range Difference [%] Number Range Difference [%]
of events [km] Mean Range of events [km] Mean Range

SAGE II 199 (SR) 19–42 +6.1 +4.7 to +10.0 199 (SR) 15–55−0.3 −12.9 to +3.9
30 (SS) 11–46 +4.7 +0.6 to +13.7 30 (SS) 15–48 +0.3 −5.1 to +9.9

HALOE 8 (SR) 19–40 +8.0 +4.9 to +13.5 8 (SR) 15–39 +5.1 −6.6 to +15.5
41 (SS) 16–40 +7.1 +3.4 to +11.9 40 (SS) 12–40 +3.0−10.6 to +9.2

POAM IIIa 131 (SR) 13–40 +5.3 −6.5 to +12.1 74 (SR) 18–52 −6.2 −14.8 to +3.3
245 (SS) 16–43 +2.8 −4.0 to +9.0 104 (SS) 15–40 −0.3 −13.2 to +9.3

SAGE IIIa 37 (SR) 11–50 +3.5 −12.2 to +18.2 12 (SR) 15–48 −5.0 −13.5 to +12.2
611 (SS) 10–45 +1.9 −2.5 to +9.2 695 (SS) 15–41 +0.7 −7.1 to +9.3

OSIRIS (York) 913 (SR/SS) 10–40 +6.9 −5.3 to +10.6 439 (SR) 15–40 +5.3 −9.9 to +12.0
– – – – 548 (SS) 15–40 +3.0 −2.0 to +9.9

OSIRIS (SaskMART) 1219 (SR/SS) 9–48 +4.5 −5.6 to +8.8 489 (SR) 18–54 +1.8 −2.1 to +6.7
– – – – 635 (SS) 16–49 −0.5 −9.4 to +9.5

SMRb 1161 (SR/SS) 18–41 +14.2 +2.7 to +19.8 393 (SR) 21–44 +14.1 +5.6 to +19.0
– – – – 705 (SS) 20–40 +10.9 +1.8 to +17.1

SABER 6210 (SR/SS) 19–50 +1.8 −6.7 to +9.7 2830 (SR) 20–52 −0.5 −9.5 to +7.0
– – – – 3383 (SS) 19–44 +1.5 −9.5 to +9.5

GOMOS 1240 (SR/SS) 12–40 +3.4 −9.1 to +9.0 – – – –
MIPAS (ESA f.r.) 138 (SS) 11–41 +2.7 −5.5 to +9.9 – – – –
MIPAS (ESA r.r.) 160 (SR/SS) 14–45 +1.8 −3.8 to +8.1 – – – –
MIPAS (IMK-IAA, day) 348 (SS) 8–45 +3.0 −4.8 to +10.7 – – – –
MIPAS (IMK-IAA, night) 333 (SS) 9–43 +2.1 −6.3 to +8.4 – – – –
SCIAMACHY 734 (SR/SS) 17–41c +4.2 −4.0 to +16.2 – – – –
Aura-MLS 3178 (SR/SS) 12–43 +4.7 −1.3 to +9.1 1254 (SR) 19–48 +5.9 −6.6 to +10.9

– – – – 1910 (SS) 19–39 −1.1 −9.6 to +9.1
ASUR 39 (SR) 18–38 +1.8 −8.0 to +7.1 37 (SR) 20–44 +0.3 −9.5 to +9.2
Ozonesondesd 376 (SR/SS) 11–35 +5.0 −1.0 to +9.7 151 (SR) 17–33 +1.6 −5.0 to +10.1

– – – – 311 (SS) 16–35 +0.5 −5.5 to +6.5
Ozonesondes (NDACC)e 200 (SR/SS) 11–30 −0.3 −6.3 to +5.6 200 (SR/SS) 15–33 −4.2 −9.8 to +0.3
Lidars (NDACC)e 50 (SR/SS) 10–42 +1.1 −3.7 to +9.4 50 (SR/SS) 15–41 −3.4 −9.0 to +8.9
Eureka DIALb 10 (SS) 15–34 −7.3 −11.9 to +3.8 8 (SS) 12–38 −12.9 −20.0 to +7.0
Lauder MWR 29 (SR/SS) 20–46 +4.4 −2.0 to +14.0 29 (SR/SS) 19–39 −1.1 −9.6 to +9.1
Mauna Loa MWR 14 (SR/SS) 20–42 +3.6 +0.8 to +7.7 12 (SR/SS) 20–42−0.6 −7.6 to +4.8

a For comparisons of ACE-MAESTRO with POAM III and SAGE III, results are taken fromKar et al.(2007).
b Comparisons with SMR: altitude range with differences of +10 to +20% for ACE-FTS (+5 to +20% for ACE-MAESTRO); Comparisons
of ACE-MAESTRO with the Eureka lidar: range with abs(differences) lower than 20%.
c Range restricted to the levels recommended for the SCIAMACHY limb-scattering measurements.
d Results from the statistical analyses presented in Sect.6.5.
e Results from the detailed NDACC study of Sect.6.6.

instruments, namely the ACE-FTS version 2.2 Ozone Update
and the ACE-MAESTRO version 1.2 data products. These
datasets have been compared with VMR profiles from 11
satellite-borne instruments as well as ozonesondes and air-
craft, balloon-borne and ground-based observations, over
a time period of 1.5–3 years. Moreover, partial columns

derived from the ACE measurements were compared with
ground-based FTIR instruments. In these analyses, ef-
forts were made to use consistent coincidence criteria, com-
parison methodology and data filtering (including selection
of events with simultaneous observations from ACE-FTS,
ACE-MAESTRO and the comparison instrument) in order to
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better assess the overall quality of the ACE-FTS and ACE-
MAESTRO O3 data products. The overall results of the in-
tercomparisons are summarized in Table5 (partial column
comparisons with ground-based FTIR instruments) and Ta-
ble7 (profile comparisons).

The analyses show generally good agreement and very
good consistency between ACE-FTS, ACE-MAESTRO and
the correlative instruments in the stratosphere. Biases were
identified over particular altitude domains in both datasets.
The main findings for the ACE-FTS version 2.2 Ozone Up-
date product are that there is very good agreement with the
correlative measurements in the stratosphere, with a slight
positive bias with mean relative differences of about 5% be-
tween 15 and 45 km and a larger, well-characterized, sys-
tematic bias above 42–45 km. The analyses are remarkably
consistent for the range of data products used in the compar-
isons, with a few exceptions which are generally accounted
for by known biases of the comparison instrument. The de-
biased standard deviation of the mean relative differences can
be used to evaluate the ACE-FTS and comparison instrument
combined precision. It shows that the statistical fitting er-
rors appear to be an acceptable precision estimate for the
ACE-FTS retrievals. This implies that the ACE-FTS mea-
surements have good precision, comparable to, or lower than
that of the correlative instruments. Complete precision val-
idation will be undertaken for the next version of the ACE-
FTS ozone data product.

For the ACE-MAESTRO version 1.2 data product ob-
tained from the VIS spectrometer, there is a noticeable bias
between observations performed at sunrise and at sunset.
Agreement for the SS measurements is generally better (with
mean relative differences of +4% on average) in the range
20–40 km than that found for the SR events (with mean rela-
tive differences close to zero but showing a large scatter of
±15%), but there is a high bias above∼45 km similar to
the one noted for ACE-FTS. The SS difference profiles more
closely resemble the results found for the ACE-FTS analyses.
For ACE-MAESTRO, preliminary analysis of the de-biased
standard deviations of the mean relative differences indicate
that ACE-MAESTRO has poorer precision than ACE-FTS.
The spectral fitting errors currently reported are not enough
to account for the ACE-MAESTRO contribution to the ran-
dom error budget of the comparison. Possible additional
sources of random error are being investigated and should be
included in the error budget of the ACE-MAESTRO ozone
data product.

For both ACE-FTS and ACE-MAESTRO, comparisons of
partial columns with ground-based FTIR instruments con-
firm the overall results and show comparable agreement with
all stations.

Tests with a preliminary version of the next generation
ACE-FTS retrievals (version 3.0) have shown that the slight
positive stratospheric bias has been removed and that the
large mesospheric differences have been decreased but are
still present. Possible sources for these biases are being in-

vestigated at the time of writing. Additional work is on-
going to resolve the differences between the SR and SS re-
trievals for ACE-MAESTRO. A complete characterization of
the random and systematic errors for both instruments will be
undertaken during development of the next versions of the
ACE ozone products. The ACE-FTS and ACE-MAESTRO
ozone measurements analyzed in this work will be a valuable
dataset to continue the long-standing record of occultation
measurements from space and will play a role in monitoring
stratospheric ozone recovery.

Acknowledgements.Funding for the ACE mission was provided
primarily by the Canadian Space Agency (CSA) and the Natural
Sciences and Engineering Research Council (NSERC) of Canada.
The Canadian Arctic ACE Validation Campaign project has been
supported by CSA, Environment Canada (EC), NSERC, the North-
ern Scientific Training Program and the Centre for Global Change
Science at the University of Toronto. Logistical and on-site techni-
cal support for the 2006 campaign was provided by the Canadian
Network for the Detection of Atmospheric Change (CANDAC).
CANDAC and PEARL are funded by the Canadian Foundation for
Climate and Atmospheric Sciences (CFCAS), NSERC, the Cana-
dian Foundation for Innovation (CFI), the Ontario Innovation Trust,
the Ontario Ministry of Research and Innovation, and the Nova Sco-
tia Research and Innovation Trust.

The comparisons with the solar occultation instruments con-
ducted at the Laboratory for Atmospheric and Space Physics
(LASP) by C. Randall were supported by the National Aero-
nautics and Space Administration (NASA) under the grant
No. NNG04GF39G. We gratefully acknowledge L. Harvey for pro-
cessing the ACE data into a suitable format for those comparisons.

The authors thank the SABER and HALOE Science and Data
Processing Teams for providing the ozone profiles used in this work
and for helpful discussions and comments on the manuscript.

Odin is a Swedish-led satellite project funded jointly by the
Swedish National Space Board (SNSB), the CSA, the Centre Na-
tional d’Études Spatiales (CNES) in France and the National Tech-
nology Agency of Finland (Tekes). The OSIRIS ozone retrievals
were supported by CSA and NSERC.

SCIAMACHY is jointly funded by Germany, the Netherlands,
and Belgium. The analysis of SCIAMACHY measurements was
supported in part by the German Ministry of Education and Re-
search (BMBF), the German Aerospace Center (DLR) and the Uni-
versity of Bremen. This validation work for the ozone compar-
isons between ACE and SCIAMACHY was funded in part by ESA
under the SciLoV project, and by BMBF under the project DLR
50EE0502.

The SAOZ flights in Niger were carried out in the framework
of the SCOUT-O3/AMMA campaign supported by the European
Commission, CNES and CNRS-LEFE.

The SPIRALE balloon measurements could only be performed
thanks to the technical team (L. Pomathiod, B. Gaubicher, G. Jan-
net). The flight was funded by ESA and CNES for the Envisat
validation project. The CNES balloon launching team is greatly
acknowledged for successful operations. A. Hauchecorne is ac-
knowledged for making available the MIMOSA advection model
and thanks are extended to F. Coquelet for useful help in the PV
calculations and ACE data formatting.

www.atmos-chem-phys.net/9/287/2009/ Atmos. Chem. Phys., 9, 287–343, 2009



336 E. Dupuy et al.: Validation of ACE ozone

The correlative data from ozonesondes and ground-based
lidars and FTIRs used in this publication were obtained as
part of the WMO-GAW programme, including the NDACC
(http://www.ndacc.org) and the WOUDC (http://www.woudc.org).
This programme relies on the contribution of ground-based
stations which are nationally funded and supported. The Belgian
contributions to the present effort were partly supported by the
ProDEx projects ACE, CINAMON and Envisat Database. We are
grateful to the following institutes, and thank their co-workers who
contributed to generating lidar data: AWI (Ny-Ålesund station, PI
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nical Note: Continuity of MIPAS-ENVISAT operational ozone
data quality from full- to reduced-spectral-resolution operation
mode, Atmos. Chem. Phys., 8, 2201–2212, 2008,
http://www.atmos-chem-phys.net/8/2201/2008/.

Chabrillat, S. and Fonteyn, D.: Modeling long-term changes of
mesospheric temperature and chemistry, Adv. Space Res., 32(9),
1689–1700, 2003.

Chu, W. P., McCormick, M. P., Lenoble, J., Brogniez, C., and Pru-
vost, P.: SAGE II inversion algorithm, J. Geophys. Res., 94(D6),
8339–8351, doi:10.1029/89JD00113, 1989.

Cofield, R. E. and Stek, P. C.: Design and field-of-view cali-
bration of 114–660 GHz optics of the Earth Observing System
Microwave Limb Sounder, IEEE Trans. Geosci. Remote Sens.,
44(5), 1166–1181, doi:10.1109/TGRS.2006.873234, 2006.

Connor, B. J., Parrish, A., Tsou, J.-J., and McCormick, M. P.: Er-
ror analysis for the ground-based microwave ozone measure-
ments during STOIC, J. Geophys. Res., 100(D5), 9283–9292,
doi:10.1029/94JD00413, 1995.

Cortesi, U., Lambert, J. C., De Clercq, C., Bianchini, G., Blumen-
stock, T., Bracher, A., Castelli, E., Catoire, V., Chance, K. V.,
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and Labow, G.: Southern Hemisphere Additional Ozoneson-
des (SHADOZ) 1998-2000 tropical ozone climatology: 1. Com-
parison with Total Ozone Mapping Spectrometer (TOMS) and
ground-based measurements, J. Geophys. Res., 108(D2), 8238,
doi:10.1029/2001JD000967, 2003a.

Thompson, A. M., Witte, J. C., Oltmans, S. J., Schmidlin, F. J.,
Logan, J. A., Fujiwara, M., Kirchhoff, V. W. J. H., Posny, F.,
Coetzee, G. J. R., Hoegger, B., Kawakami, S., Ogawa, T., For-
tuin, J. P. F., and Kelder, H. M.: Southern Hemisphere Addi-
tional Ozonesondes (SHADOZ) 1998-2000 tropical ozone cli-
matology: 2. Tropospheric variability and the zonal wave-one,
J. Geophys. Res., 108(D2), 8241, doi:10.1029/2002JD002241,
2003b.

Thompson, A. M., Witte, J. C., Smit, H. G. J., Oltmans, S. J., John-
son, B. J., Kirchhoff, V. W. J. H., and Schmidlin, F. J.: South-
ern Hemisphere Additional Ozonesondes (SHADOZ) 1998-2004
tropical ozone climatology: 3. Instrumentation, station-to-station
variability, and evaluation with simulated flight profiles, J. Geo-
phys. Res., 112, D03304, doi:10.1029/2005JD007042, 2007a.

Thompson, A. M., Stone, J. B., Witte, J. C., Miller, S. K.,
Pierce, R. B., Chatfield, R. B., Oltmans, S. J., Cooper, O. R.,
Loucks, A. L., Taubman, B. F., Johnson, B. J., Joseph, E., Kuc-
sera, T. L., Merrill, J. T., Morris, G. A., Hersey, S., Forbes,
G., Newchurch, M. J., Schmidlin, F. J., Tarasick, D. W.,
Thouret, V., and Cammas, J.-P.: Intercontinental Chemical
Transport Experiment Ozonesonde Network Study (IONS) 2004:
1. Summertime upper troposphere/lower stratosphere ozone over
northeastern North America, J. Geophys. Res., 112, D12S12,
doi:10.1029/2006JD007441, 2007b.

Thompson, A. M., Stone, J. B., Witte, J. C., Miller, S. K., Oltmans,
S. J., Kucsera, T. L., Ross, K. L., Pickering, K. E., Merrill, J. T.,
Forbes, G., Tarasick, D. W., Joseph, E., Schmidlin, F. J., McMil-
lan, W. W., Warner, J., Hintsa, E. J., and Johnson, J. E.: Intercon-
tinental Chemical Transport Experiment Ozonesonde Network
Study (IONS) 2004: 2. Tropospheric ozone budgets and vari-
ability over northeastern North America, J. Geophys. Res., 112,
D12S13, doi:10.1029/2006JD007670, 2007c.

Urban, J., Lautíe, N., Le Flochmöen, E., Jiḿenez, C., Eriksson, P.,
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