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Abstract. MIPAS is a Fourier transform spectrometer, op-
erating onboard of the ENVISAT satellite since July 2002.
The online retrieval algorithm produces geolocated profiles
of temperature and of volume mixing ratios of six key at-
mospheric constituents: H2O, O3, HNO3, CH4, N2O and
NO2. In the validation phase, oscillations beyond the error
bars were observed in several profiles, particularly in CH4
and N2O.

To tackle this problem, a Tikhonov regularization scheme
has been implemented in the retrieval algorithm. The applied
regularization is however rather weak in order to preserve the
vertical resolution of the profiles.

In this paper we present a self-adapting and altitude-
dependent regularization approach that detects whether the
analyzed observations contain information about small-scale
profile features, and determines the strength of the regular-
ization accordingly. The objective of the method is to smooth
out artificial oscillations as much as possible, while preserv-
ing the fine detail features of the profile when related infor-
mation is detected in the observations.

The proposed method is checked for self consistency, its
performance is tested on MIPAS observations and compared
with that of some other regularization schemes available
in the literature. In all the considered cases the proposed
scheme achieves a good performance, thanks to its altitude
dependence and to the constraints employed, which are spe-
cific of the inversion problem under consideration. The
proposed method is generally applicable to iterative Gauss-
Newton algorithms for the retrieval of vertical distribution
profiles from atmospheric remote sounding measurements.

Correspondence to:M.Ridolfi
(Marco.Ridolfi@unibo.it)

1 Introduction

MIPAS (Michelson Interferometer for Passive Atmospheric
Sounding,Fischer et al.2008) is a Fourier transform spec-
trometer operating onboard of ENVISAT, a satellite launched
by the European Space Agency (ESA) on 1 March 2002 in a
polar orbit. MIPAS measures the atmospheric limb-emission
spectrum in the middle infrared (from 685 to 2410 cm−1),
a spectral region containing the signatures of the vibrational
transitions of many atmospheric constituents. Beyond pres-
sure at the tangent points, the ESA online retrieval algorithm
(Ridolfi et al., 2000; Raspollini et al., 2006) produces ge-
olocated profiles of temperature (T ) and of Volume Mixing
Ratios (VMR) of six key atmospheric constituents: H2O, O3,
HNO3, CH4, N2O and NO2.

The MIPAS measurements from July 2002 to March 2004,
consisting of scan patterns of 17 sweeps in the 6–68 km al-
titude range with 3 km steps in the lower atmosphere, were
extensively validated by several research groups (see Atmos.
Chem. Phys. 2006 special issue on MIPAS). Oscillations
beyond the error bars were observed in several MIPAS pro-
files, particularly in CH4 and N2O VMR (Payan et al., 2009).
Starting from January 2005 MIPAS is operated at a reduced
spectral resolution with a nominal scan pattern consisting of
27 sweeps in the 6–68 km altitude range with 1.5 km steps
in the lower atmosphere. The field of view of the instru-
ment is approximately 3 km in the vertical, so the atmosphere
turns out to be oversampled. Since the ESA retrieval grid co-
incides with the tangent altitudes of the measurements, the
finer sampling of the vertical profiles is expected to amplify
the unphysical oscillations already present in the measure-
ments acquired until March 2004.

To tackle this problem, a Tikhonov regularization scheme
has been implemented in the ESA retrieval algorithm. The
choice of the Tikhonov parameter determines the trade-off
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between the smoothing of the oscillations and the preserva-
tion of small-scale features. In the ESA retrieval the adopted
choice for the strength of the regularization is rather conser-
vative, to guarantee that small-scale profile features in the
altitude domain are preserved (Ceccherini, 2005).

In this paper we present a self-adapting and altitude-
dependent regularization approach that detects whether the
actual observations contain information about small-scale
profile features, and determines the strength of the regular-
ization accordingly. The objective of the method is to smooth
out artificial oscillations as much as possible, while preserv-
ing the fine detail features of the profile when related infor-
mation is detected in the observations.

In Sect.2 we outline the theoretical background of the de-
veloped regularization scheme. In Sect.3 we show a series
of tests focusing on a single MIPAS limb scan. In Sect.4
we analyze the performance of the method on the basis of
a full MIPAS orbit, first using simulated data and then real
measurements. Finally in Sect.5 we draw conclusions and
outline the future developments.

2 Theoretical basis

Ill-conditioning is a common feature of many inverse atmo-
spheric problems. In the case of the retrieval of vertical at-
mospheric profiles from spectroscopic limb measurements,
ill-conditioning produces oscillations in the retrieved profiles
beyond the error margins defined by the mapping of the mea-
surement noise into the solution. Altitude dependent sys-
tematic errors such as the forward/reverse differences ana-
lyzed in Kleinert et al.(2007) may also trigger oscillations.
Tikhonov regularization is often used to improve the condi-
tioning of the inversion. Smoother profiles are obtained by
penalizing the oscillating solutions in the inversion formula.

Let y=f (x) be the forward problem, wherey is them-
dimensional vector of the observations with error covari-
ance matrixSy, f is the forward model, function of then-
dimensional atmospheric state vectorx. The Tikhonov so-
lution is the state vectorxt minimizing the following cost
function:

ξ2
= ‖S

−
1
2

y (y − f (x))‖2
+ λ‖L(xs − x)‖2 (1)

where‖ ·‖ is the`2 norm,xs is an a-priori estimate of the so-
lution, L is al×nmatrix operator, usually approximating the
i−th order vertical derivative (i=0,1,2). Note that normally
l=n−i. Finallyλ is the non-negative scalar Tikhonov param-
eter driving the strength of the regularization. The first term
of the right side of Eq. (1) is referred asχ2 and represents
the cost function minimized in the least-squares approach.

The choice ofλ is a crucial step. If the selectedλ is too
small, a poor regularization will be achieved, whilst ifλ is
too large,Lxt will be strongly biased towardLxs. Many
general methods have been proposed for the selection ofλ,

such as cross validation (Allen, 1974), generalized cross val-
idation (GCV) (Wahba, 1977andGolub et al., 1979), the L-
curve method (LC) (Lawson and Hanson, 1974andHansen,
1992) and the discrepancy principle (Morozov, 1993). See
e.g.Choi et al.(2007) for a recent paper on the comparison
of the various techniques. See also the monographic issue of
June 2008 of the Inverse Problems journal.

On the other hand better results may be expected if the
operatorL and the value ofλ are adapted to the problem
under investigation. The following references deal with the
inversion of atmospheric state parameters. The LC method
has been adopted inSchimpf and Schreier(1997) and more
recently inDoicu et al.(2004). A-priori estimates of the de-
grees of freedom or of the retrieval error have been used by
Steck(2002) to get λ. Alternatively Sofieva et al.(2004)
tested both the discrepancy principle and vertical resolution
requirements for the determination ofλ. The error consis-
tency (EC) method proposed byCeccherini(2005) deter-
minesλ analytically by imposing the consistency of the dif-
ference between the regularized and the unregularized pro-
files with the error bars of the regularized profile.

In this paper we propose an altitude-dependent regulariza-
tion scheme. Though there are more general mathematical
formulations we only treat the case of a diagonall×l positive

semi-definite matrix3. Assuming that d
ix
dzi

∣∣∣
z=zj

∼ (Lx)j ,

we may think of3jj as the regularization strength at alti-
tudezj . Thus we may speak of a vertical profile of3. Then
Eq. (1) becomes:

ξ2
= (y − f (x))TS−1

y (y − f (x)) (2)

+(xs − x)T LT3L(xs − x).

Historically, the first idea of a variable regularization, the
so-called localized Tikhonov regularizationhas been suc-
cessfully used in the case of Volterra integral equations (see
Lamm(1999) for a good survey). To the best of our knowl-
edge, only few papers deal with variable regularization in
other fields. In a recent paperModarresi and Golub(2007)
show that a vectorial version of the GCV achieves better re-
sults than the ordinary scalar version for an image recon-
struction problem.

A method for calculating altitude dependent Tikhonov
constraints for atmospheric retrievals was previously intro-
duced inKulawik et al. (2006), where combinations of 0th,
1st, and 2nd order Tikhonov constraints were considered.
The polynomial weights of the constraints were selected
by optimizing a function of the mean a posteriori error co-
variance and degrees of freedom. Pre-determined altitude-
dependent 0th and 1st order Tikhonov constraints are cur-
rently used for temperature, water, ozone, methane, and car-
bon monoxide nadir TES retrievals, as described inBowman
et al. (2006). In Steinwagner and Schwarz(2006), 3=λSh
andSh is a diagonal matrix containing the reciprocal of the
a-priori estimation of the profile.
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Methods like LC, EC and the altitude-dependent meth-
ods proposed in this paper derive3 taking into account the
achievedχ2. Theχ2 quantifies the compliance of the reg-
ularized profile with the available observations through the
matrix Sy. Oscillations produced by systematic errors not
accounted for inSy may be nevertheless smoothed out, even
if 3 is determined regardless of them.

In this paper we test altitude-dependent regularization
methods determining a profile of3 as the result of the mini-
mization of a target function. After the3-profile is obtained,
Eq. (2) is solved via an iterative Gauss-Newton scheme.

Let k be the iteration count,K be them×n Jacobian ma-
trix of f in xk, then the Gauss-Newton iteration for the min-
imization of Eq. (2) is:

xk+1 = xk +

(
KTS−1

y K + LT3L
)−1

(3)[
KTS−1

y (y − f (xk))+ LT3L(xs − xk)
]
.

For the determination of3, we will use the unregularized
iterate solutionxLS ≡ xk+1(3=0). To getxLS, the inversion
of KTS−1

y K is required. If this matrix is singular or too much
ill-conditioned optimal estimation (OE) and/or Levenberg-
Marquardt (LM) solutions (see e.g.Rodgers2000) can be
used instead ofxLS. For example, if OE is used, Eq. (2)
becomes:

ξ2
= (y − f (x))TS−1

y (y − f (x)) (4)

+(xa − x)TS−1
a (xa − x)+ (xs − x)T LT3L(xs − x)

wherexa is an a-priori estimate of the profilex with covari-
ance matrixSa. Bothxa andxs are estimates of the solution,
however usuallyxa constrains the values of the profile, while
xs constrains its derivatives. Therefore two different symbols
are used. The iterative solution of Eq. (4) is:

xk+1 = xk +

(
KTS−1

y K + S−1
a + LT3L

)−1
(5)[

KTS−1
y (y − f (xk))+ S−1

a (xa − xk)+ LT3L(xs − xk)
]
.

When Eq. (5) is used, setxOE ≡ xk+1(3=0). The LM
solution with damping factorα can also be represented with
Eq. (5), by settingS−1

a =αI andxa=xk. The OE/LM modifi-
cations permit to apply the method also in the case of singular
or severely ill-conditionedKTS−1

y K matrices by adding the

term S−1
a . In fact, with the OE/LM modifications the ma-

trix to be inverted isKTS−1
y K+S−1

a . Since we want to use

Tikhonov regularization, the only purpose ofS−1
a is to per-

mit the inversion ofKTS−1
y K+S−1

a with reasonably small
numerical errors. Therefore this term should be chosen pos-
itive definite, diagonal or diagonally dominant and kept as
small as possible.

Fix any3 and letx3 be the profile minimizing Eq. (4). For
moderately non-linear problems and a suitable initial guess,
xk converges tox3. The covariance matrixS3 mapping the
measurement errorSy into the solutionx3 is given by:

S3 =

(
KTS−1

y K + S−1
a + LT3L

)−1
KTS−1

y K (6)(
KTS−1

y K + S−1
a + LT3L

)−1
.

In the linear approximation, the spatial response function of
x3 is represented (Rodgers, 2000) by the averaging kernel
matrix (AK) A3 given by:

A3 =

(
KTS−1

y K + S−1
a + LT3L

)−1
KTS−1

y K . (7)

Vertical resolution is a measure of the dispersion of the
signal, usually calculated via the averaging kernelA3. Still
following Rodgers(2000), there are many practical ways of
measuring the vertical resolution, such as the full width at
half height (FWHH) of the AK rows:

νi =

∑n
j=1(A3)ij (zj−1 − zj+1)

2(A3)ii
(8)

wherezj , j=1, . . . , n are the altitudes, andz0=z1+(z1−z2),
zn+1=zn+(zn−zn−1). Note that AK rows not peaking at the
diagonal element are penalized by Eq. (8), which in this case
provides an overestimate of the FWHH. Throughout this pa-
per, we use a modified version of Eq. (8), with |A3|ij in place
of (A3)ij in order to penalize also the negative lobes of the
averaging kernel. WhenA3=I , Eq. (8) provides the vertical
step1zi=(zi−1−zi+1)/2 of the retrieval grid. The Backus-
Gilbert spread (Rodgers, 2000) is an alternative measure of
the vertical resolution. However, in our tests it provided sim-
ilar results while being more demanding from the computa-
tional point of view.

2.1 Altitude-dependent regularization methods

In this paper we compare a new altitude-dependent approach
for the determination of3 that we call variable strength (VS)
with two other altitude-dependent methods.

A) In the VS method3 is determined as the minimiser of
the following target function:

ψVS(3) =
1

x3

√√√√ n∑
j=1

(S3)jj +

√(
χ2(3)− χ2(0)− nw2

e

)+ (9)

+
1

1z

√√√√ n∑
j=1

[(
νj (x3)− wr1zj

)+
]2

where the bar over a vector stands for the average of the vec-
tor elements, and a superscript+ stands for the positive part
of a function. Finally,we andwr are tunable parameters.

Formula (9) selects a3-profile minimizing the error of
the regularized profile (first term ofψVS), with penalization
terms that are effective when:
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(i) theχ2 of the regularized solution (χ2(3)) increases be-
yond a thresholdnw2

e with respect to theχ2 of the un-
regularized solution (second term ofψVS), and/or

(ii) at some altitudezj the vertical resolution of the reg-
ularized solution is degraded beyond a factorwr with
respect to1zj (third term ofψVS).

In other words, we aim at the strongest regularization which
leads to a profile (i) compatible with the available observa-
tions and (ii) with a vertical resolution not degraded beyond
a pre-defined margin.

The calculation ofψVS requires the evaluation ofχ2(3).
This quantity is known only after the forward modelf (x3)

is calculated. Since this is a very time consuming operation,
we use an approximation ofχ2(3) in Eq. (9). We have:

1χ2
≡ χ2(3)− χ2(0) = (y − f (xk+1))

TS−1
y (10)

(y − f (xk+1))− (y − f (xOE))
TS−1

y (y − f (xOE)).

It is possible to linearisef aboutxk, obtaining:

f (xk+1) ∼ f (xk)+ K(xk+1 − xk) (11)

f (xOE) ∼ f (xk)+ K(xOE − xk).

Inserting Eq. (11) in Eq. (10), after some algebraic manipu-
lations we obtain:

1χ2
∼ (xk+1 − xOE)

T (12)[
−2KTS−1

y (y − f (xk))+ S−1
x (xk+1 + xOE − 2xk)

]
whereS−1

x ≡ KTS−1
y K . When no LM or OE modifications

are employed,xOE=xLS and Eq. (12) may be further simpli-
fied. If we extract the termKTS−1

y (y−f (xk)) from Eq. (3)
with 3=0 and plug it in Eq. (12) we obtain:

1χ2
∼ (xk+1 − xLS)

TS−1
x (xk+1 − xLS). (13)

Expression (13) shows the meaning of the factorwe in
Eq. (9): on average the regularized and the unregularized
profiles should differ by less than a fractionwe of the error
bar of the unregularized profile. The averaging of residuals
at different altitudes involved in the totalχ2 may in princi-
ple cause over-regularization if an isolated profile bump is
encountered. Therefore we also tested some more restrictive
versions of the second term ofψVS, in which theχ2 increase
is penalized at each individual altitude, similarly to the ver-
tical resolution. The results however did not change signif-
icantly. Therefore we preferred to stay with the formulation
of Eq. (9) which checks the overall increase of theχ2, con-
sistently with the actual implementation of the convergence
criteria of the retrieval algorithm. Note that in the first term
of Eq. (9) the errors(S3)jj are not individually normalized
with (x3)j , to avoid singularities when the profiles approach
zero. This happens frequently for example in the case of
HNO3 profiles above 30 km. Should this choice cause prob-
lems in case of a retrieved profile with a pronounced vertical

variability (e.g. H2O), one of the following techniques may
be used. The sum may be performed over(S3)jj/(x3)j (as
suggested in the discussion phase of the present paper) and/or
coefficients (either in theS3 or in the3 matrices) may be
damped in the altitude regions wherex3 is much larger than
x3.

The parameterswe andwr drive the strength of the regu-
larization. As outlined above, these parameters reflect gen-
eral requirements on the retrieval and therefore they do not
depend on the shape of the actual profile.

B) In the vectorial version of the GCV approach the op-
timal value of3 is obtained as the minimiser of the target
functionψGCV defined as inModarresi and Golub(2007).
Within our frameworkψGCV becomes:

ψGCV(3) =
χ2(3)

1
m
(m− trace(A3))2

. (14)

This expression shows that the GCV method selects a
3-profile with the smallest possible number of degrees of
freedom for the retrieval (given by trace(A3)) compatibly
with a smallχ2(3). In our implementation we calculate
χ2(3)=χ2(0)+1χ2, with 1χ2 given by Eq. (12) as in the
VS method. The vertical resolution of the regularized pro-
file is factored in the GCV method only through theχ2(3).
However, theχ2(3) may be not sensitive to vertical resolu-
tion, e.g. when attempting the retrieval of a constant vertical
profile. In this case the GCV approach produces profiles with
dramatically degraded vertical resolution. On the other hand,
whenm�n as in our case, the variation of the denominator
in Eq. (14) may be marginal compared with that of the nu-
merator. Therefore, even with a mild dependence ofχ2(3)

on 3, the regularization produced by the GCV method may
be very weak.

C) To overcome the drawbacks of the GCV approach, we
also tested a scaled GCV method (SGCV). In this method we
first find a3-profile 30 with the GCV approach. Secondly
we determine a scalar factors0 by minimizing ψVS(s30)

with respect tos. Then we takes030 as the final3-profile.
With this strategy we select the shape of the3-profile deter-
mined with the GCV method, subsequently we tune the over-
all strength of the regularization according to the constraints
of the VS method that are more specific to the inversion prob-
lem under consideration.

2.2 Minimization of the target functionψ

While the diagonal matrix3 has always dimensionl×l, it is
possible to represent the vertical3-profile with fewer base
points. The required3(zj ) strengths are then calculated via
linear interpolation in altitude between base points. This
approach has the advantage of reducing the number of un-
knowns in the minimization of theψ functions (ψVS and
ψGCV defined in Sect.2), thus shortening the calculation
time. The number of points used to represent the3-profile
however should be sufficient to allow an adequate altitude
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variability of the regularization strength. On the other hand it
is useless to employ more thanl points for the representation
of the 3-profile. Note that the piecewise linear representa-
tion has the advantage that a change in a single coefficient
produces only a localized change in the3-profile. In our
implementation this feature helps stabilizing the minimiza-
tion process, in the sense that the minimal3-profile does not
depend on the initial guess.

Due to the large amount of local minima, analytical meth-
ods like conjugate gradients do not perform well when ap-
plied to the minimization ofψ . We found better results using
the simulated annealing method (see e.g.Press et al., 1992,
Sect. 10.9).

For the efficiency of the algorithm, we allow negative ele-
ments of the3-profile and take the absolute values, instead of
bounding them to be positive. Fine tuning of the3-profile is
not rewarded by the inversion procedure, therefore the min-
imization can be stopped as soon as the location of the min-
imum is approached. In this way it is possible to limit the
computational overhead required by the minimization. The
3-profile corresponding to the minimum ofψ depends on
the vertical shape of the actual profilexOE which, in turn,
exhibits a large variability in the atmosphere. The lack of a
preferred shape for the3-profile makes it impossible to pre-
dict an a-prioriannealing temperaturefor which the process
should be stopped. To avoid useless calculations, the process
should also be stopped when repeatedly failing to reduce sig-
nificantly the target function.

We tried several implementations of the simulated anneal-
ing method, and we found the best results with the routine
SA of Goffe (1994). The settings of this routine were opti-
mized according to the guidelines mentioned above. In this
way we achieved a much faster convergence compared to the
standard settings suggested by the authors.

3 Retrievals from a single limb scan

We implemented the VS regularization method in the Op-
timized Retrieval Model (ORM, seeRidolfi et al. 2000;
Raspollini et al.2006) that is used by ESA for near real-time
inversion of MIPAS data (Fischer et al., 2008). For com-
parison purposes, in the same code we also implemented the
GCV and SGCV methods with a selectable switch. All of
these methods can be applied either after each Gauss-Newton
iteration or as a final step after the convergence of the inver-
sion. However, in general we found that applying regular-
ization after each iteration leads to heavier calculations and
a slower convergence rate, with no benefits on the results (in
agreement with findings reported inCeccherini et al.2007).
As a consequence in all the test cases presented in this paper
we applied the regularization only after reaching the conver-
gence of the inversion. In all the tests presented we selected
the regularization operatorL=L2, the second derivative op-
erator, with an exception for the EC method which is im-

plemented in the ORM withL=L1. The choiceL=L2 pro-
duces slightly better results when the profile varies almost
linearly with altitude. The regularization schemes take into
account the LM approach employed by the ORM, as outlined
in Sect.2. Since in practical cases it is always difficult to find
reliable a-priori profile estimates, in this paper we always se-
lect xs=0. The joint choice ofL=L2 andxs=0 implies that
retrieved profiles with shape deviating from a straight line
will be penalized by the Tikhonov regularization term.

3.1 Self-consistency test with synthetic observations from
a single limb scan

In this subsection we test the self-consistency of the VS
method and its capability to detect possible sharp profile fea-
tures measured by the instrument. For this purpose we car-
ried out a test O3 retrieval starting from synthetic observa-
tions. These observations were generated by the forward
model included in the ORM (thus avoiding forward model
errors), using the reference atmosphere model ofRemedios
et al.(2007) with the O3 profile modified with a sharp bump
in the 18–24 km altitude range. This modification reflects the
double-peak feature sometimes observed in the real O3 pro-
files for instance in pre ozone hole conditions (seeNemuc
and Dezafra, 2005). Instrument features such as field of view,
vertical scan pattern and spectral line–shape were adjusted to
the MIPAS configuration adopted for the nominal reduced
resolution measurements acquired from January 2005 on-
ward (Dudhia, 2008). Spectral measurement noise was added
to synthetic observations. For altitudes≤ 40 km the noise
was chosen consistent with MIPAS specifications; for alti-
tudes>40 km the noise was amplified by a factor 20 in order
to obtain amplified oscillations in the unregularized retrieved
profile. The VS regularization was applied after the conver-
gence of the unregularized (LS) solution, using parameters
(we, wr)=(1,5). The altitude grid of the retrieved profiles
consisted of 27 points, coinciding with the tangent points
of the limb measurements, while the3-profile consisted of
27−2=25 points. In this particular test case we disabled the
LM modification in the ORM.

Figure 1 shows the results of the test. In panel (a) we
show the reference profile (solid grey), the initial guess pro-
file (dashed black), the unregularized LS solution (dotted
red) and the regularized VS solution (solid blue). The initial
guess profile was obtained by multiplying the climatologi-
cal profile by a factor of 1.3 and with no bump modification.
The VS method was able to distinguish between the oscilla-
tions of the LS solution due to lack of stability (mainly in the
40–70 km height range, where the error has been artificially
amplified) and the real bump present in the reference profile.
In the 40–70 km range the oscillations were smoothed out
thanks to the large error bars of the LS solution. On the other
hand the real bump was retained since the relatively small er-
ror bars in this altitude region prevented a strong smoothing.
As required by the VS method, on average the VS profile is
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Fig. 1. SimulatedO3 retrieval with amplified noise above 40 km and artificial bump added from 18 to 24 km:

(a) Reference, initial guess and retrieved profiles; (b) estimated retrieval errors and actual difference between

retrieved and reference profiles; (c) vertical resolution; (d)Λ-profile.

 10

 20

 30

 40

 50

 60

 70

-0.4 -0.2  0  0.2  0.4  0.6  0.8  1

A
lti

tu
de

 (
km

) 

Averaging kernels

Fig. 2. SimulatedO3 retrieval with an artificial bump from 18 to 24 km added: Averaging kernel rows.

25

Fig. 1. Simulated O3 retrieval with amplified noise above 40 km and artificial bump added from 18 to 24 km:(a) Reference, initial guess
and retrieved profiles;(b) estimated retrieval errors and actual difference between retrieved and reference profiles;(c) vertical resolution;(d)
3-profile.

consistent with the LS profile within a fractionwe=1 of the
LS error bars. This result is illustrated in panel (b) of Fig.1
which shows the percentage retrieval errors of the LS (dotted
red) and VS (dashed blue) solutions (obtained from Eq.6)
and the actual percentage difference between the VS and
the reference profiles (solid blue), i.e. the actual error. We
note that this difference is mostly consistent with the error of
the VS solution. Only below 18 km the regularization intro-
duces a noticeable smoothing error, which is not included in
Eq. (6). This error is however consistent with the LS error
bounds and is quite small in absolute value (<0.1 ppmv), the
profile itself being very close to zero in this altitude range.

Note that the relatively large errors obtained in this test
retrieval are mainly due to the artificial amplification of the
measurement noise that we applied above 40 km. Therefore
the results of this test, while useful to assess the consistency
of the VS method, should not be considered as representative
of the real MIPAS performance.

Panel (c) shows the LS (solid red) and VS (solid blue) ver-
tical resolutions. The LS vertical resolution, as mentioned in
Sect.2, coincides with the vertical limb scanning step of the
measurements. The dashed red line shows the maximum al-
lowed vertical resolution for the VS solution, i.e.wr=5 times
the LS vertical resolution. While this upper bound is never
violated, we note that in the 20–37 km range this bound is
not even approached. This is due to the simultaneous occur-
rence of small error bars of the LS solution and the changing
slope of the reference profile. This combination prevents a
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Fig. 2. Simulated O3 retrieval with an artificial bump from 18 to
24 km added: Averaging kernel rows.

stronger VS regularization by triggering theχ2 penalization
term in theψVS target function. Panel (d) shows the obtained
3-profile for the VS solution. Note that small values of3 are
obtained whenever the above combination occurs.

Figure2 shows the rows of the AK of the regularized pro-
file. The number of degrees of freedom obtained for the VS
profile (the trace of the averaging kernel) was 14.7.

The AK plotted in Fig.2 is calculated with Eq. (7), thus as-
suming that the3-profile derived with the VS method does

Atmos. Chem. Phys., 9, 1883–1897, 2009 www.atmos-chem-phys.net/9/1883/2009/



M. Ridolfi and L. Sgheri: A self-adapting regularization method 1889

not depend on the actual VMR profile encountered in the at-
mosphere. Therefore, the AK of Fig.2 represents onlylo-
cally (i.e. for the current3) the spatial response function of
the measuring system. We point out that the large width of
the AK rows for altitudes>40 km is due to the strong regu-
larization triggered by the artificially amplified noise in the
synthetic observations.

3.2 Tests with real observations from a single limb scan

In this subsection we present the results of retrievals based
on real MIPAS measurements related to a single limb scan.
For this analysis we selected scan number 060 of ENVISAT
orbit 15451 from 12 February 2005. The approximate av-
erage latitude of the tangent points is 82◦ South. This scan
shows low stratospheric temperatures, hence a reduced S/N
ratio that triggers oscillations in the unregularized retrieval.
Moreover, it includes limb views with tangent altitudes pen-
etrating the cloud-free upper troposphere.

3.2.1 Selection of VS parameters

The choice of the parameters driving the strength of the reg-
ularization is often a critical step when they have to be de-
termined by the user on the basis of a tuning procedure. In
fact the tuning is necessarily based on some assumed profile
and therefore the results may not be optimal when there is
a substantial difference between the actual and the assumed
profile.

In the case of the VS method, the strength of the regu-
larization (i.e. the magnitude of the3-profile) is indirectly
driven by thewe andwr coefficients. In principlewe andwr
may be chosen arbitrarily and independently from each other.
However, there is a positive correlation between allowedχ2

increase and vertical resolution degradation, therefore not all
the couples(we, wr) are equally meaningful. For instance,
if a smallwr is imposed, the difference between the regular-
ized and unregularized profiles will be small, and therefore
the increase ofχ2 will also be small, so that a large value of
we would make ineffective the related constraint.

This concept is illustrated in Fig.3, which is a color map
of the logarithm of the minimum of the target functionψVS
of Eq. (9) as a function ofwe andwr for CH4 retrieval. From
this map we see thatwell chosencouples(we, wr) are those
for which variations of the target function minimum occur
for small variations of any of the two parameters. This situ-
ation occurs in Fig.3 around the diagonal from bottom-left
to top-right. Analogous maps for the other MIPAS retrieval
targets show the same behavior for roughly the same values
of (we, wr). Therefore we find that well chosen couples do
not depend on the actual atmosphere and target profile.

From the previous considerations one may argue that a sin-
gle parameterwe orwr could be sufficient to control both the
vertical resolution degradation and theχ2 increase. While
this is true for most MIPAS retrieval targets, the double con-
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Fig. 3. Map of the logarithm of the minimum ofψVS(3) as a func-
tion ofwe andwr for CH4 retrieval.

straint inψVS ensures, with very little overhead added, a
good behavior even in somepathologicalconditions. These
include, for instance, the case of an almost linear profile
versus altitude, or the case of very large relative error bars
such as in the case of NO2 retrievals above 60 km. In both
cases a single limitation on theχ2 increase would lead to
profiles with a dramatically degraded vertical resolution. In
the NO2 case, the regularized profiles become straight lines
above 40 km, a physically unacceptable shape. On the other
hand a single constraint on the vertical resolution leads to
the loss of detailed features of the profile also in the case of
relatively small error bars, such as in the double-peaked O3
profile retrieval considered in Sect.3.

Figure4 reports the obtained CH4 profiles for some well
chosen(we, wr) couples. The relatedχ2 increase with re-
spect to the LM method is reported in the legend. We see
that the couple(we, wr)=(1,5) permits to achieve a strong
regularization with a marginal increase (0.56%) of theχ2.
Considering the large oscillations detected in MIPAS profiles
during the validation phase (see Sect.1), we would suggest
this choice for routine MIPAS retrievals and we will use this
couple for the tests reported hereafter in this section.

Note however that a softer regularization (such as
(we, wr)=(0.6,3)) may be advisable for specific applica-
tions of the retrieved profiles. In fact strong regularization
degrades significantly the vertical resolution, generally mak-
ing more difficult the comparison to independent observa-
tions (Rodgers and Connor, 2003; Ridolfi et al., 2006, 2007)
or model results (Lahoz et al., 2007).

3.2.2 Comparison of altitude-dependent regularizations

In this subsection we briefly compare the VS method with the
other altitude-dependent techniques (GCV and SGCV) intro-
duced in Sect.2. The purpose of this comparison is twofold.
On one side we show that the3-profiles obtained with the
VS method have some correlation with those obtained with
other more general methods such as the vectorial version of
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Fig. 4. Comparison of CH4 profiles retrieved with the VS method
for various(we, wr ) couples. The retrieved LM profile is shown
for reference. All profiles but the leftmost are horizontally shifted
by 0.4 ppmv each for a clearer representation. Legend includes per-
centageχ2 increase with respect to the LM method.

GCV. On the other hand we also show that the VS method
achieves better results by implementing constraints specific
to the inversion problem under consideration.

Figure5 illustrates the results of the comparison for the
retrieval of CH4. The obtained3-profiles, reported in
panel (d), show similar shapes as a function of altitude. As
shown in panel (c) the GCV method produces a dramatic
degradation of the vertical resolution in the 25–40 km alti-
tude range. To restore the vertical resolution constraint of
the VS method, the scaling factor of SGCV is less than 0.001.
As a consequence the regularization achieved by the SGCV
method is very weak, as confirmed by panel (a) and (b), re-
porting profiles and errors, respectively. Despite the gener-
ally large degradation in vertical resolution, the GCV method
is not able to smooth out the feature of the LM profile in the
10–15 km range. On the other hand this objective is achieved
by the VS method with only the marginalχ2 increase men-
tioned above (0.56%).

3.2.3 Comparison of VS method with self adapting scalar
regularizations

In this subsection we compare the VS method with the LC
and EC scalar regularization methods already introduced in
Sect.2, using the retrievals of CH4, O3 and H2O as test cases.
The results are illustrated in Figs.6, 7 and8, respectively.

We see that with the rather strong choice of
(we, wr)=(1,5) the VS method is able to smooth out
quite large oscillations, such as those in the H2O profile
above the tropopause. Due to the large variability of the
water profile across the retrieval altitude range, these oscil-
lations could not be smoothed by any of the scalar methods
considered.

On the other hand, in the ozone retrieval small error bars
suggest that the feature in the 20–26 km range may be real.

In this case, both the EC and VS methods are able to preserve
this feature, while the LC method smooths it out badly.

These results indicate that the VS method, due to its adap-
tive capability, is able to achieve a strong regularization while
preserving small-scale profile features when the LM profile
errors are small compared with the amplitude of the feature
itself. On the other hand the structures at 15–20 km in the
H2O LM profile and at 25–30 km in the CH4 LM profile are
smoothed out by the VS method. We do not know if these
structures are real, however the point is: can webelievean
oscillation or feature of the LM profile if its amplitude is
comparable with the error bars? The answer depends on the
specific application for which the profile is used. A smaller
(we, wr) couple would maintain these structures in the regu-
larized profiles, as explained in Sect.3.2.1. We believethat
ultimately, in order to resolve the mentioned structures we
would need a thinner instrument field of view and/or better
signal to noise ratio in the measurements.

4 Results of retrievals from a full MIPAS orbit

In this section we analyze the performance of the VS method
based on measurements from a full MIPAS orbit. Visual in-
spection of individual profiles from a large sample of scans is
unpractical, so we introduce some quantifiers to characterize
the average performance of the retrieval.

The first quantifier we consider is̄χ2
R, which is the arith-

metic mean (on the orbit) of the normalized chi-squareχ2
R

(seeBevington and Robinson, 2003) related to individual
profiles.

To measure the smoothness of a profile we introduce an
oscillation quantifier�2 that, for a single profilexi=x(zi),
i=1, . . . , n is defined as

�2 = 100·

√√√√ 1

n− 2

n−1∑
i=2

[
xi − xi−1 −

xi+1 − xi−1

zi+1 − zi−1
(zi − zi−1)

]2

. (15)

The quantity�2 represents the root mean square distance be-
tween each profile pointxi and the linear interpolation atzi
from the two adjacent pointsxi−1 andxi+1. The factor 100 is
introduced for better readability of the actual numbers. Note
that�2=0 if and only if the profile is a line. Moreover, when
the zi are equispaced,�2 is proportional to thè 2 norm of
the discrete second derivative of the profile. We then take
the arithmetic mean̄�2 (on the orbit) of the�2 related to
individual profiles.

The last quantifier we consider is the number of degrees of
freedom (DoF) of the retrieval. We divide this number by the
numbern of points of the retrieved profile, since this latter
can vary from scan to scan due to cloud contamination. We
then take the arithmetic meanDoF/n on the orbit.

We compare the VS method with different(we, wr) cou-
ples with the LM (no regularization, only LM modification)
and the EC methods. For each of the VS tests,3-profiles
with 9 base points have been used. We found that the LC
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Fig. 5. Retrieval of CH4 from single scan MIPAS measurements: LM (reference), VS, GCV and SGCV regularization techniques. All VMR
profiles but the leftmost are horizontally shifted by 0.4 ppmv each for a clearer representation.(a) Retrieved profiles;(b) estimated retrieval
errors;(c) vertical resolutions;(d) 3-profiles.
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Fig. 6. CH4 retrieval with LM (reference), VS, EC and LC meth-
ods. Profiles (left), errors (center) and vertical resolution (right). All
VMR profiles but the leftmost are horizontally shifted for a clearer
representation.

method poses some problems when there is no user super-
vision of the individual retrievals. In fact, the L-curve is a
log-log plot between the squared norm of the constraint (sec-
ond term of Eq.1) and theχ2 (first term of Eq.1) for a range
of values of the regularization parameterλ. Generally the
shape of the L-curve is similar to that of the “L” letter, (hence
the name) showing a single corner with maximum curvature.
The LC method selects the value ofλ corresponding to the
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Fig. 7. O3 retrieval with LM (reference), VS, EC and LC meth-
ods. Profiles (left), errors (center) and vertical resolution (right). All
VMR profiles but the leftmost are horizontally shifted for a clearer
representation.

corner of the L-curve. However, for the problem under in-
vestigation, we found that the L-curve is not always really
L-shaped. In these cases the values of theλ parameter ob-
tained for the maximum of curvature may be meaningless.

In this section we will use both synthetic and real MI-
PAS measurements. Real measurements refer to the full EN-
VISAT orbit 15451, already considered in the single scan
tests. The orbit consists of 79 nominal scans (Dudhia, 2008).
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Table 1. Summary of retrieval errors from a full orbit of synthetic MIPAS measurements. Average (1x) and standard deviation (σ ) of the
differences between retrieved and true profile (K for temperature and ppmv for VMR). The standard deviation of the LS profile is estimated
from the diagonal of theSx matrix, and is reported for reference.

LS LM EC VS(0.6,3) VS(1,5)

T 1x −7.170E−2 −3.679E−2 −2.126E−2 5.932E−2
σ 1.934E+0 1.123E+0 8.120E−1 5.882E−1 6.589E−1

H2O 1x 1.663E−2 1.864E−2 9.430E−3 −8.945E−3
σ 1.316E+0 9.808E−1 9.460E−1 8.315E−1 7.489E−1

O3 1x 2.028E−3 −3.041E−3 −5.129E−4 −4.281E−3
σ 1.794E−1 7.277E−2 6.053E−2 4.853E−2 6.327E−2

HNO3 1x 6.850E−6 6.212E−6 4.074E−6 6.402E−6
σ 7.028E−4 2.217E−4 1.654E−4 1.392E−4 1.763E−4

CH4 1x 1.193E−3 4.213E−4 1.074E−3 7.634E−4
σ 1.306E−1 4.802E−2 3.478E−2 2.987E−2 1.774E−2

N2O 1x 9.005E−5 −2.636E−4 5.251E−5 −9.897E−6
σ 2.740E−2 7.183E−3 4.733E−3 4.320E−3 3.842E−3

NO2 1x 6.932E−4 5.607E−4 6.722E−4 6.924E−4
σ 4.504E−3 3.985E−3 2.431E−3 2.815E−3 2.764E−3

Table 2. Summary of retrieval performances for a full orbit of synthetic MIPAS measurements.

REF LM EC VS(0.6,3) VS(1,5)

T χ̄2
R

1.099 1.111 1.107 1.133
�̄2 110.924 212.221 164.944 123.649 107.937

DoF/n 0.680 0.581 0.532 0.364

H2O χ̄2
R

1.020 1.022 1.021 1.026
�̄2 279.966 360.508 315.149 325.411 298.454

DoF/n 0.590 0.545 0.498 0.336

O3 χ̄2
R

1.034 1.041 1.037 1.043
�̄2 15.148 18.914 16.376 14.734 14.341

DoF/n 0.601 0.529 0.468 0.363

HNO3 χ̄2
R

1.039 1.044 1.040 1.043
�̄2 0.027 0.044 0.034 0.029 0.030

DoF/n 0.565 0.475 0.490 0.368

CH4 χ̄2
R

1.023 1.025 1.025 1.029
�̄2 0.929 6.313 4.547 2.859 1.017

DoF/n 0.527 0.475 0.454 0.315

N2O χ̄2
R

1.031 1.033 1.033 1.039
�̄2 0.334 0.840 0.558 0.393 0.283

DoF/n 0.627 0.555 0.469 0.327

NO2 χ̄2
R

1.010 1.011 1.012 1.015
�̄2 0.040 0.264 0.107 0.107 0.094

DoF/n 0.787 0.701 0.637 0.532

Avg. 1χ̄2
R
(%) +0.419 +0.257 +0.971

wrt LM 1�̄2(%) −27.431 −39.294 −48.135
1DoF/n(%) −11.768 −18.696 −40.638
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Fig. 8. H2O retrieval with LM (reference), VS, EC and LC meth-
ods. Log-scale plot of profiles (left), errors (center) and vertical res-
olution (right). All VMR profiles but the leftmost are horizontally
scaled for a clearer representation.

Several measurements related to scan 4 are however cor-
rupted, therefore the retrieval is performed only on 78 scans.
The synthetic measurements, generated from a known atmo-
sphere, emulate the same acquisition scenario.

The computational overhead introduced by the VS method
depends on the number of base points used for the3-profile,
and on how often the3-profile is updated (i.e. how often
the minimization ofψVS is carried out). Within our setup
(9 base points and3-profile updated every scan) the overall
runtime increase is less than 20% with respect to the LM
method. This is a quite encouraging result, considering that
in operational retrievals fewer base points might be sufficient
to achieve a good regularization and also that the3-profile
could be updated only when strictly necessary. Update of
3 is in fact necessary only when the actual unregularized
VMR profile encountered in the atmosphere is significantly
different (i.e. beyond a few error bars) from the VMR profile
used for the last calculation of3.

4.1 Retrieval from synthetic MIPAS data

In this subsection we use synthetic measurements that as-
sume the observation geometry of the full MIPAS or-
bit 15451. The synthetic measurements were generated using
the same forward model setup as in Sect.3.1, but without any
O3 bump or noise amplification. Since the true atmosphere
is known, we can characterize the error of the retrieved pro-
files with the mean (1x) and the standard deviation (σ ) of
the difference between the retrieved and the true profile at
each retrieval grid point along the orbit. This data is reported
in Table1 for each target species and retrieval method, the
parameters(we, wr) used in the VS method are shown in
parenthesis. Since the pure LS method did not always con-
verge, we calculated theσ of the LS method (σLS) as the

average of
√
(Sx)jj over the altitudeszj and the scans of the

orbit.
To check the altitude behavior of the errors, we also broke

down the differences between retrieved and true profiles into
altitude bins centered around nominal MIPAS tangent alti-
tudes. For each bin we calculated the mean and the standard
deviation of the sample. We report in Figs.9, 10 and 11
the plots of the standard deviations for CH4, O3 and H2O
retrievals, respectively. Theσ of the LS method (σLS) is cal-
culated by binning

√
(Sx)jj .

We report in Table2, for each target species and each pro-
file type, the values of̄χ2

R, �̄2 and DoF/n, except for the
reference (REF) profile, for which only thē�2 is defined.
The last row of the table contains the percentage variation of
χ̄2, �̄2 andDoF/n with respect to the LM method, averaged
over the retrieval targets.

From Table1 we can see that, for all retrieved profiles
1x is smaller than the relatedσ , thus indicating that the
bias of the retrieved profiles is not significant. Furthermore,
the standard deviation of all the retrieved profiles is smaller
thanσLS. The estimatedσ contains the contributions of both
the smoothing error and the retrieval noise (Rodgers, 2000).
Hence the smoothing error possibly introduced by the regu-
larization is more than compensated by the achieved reduc-
tion of the noise error. We also note that both the EC and VS
methods achieve a significant reduction of theσ with respect
to the LM technique. Further comments arise from the in-
spection of the altitude behaviors ofσ reported in Figs.9, 10
and11. As expected, the VS(1,5) achieves a stronger regular-
ization than the VS(0.6,3). Therefore it obtains a smaller er-
ror in the altitude regions where the reference profile is close
to a line (see e.g. CH4 profile or the H2O profile above the
tropopause). We note however that theσ of the profiles re-
trieved with VS(1,5) is smaller thanσLS in all altitude ranges,
consistently with the choice ofwe=1.

From Table2 we see that the weakest VS regularization
considered(we, wr)=(0.6,3) already provides on average
both a smallerχ̄2

R increase and a larger̄�2 reduction with
respect to the EC scalar method. A further reduction of the
�̄2 is achieved by the VS method with(we, wr)=(1,5) at
the expenses of a quite large (0.97%, i.e. double of that of the
EC method)χ̄2

R increase. Because of this largeχ̄2
R increase,

stronger regularizations (such as VS with(we, wr)=(2,8))
were not attempted with synthetic measurements.

4.2 Retrieval from real MIPAS data

In this subsection we use real MIPAS measurements related
to the full ENVISAT orbit 15451. Table3 shows the results
of the test, with the same format of Table2.

As in the case of synthetic measurements, we note that the
weakest VS regularization considered(we, wr)=(0.6,3) al-
ready provides on average both a smallerχ̄2

R increase and a
larger�̄2 reduction with respect to the EC scalar method. A
further reduction of the�̄2 is achieved by the VS method
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Fig. 9. CH4 retrieval with LM, EC and VS regularization methods:
standard deviations of the differences between the retrieved and true
profiles. The differences were binned around nominal MIPAS tan-
gent altitudes.
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Fig. 10. O3 retrieval with LM, EC and VS regularization methods:
Standard deviations of the difference between the retrieved and true
profiles. The differences were binned around nominal MIPAS tan-
gent altitudes.

with (we, wr)=(1,5) with χ̄2
R values close to those of EC.

The VS method with(we, wr)=(2,8) achieves a further re-
duction of the�̄2 at the expenses of a quite largeχ̄2

R increase.
The advantages of the VS method are particularly notice-

able in the case of the H2O, CH4 and N2O target species. The
H2O profile probably gets a particular benefit from different
strengths of regularization that are applied above and below
the tropopause. Above the tropopause a strong regularization
can be applied since the profile is almost linear with altitude.
Below the tropopause only a weak regularization can be ap-
plied since the profile deviates significantly from linearity. In
the case of CH4 and N2O, there are quite large altitude inter-
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Fig. 11. H2O retrieval with LM, EC and VS regularization meth-
ods: standard deviations of the difference between the retrieved and
true profiles. The differences were binned around nominal MIPAS
tangent altitudes.

vals where the profiles behave almost linearly so that the VS
method can apply a strong regularization without significant
χ̄2
R increase. We note that these are the two MIPAS species

for which unphysical oscillations were reported in the vali-
dation phase (seePayan et al., 2009).

We may compare the results of the full orbit retrieval from
synthetic (Table2) and real (Table3) measurements. We
note that the�̄2 of the LM retrieved profiles is smaller in
the synthetic case. This is due to the combination of two
causes. First, synthetic measurements do not include sys-
tematic model errors which are present in the real observa-
tions. Second, the reference model atmosphere of the syn-
thetic test retrieval is probably smoother than the actual at-
mosphere sounded by MIPAS in orbit 15451. There is how-
ever a reassuring similarity in the behavior of the regulariza-
tion methods. This can be seen from the averages reported in
the last row of the tables, i.e. the same regularization method
achieves similar variations of̄�2 andχ̄2

R with respect to the
LM method.

5 Conclusions

In this work we introduce a new self-adapting method
(VS) for determination of the altitude dependent strength of
Tikhonov regularization. The method can be applied to the
retrieval of vertical distribution profiles from observations
sounding the atmosphere either at the limb or vertically.

We first prove the self-consistency of the implemented al-
gorithm on the basis of synthetic limb-scanning observations.
Secondly we test the method using both synthetic and real
MIPAS observations. We compare the performance of the
method with that of some scalar (LC and EC) and altitude-
dependent (GCV, SGCV) regularization schemes available in
the literature. In all the tested cases the VS method achieves
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Table 3. Summary of retrieval performances for real MIPAS measurements of orbit 15451.

LM EC VS(0.6,3) VS(1,5) VS(2,8)

T χ̄2
R

1.848 1.861 1.861 1.878 1.999
�̄2 383.590 310.534 283.719 251.254 190.034

DoF/n 0.600 0.563 0.657 0.546 0.362

H2O χ̄2
R

1.261 1.267 1.261 1.268 1.310
�̄2 449.590 365.930 289.166 229.185 166.063

DoF/n 0.747 0.694 0.600 0.440 0.269

O3 χ̄2
R

2.575 2.586 2.579 2.583 2.644
�̄2 41.782 31.227 32.677 29.145 24.775

DoF/n 0.727 0.671 0.657 0.564 0.429

HNO3 χ̄2
R

1.223 1.226 1.219 1.222 1.251
�̄2 0.085 0.064 0.065 0.061 0.048

DoF/n 0.694 0.583 0.563 0.431 0.320

CH4 χ̄2
R

2.075 2.098 2.088 2.102 2.147
�̄2 32.754 19.764 15.941 11.539 3.660

DoF/n 0.744 0.686 0.617 0.477 0.315

N2O χ̄2
R

2.117 2.121 2.116 2.114 2.166
�̄2 2.900 1.855 1.268 0.806 0.478

DoF/n 0.661 0.617 0.561 0.421 0.290

NO2 χ̄2
R

1.414 1.423 1.422 1.425 1.418
�̄2 0.463 0.208 0.207 0.145 0.080

DoF/n 0.748 0.675 0.693 0.581 0.432

Avg. 1χ̄2
R
(%) +0.533 +0.230 +0.613 +3.301

wrt LM 1�̄2(%) −31.247 −38.626 −49.694 −64.767
1DoF/n(%) −8.739 −11.176 −29.277 −50.653

a better performance than the other methods, thanks to its
altitude dependence and to the constraints employed, which
are specific of the inversion problem under consideration.

The self-adaptability of the VS method permits to obtain
a sufficiently strong regularization and, at the same time, the
risk of over-smoothing sharp profile features is avoided when
related information is present in the analyzed observations.

Future work will include a further assessment of the per-
formance of the VS method on the basis ofdifficult but real-
istic situations, such as polar winter CH4 retrieval in the case
of vortex air masses sounded in a limited vertical region or
polar winter NO2 retrieval in the presence of descended NOx
produced by particle precipitation.

An additional task will be the optimization of the algo-
rithm for operational MIPAS data analysis and its extension
to 2-D retrieval schemes.

The proposed method can be implemented in any Gauss-
Newton-type algorithm for the retrieval of vertical distribu-
tion profiles. Currently the VS algorithm is coded in a stan-
dard FORTRAN routine both in a stand-alone version and in
a version interfaced with the ORM code. The routine can be
easily interfaced with any existing inversion software. The

authors will be happy to freely supply the VS routine to sci-
entists that would like to test the algorithm in their inversion
codes, for no-profit purposes.

Acknowledgements.The authors would like to thank Bruno Carli,
Massimo Carlotti and Simone Ceccherini for fruitful discussions.
We also thank the IFAC-CNR institute in Firenze for making avail-
able computing and technical facilities through associate contract to
M. R., in the frame of the research activity TA.P06.002.

References

Allen, M: The relationship between variable selection and data aug-
mentation and a method for prediction, Technometrics, 16, 125–
127, 1974.

Bevington, P. R. and Robinson, D. K.: Data Reduction and Error
Analysis for the Physical Sciences, 3rd ed. McGraw–Hill, New
York, USA, 2003.

Bowman, K. W., Rodgers, C. D., Kulawik, S. S., Worden, J.,
Sarkissian, E., Osterman, G., Steck, T., Lou, M., Eldering, A.,
Shephard, M., Worden, H., Lampel, M., Clough, S., Brown, P.,
Rinsland, C., Gunson, M., and Beer, R.: Tropospheric emis-
sion spectrometer: Retrieval method and error analysis, IEEE T.
Geosci. Remote, 44(5), 1297–1307, 2006.

www.atmos-chem-phys.net/9/1883/2009/ Atmos. Chem. Phys., 9, 1883–1897, 2009



1896 M. Ridolfi and L. Sgheri: A self-adapting regularization method

Ceccherini, S.: Analytical determination of the regularization pa-
rameter in the retrieval of atmospheric vertical profiles, Opt.
Lett., 30(19), 2554–2556, 2005.

Ceccherini, S., Belotti, C., Carli, B., Raspollini, P., and Ridolfi,
M.: Technical Note: Regularization performances with the error
consistency method in the case of retrieved atmospheric profiles,
Atmos. Chem. Phys., 7, 1435–1440, 2007,
http://www.atmos-chem-phys.net/7/1435/2007/.

Choi, H. G., Thite, A. N., and Thompson, D. J.: Comparison of
methods for parameter selection in Tikhonov regularization with
application to inverse force determination, J. Sound Vib., 304,
894–917, 2007.

Doicu, A., Schreier, F., and Hess, M.: Iterative regularization meth-
ods for atmospheric remote sensing, J. Quant. Spectrosc. Ra., 83,
47–61, 2004.

Dudhia, A.: MIPAS-related section of the web-site of the Oxford
University, online available at:www.atm.ox.ac.uk/group/mipas,
last access: September 2008, 2008.

Fischer, H., Birk, M., Blom, C., Carli, B., Carlotti, M., von Clar-
mann, T., Delbouille, L., Dudhia, A., Ehhalt, D., Endemann, M.,
Flaud, J. M., Gessner, R., Kleinert, A., Koopman, R., Langen, J.,
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