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Abstract. Recent studies with closed-path eddy covariance
(EC) systems have indicated that the attenuation of fluctua-
tions of water vapor concentration is dependent upon ambi-
ent relative humidity, presumably due to sorption/desorption
of water molecules at the interior surface of the tube. Pre-
vious studies of EC-related tube attenuation effects have ei-
ther not considered this issue at all or have only examined
it superficially. Nonetheless, the attenuation of water vapor
fluctuations is clearly much greater than might be expected
from a passive tracer in turbulent tube flow. This study re-
examines the turbulent tube flow issue for both passive and
sorbing tracers with the intent of developing a physically-
based semi-empirical model that describes the attenuation as-
sociated with water vapor fluctuations. Toward this end, we
develop a new model of tube flow dynamics (radial profiles
of the turbulent diffusivity and tube airstream velocity). We
compare our new passive-tracer formulation with previous
formulations in a systematic and unified way in order to as-
sess how sensitive the passive-tracer results depend on funda-
mental modeling assumptions. We extend the passive tracer
model to the vapor sorption/desorption case by formulating
the model’s wall boundary condition in terms of a physically-
based semi-empirical model of the sorption/desorption vapor
fluxes. Finally we synthesize all modeling and observational
results into a single analytical expression that captures the ef-
fects of the mean ambient humidity and tube flow (Reynolds
number) on tube attenuation.

Correspondence to:W. J. Massman
(wmassman@fs.fed.us)

1 Introduction

Eddy covariance technology (ECT) has been and continues
to be critical to the quantification of exchange rates of CO2,
H2O, and other trace gases between the atmosphere and the
terrestrial biosphere. The success and accomplishments of
all global flux networks to date rests directly on ECT and
the (sine qua non) technical capability to accurately measure
the fluctuations in wind velocity and trace gases concentra-
tion. But no measurement technology is free of sources of
instrument error and bias. It is well known, for example, that
ECT underestimates the high frequency content of the fluc-
tuations of these atmospheric variables as a result of finite
response time of the instrumentation, spatial displacement of
the sensors, line averaging effects for open-path instruments,
and tube attenuation for closed-path instruments (e.g.,Mass-
man, 2000). Of particular interest to the present study are
these frequency-dependent tube attenuation effects.

The first to address the attenuation of concentration fluctu-
ations associated with sampling tubes wasPhilip (1963a,b),
whose model-based study was focused exclusively on pas-
sive tracers and laminar tube flow. LaterLenschow and
Raupach(1991), using water vapor as the tracer, measured
the attenuation of concentration fluctuations associated with
turbulent tube flows. In addition, they also developed a
model of these frequency-dependent tube attenuation effects,
the basis of which was the modeling and observational re-
sults ofTaylor (1954). Surprisingly though when they com-
pared the model predictions with the observed attenuation,
they found that the attenuation of water vapor fluctuations
is not only significantly greater than might be expected for
a passive tracer, but also it is more strongly influenced by
the flow Reynolds number than predicted as well. On the
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other hand,Massman(1991), using a very different and pre-
sumably more complete model of turbulent tube flow, was
successful at modeling the data ofLenschow and Raupach
(1991). Consequently, the conundrum posed by the discrep-
ancy ofLenschow and Raupach(1991) was assumed to have
been resolved due to a better (or more physically realistic)
model of turbulent tube flow. Nonetheless more recent obser-
vations byClement(2004), Amman et al.(2006), andIbrom
et al. (2007) have suggested that the attenuation of atmo-
spheric water vapor fluctuations is strongly influenced by rel-
ative humidity, which leads to the very likely possibility that
some of the greater-than-expected attenuation observed by
Lenschow and Raupach(1991) resulted in part from humid-
ity effects. If so, this (a) invalidates the assumption, on which
bothLenschow and Raupach(1991) andMassman(1991) are
based, that water vapor is a passive tracer, and (b) clearly in-
dicates a need to carefully reexamine the previous models of
tube attenuation effects for passive tracers and to develop (if
possible) a physically-based model that includes the effects
of humidity on tube attenuation. Such is the intent and pur-
pose of the present study.

Specifically this study takes a fresh look at the turbulent
tube attenuation effects for passive scalars and develops a
physically-based semi-empirical model that describes the ad-
ditional attenuation associated with water vapor fluctuations.
The physical processes associated with this additional atten-
uation are assumed to be related to sorption/desorption at the
tube wall. Consequently, formulating the tube wall boundary
condition for the trace gas tube transport equation requires
developing a model of the sorptive wall fluxes.Massman
(1991) showed that first-order sorption (or destruction) of
ozone at the tube wall will result in additional attenuation in
an eddy covariance ozone-flux sampling tube. Nevertheless,
the present study attempts a very different formulation for
the wall boundary condition in the hope that (at least some
of) the results are generally applicable to any trace gas that
might adhere to the inside surface of a tube (e.g., H2O, O3,
NH3, SO2, and many other polar molecules) and possibility
to isotopes of such trace gases as well.

2 Modeling scalar transport and the tube transfer func-
tion

The lateral and longitudinal dispersion of a tracer or so-
lute being advective through a straight horizontal tube is de-
scribed in terms of the advective-diffusive equation in cylin-
drical coordinates:

∂C

∂t
+ U(r)

∂C

∂x
=

1

r

∂

∂r

[
rD(r)

∂C

∂r

]
+ D(r)

∂2C

∂x2
(1)

whereC=C(r, x, t) is the solute concentration,r is the radial
distance from the centerline of the tube,x is the longitudinal
distance from the mouth of the tube,t is time, U(r) is the
radial profile of the longitudinal airstream velocity, andD(r)

is the radial profile of the turbulent diffusivity. (NOTE: For
reasons that will become clearer later it is more convenient to
express all radial dependencies in terms of the dimensionless
wall coordinate,ρ, rather than in terms ofr; hereρ=1−r/a

anda is the radius of the tube.) To obtain the tube transfer
function, which characterizes the tube’s attenuation effects,
requires a solution to Eq. (1). The present study employs
the spectral decomposition/eigenvalue approach by assuming
that

C(ρ, x, t) = Ĉλ(ρ) eiω(t−λx/U) (2)

wherei=
√

−1 is the unit imaginary number,ω is circular
frequency (radians s−1), U is the cross-sectionally averaged
U(ρ), λ is the eigenvalue (a complex number with both real
and imaginary parts), and̂Cλ(ρ) is the eigenfunction, which
is also complex-valued. In the most general terms the solu-
tion to Eq. (1) is now synonymous with finding the eigen-
value, which directly determines the tube transfer function.

Substituting Eq. (2) into Eq. (1) and after some algebraic
manipulations Eq. (1) can be transformed into the following
equation:

1

1 − ρ

d

dρ

[
(1 − ρ)GD(ρ)

dĈλ(ρ)

dρ

]
=

�
[
i − iλ GU (ρ) + γ λ2 � GD(ρ)

]
Ĉλ(ρ) (3)

where �=a2ω/D(1) and D(1) is the centerline value
of the turbulent diffusivity (discussed more later),
GU (ρ)=U(ρ)/U , GD(ρ)=D(ρ)/D(1), and γ is a flow
related parameter;γ=4D2(1)ν−2Re−2, whereRe=2aU/ν

is the tube flow Reynolds number andν is the molecular
viscosity of air. (Note for the present purposesν can be
considered a constant. But, in fact, it is a function of both
temperature and relative humidity (e.g.,Studnikov, 1970;
Tsilingiris, 2008). In general terms these two effects will
tend to add “noise” or uncertainty to specific model pre-
dictions. Nonetheless, for typical environmental conditions
encountered at eddy covariance sites and within closed-path
eddy covariance tubes the relative humidity effects can prob-
ably be disregarded, but the (larger) temperature effects may
influence the Reynolds number and the turbulent diffusivity
(see next section) enough during a daily or seasonal cycle
that they might need to be considered when employing or
evaluating specific model predictions.)

Except for a slight change in notation, this last equation
is identical to Eq. (3) ofMassman(1991). But at this point
the present development diverges significantly fromMass-
man(1991). Here we take very different approaches to mod-
eling the turbulent diffusivity,D(ρ), and to solving for the
eigenvalue and we employ a (somewhat) different model for
U(ρ). By choosing approaches that contrast strongly with
Massman(1991), we hope to better understand how different
methodologies can quantitatively impact model predictions.
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2.1 ModelingU(ρ)

To model U(ρ) we adapt the model ofU(ρ) given by
Eq. (1.6.10) on page 35 ofPolyanin et al.(2002). Specifi-
cally, we assume

U(ρ)

U
=

G(ρ)

2
∫ 1

0 (1 − ρ) G(ρ) dρ

where

G(ρ) = ln(1 + 0.4Kρ) + ln
1.5(2 − ρ)

1 + 2(1 − ρ)2
+

3[1 − e−0.1Kρ
− 0.1Kρ e−0.3Kρ

] (4)

with K as the Karman number,K=au∗/ν, and u∗ is
the wall friction velocity. Here we should note that
the cross sectional average of any variable,Q(ρ), is
given as Q = 2

∫ 1
0 (1− ρ) Q(ρ) dρ and that by def-

inition u∗ / U ≡ 2K/Re. To complete the model
for U(ρ) we relate K and u∗ / U to Re by employ-
ing the Blasius relation (e.g.,McKeon et al., 2005),
which is 8(u∗ / U)2

= 0.3164Re−1/4. This yields
K =

√
0.3164/32Re7/8 and u∗ / U = 0.1989Re−1/8,

which are important model constitutive relationships,
especially for modelingD(ρ).

The present model ofU(ρ) was chosen over the one orig-
inally adopted byMassman(1991) for a very important rea-
son. On one hand, the new model is just as physically realis-
tic (if not more so) than Massman’s original model ofU(ρ),
but, on the other, it has fewer (in fact no) empirical parame-
ters. Consequently, the new model is specifically intended to
make it more difficult to obscure the need for modeling the
adsorption/desorption processes by simply adjusting veloc-
ity profile parameters to fit observations. This philosophy of
minimizing the number (and sensitivity) of model parame-
ters carries over into the next section, which outlines models
of turbulent diffusivity that are not dependent on the velocity
shear (∂U/∂ρ) or mixing length theory.

2.2 ModelingD(ρ)

Massman(1991)’s model forD(ρ) has a significant concep-
tual problem, i.e., as the turbulent diffusivity becomes small
as the centerline is approached (limρ=1 D(ρ)≈0). This is a
consequence of using mixing length theory, which parame-
terizes the turbulent diffusivity in terms of the velocity shear
(∂U/∂ρ→0 asρ→1). This concern is not new (e.g.,Re-
ichardt, 1951). Consequently, the present study develops two
rather different parameterizations ofD(ρ), both of which
circumvent this conceptual problem. These two models are
used to explore the model’s sensitivity to different formula-
tions ofD(ρ).

FromTaylor (1954) we know thatD=10.1au∗, which can
be written asD=10.1Kν=Re7/8 ν. Therefore, we will con-
struct a function,F(ρ), such thatD(ρ)=DF(ρ) andF=1.

Since it is not unreasonable to assume that the turbulent dif-
fusivity is proportional to the turbulent viscosity,νT , we con-
structF(ρ) from models ofνT (ρ).

The first model assumes thatF(ρ)∝U(ρ)/U (e.g.,
Kirkegaard and Kristensen, 1996). Such an assumption is
plausible because it not only eliminates the logical contra-
dictions associated with using mixing length theory near the
tube centerline, but it may also be theoretically justifiable for
bounded flows, for whichνT (ρ)∼U(ρ) has been suggested,
(e.g.,Hussein et al., 1994; Pope, 2000). Nevertheless, de-
spite its appealing simplicity this modeling assumption is not
complete, because near the tube wall (i.e., asρ∼0) this as-
sumption combined withG(ρ) from Eq. (4) suggests that the
Reynolds stresses∼νT (ρ) ∂U/∂ρ∼U(ρ) ∂U/∂ρ∼ρ, which
differs than the expected result of∼ρ3 (e.g.,Kim et al., 1987;
Pope, 2000). To compensateF(ρ)∝G(ρ)V (ρ) is assumed,
where

V (ρ) = 1 − e−AKρ2

is a modified version of the original van Driest function (van
Driest, 1956), 1−e−Kρ/A+

, in which the exponent is linearly
dependent onρ. Our modification to the original van Dri-
est function ensures the functional description of∼ρ3 for the
Reynolds stresses near the tube wall. For the present study
A=0.0375 in accordance with the original van Driest param-
eterA+

=26−28 (e.g.,Pope, 2000; Rusak and Meyerholz,
2006). Although the van Driest function is somewhat em-
pirical, it is not without logic or precedent (Rusak and Mey-
erholz, 2006). Furthermore, by a careful choice of the pa-
rameter,A, the turbulent viscosity can be made to display a
broad uniform maximal value near the tube centerline, which
captures the functional dependence suggested from several
observation-based studies (Pope, 2000).

The first model forD(ρ) is given as:

D(ρ)/ν = (Re7/8
− Sc−1)

G(ρ)V (ρ)

GV
+ Sc−1 (5)

where Sc is the Schmidt number and the singleSc−1

(rightmost) term is included to account for molecular dif-
fusion, which will dominate turbulent diffusion very near
the wall (i.e.,D(ρ)/ν∼Sc−1 when ρ∼0). The multiplier
(Re7/8

−Sc−1) on the left side is used to maintain the equal-
ity D/ν=Re7/8 in accordance withTaylor (1954). (We
should note, primarily for the sake of completeness, that the
constructed function,F(ρ)=Re−7/8D(ρ)/ν.)

The second model ofD(ρ) is adapted fromReichardt
(1951)’s model of turbulent viscosity, which assumes that
νT (ρ)/ν∝ρ(2−ρ)[1+2(1−ρ)2

]=(2ρ−ρ2)(3−4ρ+2ρ2).
This empirical function displays a local maximum atρ=0.5
and a shallow minimum near the tube centerline. This
centerline minimum is only somewhat less than the local
maximum so thatD(1)�0 (e.g.,Kays and Crawford, 1993,
p. 247). This model ofνT (ρ) is reasonable because there
is no production of turbulence at the centerline (where
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there is no velocity shear). Consequently, turbulence is
continuously diffusing toward the centerline from the nearby
high shear regions (where it is being generated) and it is
being continuously dissipated near the centerline at the same
rate.

This study enhancesReichardt(1951)’s original model
with a parameter (here termed Reichardt’s parameter) that
allows the position of the local maximum to vary somewhat
from ρ=0.5, in accordance with observationally-based infer-
ences (e.g.,Sherwood et al., 1975). This parameter is de-
noted byB in the following expression:

E(ρ) = (2ρ − ρ2)(B − 4ρ + 2ρ2)

where 2.25≤ B ≤ 4.0 (with Emax occuring at
ρmax= 1− 0.5

√
4− B) and E(ρ) is used to define the

second model ofD(ρ) as follows:

D(ρ)/ν = (Re7/8
− Sc−1)

E(ρ)V (ρ)

EV
+ Sc−1 (6)

The van Driest function,V (ρ), is included in this model
of D(ρ) for the same reason it is included the first model,
Eq. (5). But includingV (ρ) does alter the position of the
maximum value ofD(ρ) relative to Emax. Nonetheless,
ρmax=1−0.5

√
4−B remains a very good approximation for

estimating the position ofDmax/ν providingB≥2.25.

2.3 Method of solution

Solving Eq. (3) by numerical methods is possible, but
many of the numerical complexities and precision issues
can be significantly reduced by simplifying Eq. (3) using a
perturbation-expansion technique.

The first step in this procedure requires establishing that
for eddy covariance applications�<1 is valid. Recalling
that�=a2ω/D(1) it follows that�=(a2ω/ν)(Re−7/81−1

D ),
where1D is defined by the relationD(1)/ν=Re7/81D. In
general1D is a function ofA, Re, andSc−1, but for the
present study it is sufficient to note that1D is a monotoni-
cally decreasing function ofRe such that 1.38≤1D≤3.34.
Next, assumingν≈0.15 cm2 s−1, that the tube diameter is
not much larger than about 1 cm (i.e.,a2

≤0.25 cm2), that
the highest frequency of interest for eddy covariance is
likely to be a sampling frequency of about 20 Hz (i.e.,
ω≤2π×20 s−1), and that the minimum value forRe is
about 2300 (i.e.,Re−7/8

≤1.144×10−3), it follows that
�<0.14<1. These results are relevant because we can now
quite accurately approximatêCλ(ρ) andλ as follows:

Ĉλ(ρ) = Ĉ0(ρ) + � Ĉ1(ρ) + �2 Ĉ2(ρ) + �3 Ĉ3(ρ)

and

λ = 1 + α1 � + α2 �2

Substituting these expressions into Eq. (3) and equating pow-
ers of� yields a set of recursive ordinary differential equa-
tions (ODEs) for̂C0(ρ), Ĉ1(ρ), Ĉ2(ρ), andĈ3(ρ), in which
� does not directly appear.

The next step is to formulate the boundary conditions and
solve the ODEs sequentially for̂C0(ρ), Ĉ1(ρ), α1, Ĉ2(ρ),
andα2 as functions of the boundary conditions and the char-
acteristics of the profilesU(ρ) andD(ρ). Most significant
to the present discussion is thatα1 is an imaginary number
of the formα1=−i|α1|, where|α1| is the modulus ofα1, and
α2<0 is real. Hereα1 is the imaginary part of the eigenvalue,
λ, andα2 is its real part. Relative to the transfer function (dis-
cussed in the next section)α1 is that part of the eigenvalue
that relates to the attenuation of the trace gas fluctuations,
whereasα2 relates to the frequency-dependent phase shift or
lag time associated with the tube flow.

The boundary condition at the center of the tube re-
quires that there be no net exchange of mass (no flux)
across the centerline of the tube. Consequently, for
n=0, 1, 2, . . ., {GD(ρ) dĈn/dρ}ρ=1=0, which implies that
{dĈn/dρ}ρ=1=0 since GD(1)6=0. For a passive tracer
the appropriate boundary condition at the tube wall is
again no net flux, i.e.,{GD(ρ) dĈn/dρ}ρ=0=0, which
implies that{dĈn/dρ}ρ=0=0 sinceGD(0)6=0. With these
boundary conditions the solution̂C0(ρ) is Ĉ0(ρ)=C, a
constant. With no loss of generalitŷC0(ρ)≡1 can be
assumed for a passive tracer. Unfortunately, solutions for
Ĉn(ρ) (n≥1) cannot be found analytically and so must
be computed numerically. This is done using a modified
shooting method with a fourth-order Runge-Kutta algo-
rithm with an adaptive step size (Press et al., 1992) to
solve the ODEs for̂C1(ρ) and Ĉ2(ρ) numerically and an
algebraic/numerical procedure for determiningα1 and α2.
The integration procedure assumes thatĈn(0)=0 (n≥1).
Nevertheless, the numerical procedures cannot directly
handle the singularity at the centerline (ρ=1) that is typical
of these ODEs and Eq. (3). This singularity is treated by
matching the numerical solution (at some point near but not
at the centerline) with a power series expansion of the form
limρ→1 Ĉn(ρ)=a0n+a1n(1−ρ)+a2n(1−ρ)2

+a3n(1−ρ)3
+

· · ·, where the coefficients can be determined analytically
from the appropriate ODE. Finally, it is not necessary to
solve for Ĉ3(ρ) explicitly, because the only relevant infor-
mation required to determineα2 is the boundary condition at
the tube wall.

2.4 The tube transfer function

Onceα1 andα2 been determined the transfer function,h(ω),
for a tube of lengthL can be determined from Eq. (2) as:

h(ω) =
Ĉ(ρ, L, t)

Ĉλ(ρ)eiωt
= e−iωλL/U (7)
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which can now be expressed as

h(ω) =

[
e−31ω

2aL/U
2
] [

e−i(ωL/U)(1−32ω
2a2/U

2
)

]
(8)

where, borrowing the notation from Massman (1991),
31=0.5|α1|1

−1
D Re1/8 and32=0.25|α2|1

−2
D Re1/4.

The first term in brackets on the RHS of Eq. (8) is the
real-valued transfer function,H(ω), associated with the at-
tenuation of fluctuations and the second term in brackets on
the RHS expresses the phase shift (or tube lag time) (e.g.,
Massman, 2000, 2004). Therefore,

H(ω) = e−31ω
2aL/U

2

(9)

and

hphase(ω) = e−i(ωL/U)(1−32ω
2a2/U

2
) (10)

where the tube lag time isL/U(1−32ω
2a2/U

2
). Note

that the tube lag time is usually assumed to beL/U ,
which is correct only for those frequencies such that

32ω
2a2/U

2
�1. Assessing the importance of the second

order term,32ω
2a2/U

2
, requires evaluating the validity

of this inequality. This is accomplished by noting that

ω2a2/U
2
=4ω2a4Re−2/ν2 and then using the same inequal-

ities and values forω, a, Re, and ν that were used to
establish that�<1. The resulting calculations show that

32ω
2a2/U

2
<32/30. Therefore, one should expect that

32/30<1 and that this condition should be considered when
assessing any particular model’s performance.

Before presenting the solutions,31=31(Re) and
32=32(Re), it is worthwhile to re-examine the modeling re-
sults ofLenschow and Raupach(1991) andKirkegaard and
Kristensen(1996), which is done in the next section. The
benefit and the intent behind these next two approaches is to
avoid (or to reduce as much as possible) the need to specif-
ically modelD(ρ), which is at best highly uncertain and at
worst completely unknown.

3 Other modeling strategies

3.1 Taylor (1954)’s approach

The model for the attenuation coefficient31 developed by
Lenschow and Raupach(1991) is basically a restatement of
Taylor (1954). This section, which follows Kristensen and
Kirkegaard (personal communication, 2007), calculates31
and32 from Taylor (1954)’s model. This begins with a sim-
plified version of Eq. (1), namely:

∂C

∂t
+ U

∂C

∂x
= D

∂2C

∂x2
(11)

whereC=C(x, t) is the cross-sectionally averaged concen-
tration. NextC(x, t)=Ĉ(x) exp(iωt) is assumed. Using the

dimensionless variableη=x/a andTaylor (1954)’s relation-
ship forD (i.e.,D/ν=Re7/8), this simplified tube flow equa-
tion is expressed in dimensionless form as

d2Ĉ

dη2
− σ

dĈ

dη
− i �T Ĉ = 0 (12)

whereσ=0.5Re1/8 and�T =ωa2Re−7/8/ν=0.5Re1/8
[ωa/U ].

The exponentially decaying solution to this last equation
is the transfer function

Ĉ(η) = Ĉ0e
sη (13)

wheres=(σ−

√
σ 2+4i�T )/2. This expression fors can be

further simplified by noting that 4�T �σ 2 for most eddy co-
variance applications. This is basically equivalent to pertur-
bation assumption�<1 previously discussed and employed
with the eigenvalue model above. This�T inequality allows
s to be expanded in a Taylor’s series, which when truncated
after 4 terms yields the following final solution forC(L, t):

C(L, t) = Ĉ0e
iωt

[
e−{2Re−1/8

} (ω2aL/U
2
)

]
×

[
e−i(ωL/U)(1−{8Re−1/4

} ω2a2/U
2
)

]
(14)

from which the attenuation coefficients31T =2Re−1/8 and
32T =8Re−1/4 are easily identified.

3.2 Separation of variables

The tube flow model developed byKirkegaard and Kris-
tensen(1996) is based on the assumption thatD(ρ)∝U(ρ),
which allows Eq. (1) to be solved by separation of vari-
ables. This section examines the separation of variables
technique for solving the tube transport equation to cal-
culate the resulting attenuation coefficients31K=31K(Re)

and32K=32K(Re). But the present development is some-
what different from that employed byKirkegaard and Kris-
tensen(1996) and the full mathematical development, which
is fairly involved, will only be outlined and summarized here.
(Note the symbols used in this section are consistent with
their usage throughout this study.) The first assumption is

C(ρ, x, t) = Ĉ(ρ, x) eiω t (15)

The second assumption is that the a ratioU(ρ)/[UGD(ρ)]

is well approximated by its cross sectional average, i.e.,

U(ρ)/[UGD(ρ)]=U(ρ)/[UGD(ρ)]≡β. Without this, or
a similar assumption, separation of variables is not possi-
ble. (Note this assumption yields a slightly different value

for U(ρ)/[UGD(ρ)] than the equivalent parameter used by
Kirkegaard and Kristensen, 1996.)
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Fig. 1. Transfer function attenuation coefficients31, 32, 31T , and
32T . 31 and32 are first and second order solutions to the eigen-
value model Eqs. (3), (5), and (8). 31T and32T are Taylor’s solu-
tion as shown in Eq. (14). Not included here is31K , the solution
to the separation-of-variables model ofKirkegaard and Kristensen
(1996), which yielded31K≤0.331T .

Equation (1) can now be written as

1

GD(ρ)(1 − ρ)

∂

∂ρ

[
(1 − ρ)GD(ρ)

∂Ĉ

∂ρ

]
−

i �

GD(ρ)
Ĉ =

−
∂2Ĉ

∂η2
+ σ

∂Ĉ

∂η
(16)

whereσ=0.5Re1/81−1
D β andβ is a monotonically decreas-

ing function of Re such that 34.3≤β≤21.7 (for the first
model ofD(ρ), which is sufficient for the present purposes).
Assuming the variablesη and ρ are separable, i.e., that
Ĉ(η, ρ)=Âλ(ρ)B̂λ(η), then Eq. (16) can be partitioned into
two ODEs, one forÂλ(ρ) and one forB̂λ(η); where−iλ

is the constant of separation andλ is an eigenvalue. Butλ
it is not necessarily numerically the same as the eigenvalue
above; nor is it possible to assume that the eigenfunction
Âλ(ρ) is the same aŝCλ(ρ) above. At this point solving for
the eigenvalue proceeds much as discussed above for the so-
lution to Eq. (3) and the transfer function is determined from
the solution for̂Bλ(η).

For the present purposes it is sufficient to summarize the
separation-of-variables model from the31 results alone. Ei-
ther version ofD(ρ) yields the following inequality for31K :

31K ≤ 0.331T (17)

which clearly suggests that the separation of variables ap-
proach (as outlined here) predicts much less attenuation than
Taylor (1954)’s model.

Fig. 2. Comparison of modeled (passive tracer) attenuation coef-
ficients with a summary of some experimental observations asso-
ciated with water vapor fluctuations fromLenschow and Raupach
(1991) as determined byMassman(1991).

4 Attenuation of a passive tracer

Figure1 shows the first and second order attenuation coef-
ficients as functions of the tube flow Reynolds number for
the eigenvalue model andTaylor (1954)’s model. Compar-
ing 31(Re) with 31T (Re) and32(Re) with 32T (Re) sug-
gests thatTaylor (1954)’s approximation is reasonable for
the first order term,31, but that it may not be so for the
second order term,32. Nevertheless, assuming that the
eigenvalue model produces a more precise estimate for the
attenuation coefficients of a passive tracer,31(Re) can be
approximated to within±1% by the analytical expression
2Re−1/8

+(100/3)Re−0.725 (shown in Fig.2). The attenua-
tion term(100/3)Re−0.725 largely results from the van Driest
function,V (ρ), and we interpret it to be the attenuation asso-
ciated with the momentum boundary layer of the tube wall.
By using a cross-sectionally averaged formulation,Taylor
(1954)’s model would have eliminated this additional atten-
uation. It should be noted here that the maximum value for
32 produced by the present eigenvalue model, which extends
beyond the range of the y-axis of Fig.1, is about 4.7 so that
32/30<0.16, thereby confirming the earlier analysis for the
first model of the turbulent diffusivity, Eq. (5).

The eigenvalue model with the second parameterization
for the turbulent diffusivity, Eq. (6), produced estimates
of 31(Re) that were within about±4% of the (afore-
mentioned) analytical expression. But, the32(Re) associ-
ated with this second formulation of the turbulent diffusivity
displayed a significant sensitivity to the position ofDmax/ν.
So much so that asB varied across its range of values the
associated32(Re) varied by more that a factor of two rela-
tive to32(Re) shown in Fig.1. Clearly these results suggest
that 32(Re) is quite sensitive to the shape ofD(ρ), which
leads to the idea of designing an observational experiment to
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exploit this sensitivity, thereby obtaining a better empirical
understanding and model parameterization ofD(ρ).

Although the agreement between the present eigenvalue
model andTaylor (1954)’s model is reasonably satisfying,
the present results are not in agreement with the observa-
tions of Lenschow and Raupach(1991) or the modeling re-
sults ofMassman(1991). Figure2 shows31(Re), its ana-
lytical approximation, and31T (Re) with a summary of the
data (red boxes) fromLenschow and Raupach(1991) for the
regions 5600≤Re≤5900 and 9000≤Re≤16600. These ob-
servational data clearly show much more attenuation than
predicted by any of the present models. On the other hand,
Massman(1991)’s model (not shown in Fig.2) quite success-
fully predicted the observed attenuation. This disparity leads
to two conclusions:

(I) The additional attenuation observed byLenschow and
Raupach(1991) results from the sorption/desorption of wa-
ter molecules onto the (brass) tube walls. Therefore, none
of the present passive-tracer models, which assume no in-
teraction at the tube walls, are able to account for this addi-
tional attenuation. Consequently, the assumption, made by
both Lenschow and Raupach(1991) andMassman(1991),
that water vapor can be used as passive tracer (even under
presumed ideal or ‘equilibrium’ conditions), is likely false.
This last conclusion should not be too surprising given the re-
cent observations of how strongly ambient relative humidity
affects the attenuation of water vapor fluctuations in closed-
path eddy covariance systems (e.g.,Clement, 2004; Amman
et al., 2006; Ibrom et al., 2007).

(II) Massman(1991)’s original model is sufficiently robust
(possibly by happenstance) that it is able to capture the varia-
tion displayed by the data ofLenschow and Raupach(1991).
Consequently, this earlier model was successful at least in
part because of the formulations forU(ρ) andD(ρ), which
are very different than those used in the present study. These
earlier formulations included two parameters, which Mass-
man tuned to fit the data ofLenschow and Raupach(1991).
On the other hand,31(Re) from the present turbulent tube
flow model (which also contains two “adjustable” parame-
ters, the van Driest parameterA and Reichardt’s parame-
ter B) is not as sensitive to variations of these parameters.
For example, the present attenuation coefficient31(Re) is at
most only weakly sensitive to (even large variations in)A or
B and then only in the region 2300≤Re≤4000. This is not
entirely accidental because we sought to improve onMass-
man(1991)’s original model ofD(ρ) by developing models
that were not only more realistic, but that also had fewer ad-
justable parameters. An important aspect of this is that the
resulting model is less sensitive to variations of those param-
eters and the attenuation coefficients are less dependent on
the details of the model assumptions.

5 Attenuation of a sorbing/desorbing tracer

For a trace gas interacting with the tube wall, the wall
boundary condition requires a mathematical formulation of
the physical processes that describe the mass fluxes as-
sociated with near-wall turbulent transport and the sorp-
tion/desorption onto the tube wall. It should not be surprising
that a general formulation of this boundary condition could
be quite complex because the physical processes at the tube
wall are physiochemical in nature and molecular in scale and
involve various aspects of the kinetic theory of gases, thin
film dynamics, phase changes (condensation and evapora-
tion) on clean homogeneous surfaces and on internal tube
surfaces contaminated with atmospheric aerosols, as well as
the dynamics of near-wall turbulent boundary layer effects.
For application to the present study many of these processes
are unknowable (at the very least) and so cannot be quanti-
fied with much certainty. Nevertheless, the approach taken
here begins with a description of a comprehensive model of
the mass fluxes to the tube wall, which is then simplified to
produce a physically-based semi-empirical model of the wall
boundary condition. We take this approach in order to gain
insight into the physical processes involved and some abil-
ity into their quantification for modeling application. Once
completed the wall boundary condition is then used with the
turbulent tube flow model (described above) to test how well
the model reproduces the results ofLenschow and Raupach
(1991). The final section discusses the (unexpected) empir-
ical adjustments that the model requires and then presents
a single analytical expression for the attenuation coefficient
(31 only) that best synthesizes the present model and the
observational results ofLenschow and Raupach(1991) and
Ibrom et al.(2007).

5.1 Wall boundary condition

5.1.1 Near-wall turbulent mass flux

The turbulent mass flux,FC , is often parameterized as:
FC=hCu∗(C∞−Csurf), where hC is the mass transfer
coefficient through the tube wall’s turbulent boundary layer
(for water vaporBrutsaert, 1982, equateshC with the Dalton
number),C∞ is the trace gas concentration within the mean
flow region of the tube somewhere well away from the
influence of the quasi-laminar wall boundary layer, and
Csurf is the gas concentration at the surface of the tube wall,
which in wall coordinates is equivalent toC(0). SinceFC

is the same as the diffusional wall flux (FC=−Dg dC/dr),
the gradient ofC(r) at the wall in the wall coordinateρ is
C′(0)={dC/dρ}ρ=0=hCKSc(C∞−C(0)). Several empiri-
cal models have been developed for (a smooth-wall)hC for
both heat and mass transfer (e.g.,Aravinth, 2000), many of
which yield similar results – at least for the present applica-
tion and set of trace gases, which can be characterized by
Sc≈1 or Pr≈1 wherePr is the Prandtl number. Adapting
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the model ofPinczewski and Sideman(1974) for hC , which
is hC=0.064(u∗/U)Sc−1/2(1.1+0.44Sc−1/2

−0.70Sc−1/6),
yields the following approximate relationship:
hCKSc≈0.00108Re3/4Sc1/2, which will be denoted
by κb. Therefore, for the present study

C′(0) = κb{C∞ − C(0)} (18)

andκb=(1.08×10−3)Re3/4Sc1/2 is the dimensionless form
of the turbulent boundary layer conductance associated with
the tube wall.

Superficially Eq. (18) may appear adequate for the present
purposes; but unfortunately,C(0) cannot be specified solely
on the basis of turbulent tube flow dynamics. In general,
C(0) is strongly influenced by the molecular-scale interac-
tions between the material comprising or adhering to the sur-
face of the tube wall and the specific trace gas. A full de-
scription of these molecular-scale interactions for any partic-
ular atmospheric trace gas likely to be susceptible to surface
related sorption and desorption processes (e.g., H2O, NH3,
O3, SO2) is well beyond the scope of this study. Fortunately
though, it is possible to develop a model of the bulk processes
sorption/desorption at the tube wall, which can be combined
with Eq. (18) to produce a physically realistic, useful, and
insightful model of the wall boundary condition.

5.1.2 Surface sorption/desorption mass flux

This section develops a model ofC′(0) that describes
the bulk molecular-scale absorption/desorption at the inte-
rior surface of a tube wall and derives an empirical, but
physically-based, parameterization of the associated (dimen-
sionless) conductance (κs), which is the sorption/desorption
analog ofκb above.

We begin with the Hertz-Knudsen-Schrage (HKS) equa-
tion, which has its origins in the kinetic theory of gases and
describes the net flux of a gas that is simultaneously con-
densing on and evaporating from a surface. It is used to
model water vapor fluxes to and from cloud and ice droplets
(e.g.,Pruppacher and Klett, 1997; Seinfeld and Pandis, 1998;
Marek and Straub, 2001; Li et al., 2001) and the net heat
transfer in steam-laden heat pipes and thermosiphons (e.g.,
Carey, 1992; Fagri, 1995). The HKS equation is

FC,net =
2

2 −Kc

×[
KcC(0)

√
RTg

2πM
−KeCsat(Tl,s)

√
RTl,s

2πM

]
(19)

whereKc is the condensation coefficient of the gas (some-
times also called the thermal accommodation coefficient),Ke

is its evaporation coefficient,R is the universal gas constant,
Tg is the temperature of the condensing gas,Tl,s is the tem-
perature of the evaporating surface-bound molecules (which
would be liquid water in the case of water vapor),Csat is the
saturation density of the gas, andM is the molecular mass

of the gas. The first term in the brackets on the right hand
side of Eq. (19) is condensing mass flux and the second term
is the evaporating mass flux. (Note: the HKS equation is
usually expressed in terms of the vapor pressure rather than
vapor density. Here we have used the ideal gas law to convert
the usual HKS equation to the form given above.)

Although Eq. (19) is appropriate for a freely evaporat-
ing/condensing gas, to use it to describe surface adsorp-
tion/desorption requires introducing the possibility that there
are only a finite number of sites available for adsorption (e.g.,
Silbey et al., 2005). This yields:

FC,net =
2

2 −Kc

×[
KcC(0)

√
RTg

2πM
2c −KeCsat(Tl,s)

√
RTl,s

2πM
2e

]
(20)

where2e is the fraction of the total number of surface ab-
sorbing sites covered by adsorbed molecules and2c is the
fraction of the total number of sites available for adsorp-
tion. 2e is usually described by an adsorption isotherm (e.g.,
Do, 1998). For example, assuming equilibrium conditions
(i.e., rate of adsorption = rate of desorption orFC,net≡0)
and that the absorbate forms a molecular monolayer (i.e.,
2e+2c=1), then Eq. (20) yields a variant of the Langmuir
adsorption isotherm (e.g.,Silbey et al., 2005). For multilayer
sorption/desorption there are a number of empirical expres-
sions that are used for the adsorbtion equilibrium isotherm,
notable among these is the BET equation, (e.g.,Do, 1998).
Nevertheless, further discussion of the adsorption isotherm is
deferred until after the development ofκs .

Next are two simplifying assumptions to Eq. (20). The
first is to assume thatKc�1<2, in accordance with virtually
all observational data (Pruppacher and Klett, 1997; Marek
and Straub, 2001). Consequently, 2/(2−Kc)≈1. The second
is to assume that the heat transfer that occurs during surface
evaporation and condensation is negligible, which is reason-
able for dilute gases and very small sorption and desorption
fluxes, such as might be expected for closed-path eddy co-
variance systems. Consequently,Tl,s≡Tg is assumed. Nev-
ertheless, it is also worth noting that studies of thin film evap-
oration of water have indicated that the modeled temperature
differences between evaporating and condensing molecules
can be 30 K (e.g.,Yang and Pan, 2005). As a result this as-
sumption may become suspect at very high humidities and
vapor pressures, for which there is the potential to exchange
large numbers of water vapor molecules between the tube
wall and the free air stream. Again assuming thatFC,net
equals the diffusive flux. Equation (20) can now be written
in terms ofC′(0).
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5.1.3 Synthesizing the wall boundary condition

C′(0) = KcSc

a

ν

√
RTg

2πM
2c

{
C(0) −

Ke2e

Kc2c

Csat

}
(21)

The dimensionless wall sorption/desorption con-
ductance is identified from this last relationship as
κs=KcSc(a/ν)

√
(RTg)/(2πM) 2c. From the kinetic

theory of gases the term
√

(RTg)/(2πM) is related to the
mean (thermal) velocity of a molecule of the gas (which
is different fromU(ρ)), so that(a/ν)

√
(RTg)/(2πM) can

be identified as a molecular-scale Reynolds number,Rem.
Therfore,κs=KcRemSc 2c.

Eliminating C(0) from Eqs. (18) and (21) yields the fol-
lowing expression forC′(0):

C′(0) =
κbκs

κb + κs

{
C∞

Csat
−
Ke 2e

Kc 2c

}
Csat (22)

But before this equation can be used for the wall boundary
condition some adaptation is still necessary.

5.1.4 Semi-empirical model of the wall boundary condition

(a) The termC∞/Csat can be reasonably approximated by
the time-mean relative humidity inside the tube,h̃t , which
can be related to the time-mean ambient atmospheric hu-
midity, h̃, by accounting for the pressure drop inside the
tube. More specificallyC∞/Csat≈h̃t=h̃p̃t/p̃a , wherep̃t is
the time-mean tube pressure or mean internal pressure of the
sampler and̃pa is the time-mean ambient pressure.

(b1) The termKe/Kc is difficult to know precisely because
it depends on the nature of the absorbing surface. For exam-
ple, for a clean homogenous surface it might be reasonable
to assume thatKe/Kc≈0.8 (Marek and Straub, 2001). But
for a tube with an inside surface contaminated with a vari-
ety of atmospheric aerosols and therefore condensation nu-
clei (e.g.,Forslund and Leygraf, 1997), as one might expect
even with a closed-path eddy covariance tube that includes an
inlet filter, thenKe/Kc�1 is about all that can be anticipated
(Marek and Straub, 2001). Another source of uncertainty in
the termKe/Kc is that it is likely to be a function of temper-
ature because the activation energies for surface adsorbtion
and desorption will not necessarily the same (e.g.,Silbey et
al., 2005; Davidovits et al., 2006).

(b2) The term2e/2c is at least as uncertain asKe/Kc, but
for different reasons. Primary among these is the expectation
that the number of adsorbing/desorbing sites is likely to be
relatively close to steady state for the mean concentration of
water vapor, but potentially dynamic in time and location, in
regards to water vapor fluctuations inside the tube. To keep
the complexity of the model as minimal as possible this term
is assumed to be better represented by mean conditions and
that the mean sorption/desorption isotherm can be described
by the Langmuir isotherm. This means that near equilib-
rium 2e/2c�1 (most avaliable surface sorption sites are

occupied) and2e/2c∝h̃p̃t/p̃a . Nonetheless, when apply-
ing these results to water vapor fluctuations inside the tube,
one must allow for the possibility that at any given location
there may be a lag time between sorption and desorption and
at any given time sorption and desorption may be occuring
simultaneously, but at different locations. This suggests that
2e/2c should be parameterized to allow for a phase between
sorption and desorption. Therefore, it is necessary to allow
for the possibility that the model parameter2e/2c may be
complex.

(c) Combining (a), (b1), and (b2) suggests the following
parameterization:{

C∞

Csat
−
Ke 2e

Kc 2c

}
≈ h̃

p̃t

p̃a

(1 + γ1e
iφ) = γ∗h̃

where γ1 is a real-valued constant,φ is the sorp-
tion/desorption phase, andγ∗ is a complex-valued parameter
defined by the right hand equality of this last expression.

Nextκs is parameterized.
(d) Kc depends on the nature of the surface, the sorbent,

the nature of the liquid surface or layer formed by the con-
densed sorbent, and the ambient conditions (e.g.,Awakuni
and Calderwood, 1972; Andrews and Larson, 1993; Forslund
and Leygraf, 1997). For water vapor it is a function both of
temperature and pressure and other characteristics of the wa-
ter surface formed by the adsorbed water vapor (Marek and
Straub, 2001; Li et al., 2001). These last two studies suggest
that for application to closed path eddy covariance systems it
seems reasonable to assume that 10−4<Kc<10−1.

(e)Rem≈(4−6)×104 for typical ambient temperature and
pressures encountered at eddy covariance sites.

(f) Decomposing2c into a mean and fluctuating part
yields 2c=2̃c+12ce

iω(t−λx/U) along with the concomi-
tant assumption that12c�2̃c. This allows the fluc-
tuating portion of the termκbκs/(κb+κs) to be lin-
earized such thatκbκs/(κb+κs)∼[κbκ̃s/(κb+κ̃s)][12c/2̃c]

andκ̃s=KcRemSc 2̃c. Although this approach may linearize
the dimensionless conductance, in fact there is no other jus-
tification for assuming that12c�2̃c because the exact re-
lationship between12c and 2̃c cannot be known. Other
relations may be possible, but we wish to keep the model
complexity to a minimum. Next12c/2̃c is assumed to
be proportional toel∗h̃ with l∗>0. This is purely an em-
pirical parameterization, justified heuristically from obser-
vations that the attenuation of water vapor fluctuations in-
crease nonlinearly with increasing humidity (e.g.,Peters et
al., 2001; Clement, 2004; Ibrom et al., 2007). Note: other
mathematical functions, such as those suggested by the BET
equation and similar algebraic forms derived to describe mul-
tilayer adsorption isotherms (e.g.,Do, 1998), could have
been used instead of the exponential formel∗h̃. But, such
algebraic forms may not be very useful or even physically
realistic at high humidities because they become mathemati-
cally undefined at̃h=1.
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Fig. 3. Transfer function attenuation coefficients:31W for water
vapor modeled with the wall boundary condition (Eq.24), the an-
alytical approximation for a passive tracer (shown in Fig.2), and a
summary of some experimental observations of the attenuation co-
efficient for water vapor fluctuations fromLenschow and Raupach
(1991) as determined byMassman(1991).

(g) The saturation density,Csat, is a function of the gas
temperature,Tg, and can be expressed asCsat(T0)f (Tg),
whereT0 is 0 C (or 273.15 K) andf (Tg) is the function that
describes the behavior ofCsat whenTg>0 C.

Combining (d) through (g) with (c), Eq. (22) suggests the
following empirical models of the wall boundary condition
for the eigenfunctionŝCλ(ρ) andĈn(ρ):

Ĉ′
λ(0) =

[
κbκ̃s

κb + κ̃s

]
γ∗h̃el∗h̃ (23)

Ĉ′
n(0) = (i)n

[
κbκ̃s

κb + κ̃s

]
γ∗h̃el∗h̃ (24)

whereγ∗ is now an adjustable empirical parameter that sub-
sumes all the many uncertain and unspecified (and possibly
un-specifiable) physical processes, relationships, and depen-
dencies discussed above. Note there is no loss of generality
by neglectingCsat(T0) in Eqs. (23) and (24). This is equiva-
lent (mathematically) to defining the eigenfunction (which
is dimensionless) in terms ofC(ρ)/Csat(T0). In this way
Csat(T0)is simply a scaling factor that has no impact on the
eigenvectors, the eigenvalues, or the transfer function. Also
note that Eqs. (23) and (24) are related, but they are not math-
ematically equivalent to one another.

This section closes with a numerical estimation ofκ̃s .
Combining (d), (e), and the expectation that2̃c�1 suggests
that it is reasonable to assumeκ̃s∼O(1). But it is possible to
improve on this estimate of̃κs by determining the expected
range of values forκb, because it is unlikely that̃κs is small
compared toκb, otherwise the wall flux will begin to become
negligibly small (which is equivalent to assuming a passive
tracer). Therefore, it is reasonable to expect thatκ̃s∼κb or

κ̃s>κb. The definition forκb (above) yields 0.25<κb<4.75.
With these results as guidance, and largely for computational
purposes,̃κs=1 is assumed.

5.2 Modeling results

Figure3 compares the attenuation coefficient for the turbu-
lent tube flow model with a sorbing/desorbing wall bound-
ary condition,31W , with the observations ofLenschow and
Raupach(1991) and with 2Re−1/8

+(100/3)Re−0.725, the
approximation to31 for the case that water vapor is con-
sidered a passive tracer (Fig.2). These calculations for
31W assume that̃κs=1 (see preceeding discussion),l∗=8.26
(obtained by fitting the humidity/cutoff-frequency data of
Ibrom et al.(2007)), h̃=0.2 (Lenschow, personal communi-
cation, 2007), andγ∗=0.4 (chosen to approximate the data
of Lenschow and Raupach, 1991, within the flow region
9000≤Re≤16 600). Note choosingγ∗ as a real-valued pa-
rameter, rather than a complex-valued one, does not imply
any obscure assumptions about the possible phase,eiφ , or
value of the parameterγ , both of which are discussed above
in regards to2e/2c. In theory the complex part ofγ∗ can
be estimated from observing how the nominal tube lag time,
L/U , might vary with frequency (the32 term of the transfer
function), but there is not enough observational evidence to
support exploring this possibility.

The main conclusion to be drawn from Fig.3 is that the
wall boundary condition, as formulated by Eq. (24), predicts
that the attenuation of water vapor fluctuations should in-
crease with increasingRe, which according toLenschow and
Raupach(1991) andMassman(1991) they do not. Thus we
must conclude that either (1) variations in ambient humid-
ity during the experiments ofLenschow and Raupach(1991)
are causing the apparentRe dependency or (2) something is
missing from the model wall boundary condition. One possi-
bility for the latter is that the probability of a molecule being
captured by (or condensing on) the interior tube surface is de-
pendent upon the tube flow velocity, such that a molecule is
more likely to be captured when the tube flow rate is slower
than when it is faster. This would imply that̃κs∝Re−n or
more likely that̃κs∝Re−nSc−m, wheren, m>0. But this is
speculation only and further speculations on this point are
beyond the scope and intent of the present study and so will
not be pursued here. Nonetheless, we assume that the present
results clearly indicate a need to formulate the boundary con-
dition to include some, otherwise heuristic, dependency on
Re−n.

5.3 Empirical adjustments and analytical simplifications

We did explore the possibility of parameterizing̃κs∝Re−n,
but found that although such a formulation for the boundary
condition did capture some of the observed31∝Re−n de-
pendency, it was not fully satisfactory. On the other hand,
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further trial and error did yield the following (quite satisfac-
tory) formulation for the wall boundary condition:

Ĉ′
n(0) = (i)n

[
κbκ̃s

κb + κ̃s

] [
(Re/1000)−4 γ∗

]
h̃el∗h̃ (25)

with γ∗=1760 and all other parameters are as before. The
resulting31W is shown as a function ofRe in Fig. 4 and it
clearly compares very well with the data ofLenschow and
Raupach(1991).

Also shown in Fig.4 is the following analytical expression
for 31W , which captures most of the numerical results de-
rived with the tube flow model and boundary condition pro-
vided by Eq. (25).

31W = 2Re−1/8
+ G0Re−0.725

+

G1

[
(Re/1000)−3

]
h̃ el∗h̃ (26)

where in generalG0, G1, andl∗ are empirically-determined
coefficients. For this studyG0=100/3 andG1=100Sc−1/2,
which were determined by (visually) fitting the Lenschow
and Raupach data shown in Fig.4.

Equation (26) summarizes the results of the eigenvalue
model with a simpler and more concise formulation for31W .
Although it can be used in conjuction with the transfer func-
tion, Eq. (9), to provide initial estimates of (and spectral cor-
rections for) the attenuation of water vapor fluctuations by
closed-path eddy covariance systems, it can be further sim-
plified, which should make it more useful for any given site.

5.4 Some practical matters

Equation (26) is most applicable to a straight horizontal tube,
but closed-path flux systems are rarely implemented as such.
In general, departures from the ideal tube will tend to in-
crease the attenuation (e.g.,Lenschow and Raupach, 1991),
which suggests that the present attenuation model for sorp-
tion/desorption at the tube wall (Eqs.9 and26) may need to
be calibrated against spectra of trace gases on a site specific
basis. (Note this is basically howMassman(1991)’s original
model is often used for passive tracers, except, of course, that
for his modelG1≡0.)

This suggests replacing31W above with a more conve-
nient expression, such as,

31W = G0 + G1h̃ el∗h̃ (27)

which follows from Equation (26) by assuming that the tube
Reynolds number,Re, is a fixed parameter or characteristic
of any given installation. Unfortunately there remains the
(previously mentioned) possibility that temperature and other
effects may cause temporal variations inRe and, therefore,
in G0 andG1 (Eq.27). Such variation in the parameters can
be observed or deduced from variations in the attenuation of
spectra of trace gases obtained with a closed-path system.

At the beginning of this paper we suggested that our mod-
eling efforts might prove insightful for measuring isotope

Fig. 4. Transfer function attenuation coefficients31W for water va-
por modeled with the wall boundary condition (Eq.25), modeled by
its analytical approximation (Eq.26), and a summary of some ex-
perimental observations of the attenuation coefficient for water va-
por fluctuations fromLenschow and Raupach(1991) as determined
by Massman(1991).

fluxes with closed-path systems. Although it is possible to
simply employ Eqs. (9) and (26) or (27) to describe tube
flow attenuation of isotopes, this may not be the best way to
model the isotopic fractionation effects of wall sorption for
(at least) three reasons. First, a much better approach would
employ laminar tube flow (Re≤2000, approximately), which
maximizes the fractionation effects (as opposed to turbulent
flow, which will minimize these effects) because transport by
molecular diffusivity is much more discriminating than tur-
bulent diffusion. But in the case of laminar tube flow the
transfer function for describing high frequency attenuation
is not same as that suggested by Eq. (9) (e.g., see the case
��1 discussed byBarton, 1983; Stokes and Barton, 1990).
Second, the present model does not necessarily capture the
Schmidt number dependency very well. In the preceeding
section we proposed thatG1∼Sc−1/2 primarily for conve-
nience, whereas there is no a priori justification for assuming
that the exponent is –1/2. Finally, the wall boundary con-
dition should not be taken as fully satisfactory or final, so
other formulations and models need to be explored and de-
veloped. Given these (three) concerns, we suggest that the
insights gained from the present study be used in a separate
study of laminar tube flow and boundary conditions to ad-
dress the issue of fractionation of isotopes of water vapor by
wall sorption. Furthermore, any observational study of iso-
topic fractionation would likely result in some significant in-
sights into the physics of wall sorption and the wall boundary
condition.
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6 Conclusions

This study takes a fresh look at the attenuation of fluctua-
tions of scalars in turbulent flow inside sampling tubes. We
re-examine some old results for passive scalars and propose a
new physically-based formulation to describe the attenuation
of water vapor fluctuations for use with closed-path eddy co-
variance systems. The fact that bothTaylor (1954)’s model
and the present eigenvalue model, (Eq.3 plus the new formu-
lations for the turbulent diffusivityD(ρ)) yield very similar
results for the first order attenuation coefficient31 tends to
support the notion that the physical basis of each model is
reasonably correct. The benefit of the eigenvalue model is
that it provides for more detail about radial diffusion and the
effects of the momentum boundary layer on the both31 and
the second order attenuation coefficient32. Nevertheless,
neither of these two models, nor the separation-of-variables
model (which predicted much less attenuation than the other
two models), was successful at explaining the attenuation of
water vapor fluctuations observed byLenschow and Rau-
pach(1991). This leads to the conclusion that water vapor
is not a passive scalar and that sorption/desorption of wa-
ter vapor must have been occuring at the tube walls during
the experiments ofLenschow and Raupach(1991). On the
other hand, perhaps this conclusion should not be surpris-
ing given recent observations that the attenuation of water
vapor fluctuations in sampling tubes are strongly and non-
linearly dependent upon humidity (e.g.,Clement, 2004; Am-
man et al., 2006; Ibrom et al., 2007). Beginning with the

Hertz-Knudsen-Schrage equation (e.g.,Marek and Straub,
2001), this study takes a step-by-step approach to formulat-
ing a flux boundary condition at the tube wall that describes
the sorption/desorption of molecules at the wall surface in
turbulent tube flow. The boundary condition is formulated
in accordance with the observed non-linear dependency on
humidity. Although the sorption/desorption model did cap-
ture the humidity effects and did predict greater attenuation
than the passive scalar model, it still did not fully describe
the results ofLenschow and Raupach(1991)! The most im-
mediate cause of failure of this model (or of the boundary
condition) is that the (often-studied, well-known) turbulent
boundary layer resistance to mass transfer suggests that the
attenuation should increase with Reynolds number, which is
contrary toLenschow and Raupach(1991). Empirical adjust-
ments to the boundary condition did improve the model and
did capture the data ofLenschow and Raupach(1991). In
turn this allowed the derivation of a single analytical expres-
sion of the attenuation of coefficient31 that also captured
the Reynolds number dependency ofLenschow and Raupach
(1991), as well as the humidity dependency ofIbrom et al.
(2007). We hypothesized that the sorption/desorption fluxes,
or more specifically the number of sorption/desorption sites
at the tube wall, could be dependent upon the Reynolds num-
ber in a way that can account for the data ofLenschow and
Raupach(1991). But, the physical basis for such a phe-
nomenon is unknown (at least to the authors).

Atmos. Chem. Phys., 8, 6245–6259, 2008 www.atmos-chem-phys.net/8/6245/2008/



W. J. Massman and A. Ibrom: Trace gas fluctuations in turbulent tube flow 6257

List of symbols

a = tube radius
hC = dimensionless wall turbulent transfer coefficient
h(ω) = complex-valued tube transfer function
hphase(ω) = phase shift transfer function
h̃ = mean atmospheric relative humidity
l∗ = adjustable empirical coefficient for wall sorption
r = tube radial coordinate
t = time
u∗ = wall friction velocity
x = tube longitudinal coordinate
A = parameter for van Driest form of turbulent diffusivity
B = parameter for Reichardt form of turbulent diffusivity
C = C(r, x, t) = solute mass concentration
C = C(x, t) = cross-sectionally averaged concentration
Ĉλ(ρ) = eigenfunction form of solute mass concentration
Ĉn(ρ) = harmonic decomposition of̂Cλ(ρ)

Csat = saturation value ofC, a function of temperature
C′(0) = {dC/dρ}ρ=0 = derivative ofC(ρ) at the tube wall
D(r) andD(ρ) = radial profile of turbulent diffusivity
D(1) = turbulent diffusivity at the tube centerline
D = cross-sectionally averaged turbulent diffusivity
E(ρ) = dimensionless Reichardt’s turbulent diffusivity
F(ρ) = dimensionless auxiliary variable, related toD(ρ)

FC = adsorption/desorption flux of solute at the tube wall
G(ρ) = dimensionless velocity profile for turbulent tube flow
GD(ρ) = normalized turbulent diffusivity profile
GU (ρ) = normalized velocity profile
G0; G1 = adjustable empirical coefficients
H(ω) = transfer function for attenuation of fluctuations
K = au∗/ν = Karman number
Kc = wall condensation (adsorption) coefficient
Ke = wall evaporation (desorption) coefficient
L = tube length
M = molecular mass
R = universal gas constant
Re = 2aU/ν = tube flow Reynolds number
Sc = Schmidt number
T = temperature (degrees Kelvin)
U(r) andU(ρ) = radial profile of flow velocity
U = cross-sectionally averaged turbulent tube flow velocity
V (ρ) = van Driest function: Reynolds stress near tube wall
γ = flow related parameter = 4D2(1)ν−2Re−2

γ1 = adjustable empirical coefficient
γ∗ = adjustable empirical coefficient, related toγ1
κb = dimensionless wall boundary layer conductance
κs = dimensionless wall adsorption/desorption conductance
λ = eigenvalue; see Eq. (2)
ν = molecular viscosity of air
νT (ρ) = turbulent viscosity for tube flow
ρ = (1 − r/a) = dimensionless radial (or wall) coordinate
ω = frequency [radians s−1]
1D = model parameter defined byD(1)/ν=Re7/81D

2c = relative measure of tube wall condensation sites
2e = relative measure of evaporation sites on tube wall
31; 32 = attenuation coefficients, related toλ

31T ; 32T = attenuation coefficients for Taylor’s model
� = dimensionless frequency =a2ω/D(1)

�T = dimensionless frequency for Taylor’s model
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