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Received: 11 April 2008 – Published in Atmos. Chem. Phys. Discuss.: 6 June 2008
Revised: 27 August 2008 – Accepted: 27 August 2008 – Published: 29 September 2008

Abstract. A set of performance metrics is applied to
stratospheric-resolving chemistry-climate models (CCMs) to
quantify their ability to reproduce key processes relevant
for stratospheric ozone. The same metrics are used to as-
sign a quantitative measure of performance (“grade”) to
each model-observations comparison shown inEyring et al.
(2006). A wide range of grades is obtained, both for differ-
ent diagnostics applied to a single model and for the same
diagnostic applied to different models, highlighting the wide
range in ability of the CCMs to simulate key processes in
the stratosphere. No model scores high or low on all tests,
but differences in the performance of models can be seen,
especially for processes that are mainly determined by trans-
port where several models get low grades on multiple tests.
The grades are used to assign relative weights to the CCM
projections of 21st century total ozone. For the diagnos-
tics used here there are generally only small differences be-
tween weighted and unweighted multi-model mean and vari-
ances of total ozone projections. This study raises several
issues with the grading and weighting of CCMs that need
further examination. However, it does provide a framework
and benchmarks that will enable quantification of model im-
provements and assignment of relative weights to the model
projections.

1 Introduction

There is considerable interest in how stratospheric ozone will
evolve through the 21st century, and in particular how ozone
will recover as the atmospheric abundance of halogens con-
tinues to decrease. This ozone recovery is likely to be influ-
enced by changes in climate, and to correctly simulate the
evolution of stratospheric ozone it is necessary to use mod-
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els that include coupling between chemistry and climate pro-
cesses. Many such Chemistry-Climate Models (CCMs) have
been developed, and simulations using these models played
an important role in the latest international assessment of
stratospheric ozone (WMO, 2007).

Given the importance of CCM simulations there is a need
for process-oriented evaluation of the CCMs. A set of core
processes relevant for stratospheric ozone, with each pro-
cess associated with one or more model diagnostics and with
relevant datasets that can be used for validation, has been
defined by the Chemistry-Climate Model Validation Activ-
ity (CCMVal) for WCRP’s (World Climate Research Pro-
gramme) SPARC (Stratospheric Processes and their Role
in Climate) project (Eyring et al., 2005). Previous studies
have performed observationally-based evaluation of CCMs
(e.g., Austin et al., 2003; Eyring et al., 2006) using a sub-
set of these key processes. However, although these stud-
ies compared simulated and observed fields they did not as-
sign quantitative metrics of performance (“grades”) to these
observationally-based diagnostic tests.

Assigning grades to a range of diagnostics has several po-
tential benefits that will also improve the input of the CCM
community to international assessments. For example, it will

– Allow easy visualization of the model’s performance for
multiple aspects of the simulations.

– Allow, in the case of a systematic bias for all models,
identification of missing or falsely modeled processes.

– Enable a quantitative assessment of model improve-
ments, both for different versions of individual CCMs
and for different generations of community-wide col-
lections of models used in international assessments.

– Make it possible to explore the value of weighting the
predictions by models based on their abilities to repro-
duce key processes, and to form a best estimate plus
uncertainties that takes into account these differing abil-
ities.
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In this paper we perform a quantitative evaluation of the
ability of CCMs to reproduce key processes for stratospheric
ozone. Our starting point is the recent study byEyring et al.
(2006) (hereinafter “E06”) who evaluated processes impor-
tant for stratospheric ozone in thirteen CCMs. We con-
sider the same CCMs, diagnostics, and observational datasets
shown in E06. This has the advantage that the model simula-
tions, diagnostics, and graphical comparisons between mod-
els and observations have already been presented and don’t
need to be repeated here. We focus on the diagnostics of
processes shown in E06 rather than diagnostics of past and
present ozone, as such diagnostics might be a better predic-
tor of a models ability to make reliable projections. We fur-
ther simplify our approach by using the same metric to quan-
tify model-observations differences for all diagnostics. This
quantification of each CCM’s ability to reproduce key obser-
vations and processes is then used to weight ozone projec-
tions for the 21st century from the same CCMs, which were
analyzed inEyring et al.(2007) (hereinafter “E07”).

Several previous studies have performed similar quantita-
tive evaluation of atmospheric models, although not strato-
spheric CCMs. For example, Douglass et al. (1999) and
Strahan and Douglass (2004) performed a quantitative eval-
uation of stratospheric simulations from an off-line three-
dimensional chemical transport model (CTM). In these two
studies they assigned grades to multiple diagnostics to assess
simulations driven by different meteorological fields. Brun-
ner et al. (2003) compared model simulations of tropospheric
trace gases with observations. In contrast to the compari-
son of climatological fields considered here, they focused on
model-observations comparisons at the same time and loca-
tion as the measurements. This is possible for CTMs driven
by assimilated meteorological fields, but not for CCMs.
More recently, several studies have performed quantitative
evaluations of coupled ocean-atmosphere climate models,
and formed a single performance index that combines the er-
rors in simulating the climatological mean values of many
different variables (e.g.,Schmittner et al., 2005, Connolley
and Bracegirdle, 2007, Reichler and Kim, 2008). Our ap-
proach draws on several features of the above studies. Sev-
eral of the diagnostics considered here were considered in
Douglass et al. (1999) and Strahan and Douglass (2004), and,
in a similar manner toSchmittner et al.(2005), Connolley
and Bracegirdle(2007), Reichler and Kim(2008) andGleck-
ler et al.(2008), we form a single performance index for each
model.

The methods used to evaluate the models and weight their
projections are described in the next section. The models and
diagnostics considered are then described in Sect. 3. Results
are presented in Sect. 4, and conclusions and future work
discussed in the final section.

2 Method

2.1 General framework

The general framework used in this paper to evaluate the
models and weight their predictions involves the following
steps.

1. A suite of observationally-based diagnostic tests are ap-
plied to each model.

2. A quantitative metric of performance (grade) is assigned
to the application of each observations-model compari-
son (diagnostic) to each model, i.e.,gjk is the grade of
thej -th diagnostic applied to thek-th model.

3. Next, the grades for each diagnostic are combined to-
gether to form a single performance index for each
model, i.e., the single index of modelk is

ḡk=
1

W

N∑
j=1

wjgjk (1)

whereW=
∑N

j=1 wj , N is the number of diagnostics,
andwj is the weight (importance) assigned to each di-
agnostic. If all diagnostics have equal importance then
wj is the same for allj .

4. Finally, the model scores are used to weight the predic-
tions of a given quantityX from M models, i.e.

µ̂X=
1∑
ḡk

M∑
k=1

ḡkXk. (2)

If ḡk are the same for all models then this reduces to the
normal multi-model meanµX. The model scores can
also be used to form a weighted variance:

σ̂ 2
X=

∑
ḡk

(
∑

ḡk)2−
∑

ḡ2
k

M∑
k=1

ḡk(Xk − µ̂X)2. (3)

Again, if ḡk is the same for all models then this reduces
to the normal multi-model varianceσ 2

X.

If the focus is solely on assessing model performance then
only steps 1 and 2 are required. However, if an overall model
grade and weighted mean projections are required steps 3 and
4 are also needed.

The above framework is not fully objective as several sub-
jective choices need to be made to apply it. For example,
decisions need to be made on the diagnostics to apply, the
observations to be used, the grading metric to be used, and
the relative importance of the different diagnostics for pre-
dictions of quantity X. These issues are discussed below (see
also discussion inConnolley and Bracegirdle, 2007).
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2.2 Grading metric

To implement the above framework a grading metric needs to
be chosen. Several different metrics have been used in previ-
ous model-observation comparisons. For example, Reichler
and Kim (2008) used the squared difference between model
and observed climatological mean values divided by the ob-
served variance, whereas Gleckler et al. (2008) focus on the
root mean squared difference between the model and ob-
served climatological mean values. In this study we wish
to use a grading metric that can be applied to all diagnos-
tics, and can easily be interpreted and compared between
tests. We choose the simple diagnostic used by Douglass et
al. (1999)

g=1−
1

ng

|µmodel−µobs|

σobs
(4)

whereµmodel is the mean of a given field from the model,
µobs is the corresponding quantity from observations,σobs is
a measure of the uncertainty in the observations (see Sect. 3
for further discussion), andng is a scaling factor. Ifg=1 the
simulated climatological mean matches the observations, and
smallerg corresponds to a larger difference between model
and observations. Ifg<0 then the model-observations dif-
ference is greater thanng timesσ . In our analysis we use,
as in Douglass et al. (1999),ng=3, for which g=0 if the
model mean is 3σ from the observed climatological mean
value. We reset negative values ofg to zero, sog is al-
ways non-negative. As with the metrics used by Reichler and
Kim (2008) and Gleckler et al. (2008), the metricg provides
a measure of the difference in model and observed climato-
logical means.

There are several other possible metrics. One is the statis-
tic t used in the standard t-test (Wilks, 1995):

t=
µmodel−µobs

σT

√
1

nmodel
+

1
nobs

, (5)

where

σ 2
T=

(nmodel− 1)σ 2
model+(nobs− 1)σ 2

obs

(nmodel+nobs−2)
.

Unlike the metricg, or the above metrics, thet-statistic in-
volves the variance in both the observations and models. The
t-statistic has the advantage over the metric (4) in that there is
a standard procedure to determine the statistical significance
of the differences between models and observations from it.
However, the value oft depends on the number of elements
in the data sets, and it is not as easy to comparet from differ-
ent tests that use datasets with a different number of elements
as for the metricg. Also, most importantly it cannot be ap-
plied to all our diagnostics as some lack long enough data
records for calculation of variance in the observations.

There is in fact a close relationship betweeng andt , and
the statistical significance of the model-observations differ-
ence can be estimated from the value ofg. To see this con-
sider the idealized case where the models and observations

have the same number of data elements and also the same
standard deviations. Then from Eqs. (4) and (5) we have

t=

√
n

2
ng(1−g), (6)

wheren=nmodel=nobs. This relationship holds only in the
above special case, but as shown in Sect. 4.2 it is a good
approximation for (at least some of) the more general cases
considered here.

Given Eq. (6) we can estimate the value oft , and hence
the statistical significance of the model-observations differ-
ence, from the gradeg. For example, a model is statistically
different from the observations at thep% confidence level

if g<g∗, whereg∗
= 1−

√
2
n

tp
ng

and tp is the critical value
for the two-sidedt test with 2n − 2 degrees of freedom. For
ng=3 andp = 5%, this yieldsg∗

=0.70 andg∗
=0.78 for

n=11 andn=20 (the cases shown in Fig. 6 below), respec-
tively. So assuming decadal or longer datasets a value of
g<0.7 indicates the difference between model and data are
statistically significant (at 5% level).

The above relationship can also be used to estimate where
the grades from two models are statistically different. As we
have assumedn andσ are the same for all models and the
observations, it can be shown that the grades from two mod-
els are statistically different if the difference in their grades
exceeds 1−g∗ (i.e., significant at the 5% level if the grades
differ by 0.3 and 0.22 forn=11 and 20, respectively).

The above values are exact only in the idealized case of
equal standard deviations, but provide useful estimates of the
significance of differences ing.

In the metric (4) the errors for different diagnostics are nor-
malized by the uncertainty in the observations. This means
that the mean grade over all models for each diagnostic will
vary if the models overall are better/poorer at simulating a
particular process or field. Also, some quantities may be
more tightly constrained by observations than others, and this
can be captured (by variations inσobs) by the metric (4). A
different approach was used by Reichler and Kim (2008) and
Gleckler et al. (2008), who normalized the error by the “typi-
cal” model error for each quantity. This approach means that
the average grade over all models will be roughly the same
for all diagnostics (around zero).

In summary, we use the metric (4) in our analysis because
it is simple, can be applied to all the diagnostic tests, is easy
to interpret, and can easily be compared between tests. Also,
as shown above the statistical significance can be estimated
from it.

One limitation with any metric, and in fact any compari-
son between models and observations, is uncertainties in the
observations (and in particular, unknown biases in the obser-
vations). If the observations used are biased, then an unbi-
ased model that reproduces the real atmosphere may get a
low grade, while a model that is biased may get a high grade.
The potential of a bias in the observational dataset used can
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Table 1. CCMs used in this study. The models discussed in this
paper are numbered alphabetically.

Name Reference

AMTRAC Austin et al. (2006)
CCSRNIES Akiyoshi et al. (2004)
CMAM Fomichev et al. (2007)
E39C Dameris et al. (2005)
GEOSCCM Pawson et al. (2008)
LMDZrepro Lott et al. (2005)
MAECHAM4CHEM Steil et al. (2003)
MRI Shibata and Deushi (2005)
SOCOL Egorova et al. (2005)
ULAQ Pitari et al. (2002)
UMETRAC Austin (2002)
UMSLIMCAT Tian and Chipperfield (2005)
WACCM Garcia et al. (2007)

be assessed for diagnostics where there are several sources of
data, and we consider several such cases in Sect. 4.2 below.
However, for most diagnostics considered here multiple data
sets are not available.

3 Models and diagnostics

As discussed in the Introduction we consider the CCM simu-
lations, diagnostics, and observations that were evaluated in
E06. The thirteen models considered are listed in Table1,
and further details are given in E06 and the listed reference
for each model.

The simulations considered in the E06 model evaluation,
and used here to form model grades, are transient simulations
of the last decades of the 20th century. The specifications of
the simulations follow, or are similar to, the “reference simu-
lation 1” (“REF1”) of CCMVal, and include observed natural
and anthropogenic forcings based on changes in sea surface
temperatures (SSTs), sea ice concentrations (SICs), surface
concentrations of well-mixed greenhouse gases (GHGs) and
halogens, solar variability, and aerosols from major volcanic
eruptions. The simulations considered in E07 are projections
of the 21st century (“REF2” simulation), in which the In-
tergovernmental Panel on Climate Change (IPCC) Special
Report on Emission Scenarios (SRES) A1B GHG scenario
and the WMO (2003) Ab surface halogens scenario are pre-
scribed. SSTs and SICs in REF2 are taken from coupled
atmosphere-ocean model projections using the same GHG
scenario.

The diagnostic tests applied to the past CCM simulations
are listed in Table2. Each diagnostic is based on a model-
observations comparison shown in E06, and the figures in
E06 showing the comparison are listed in Table2. The ex-
ception is the middle latitude Cly test where the comparison
is shown in E07, and also in Fig.1 below. Note that E06 also

compared the simulated ozone with observations, but we do
not include these comparisons here. We focus on diagnos-
tics of processes rather than diagnostics of past and present
ozone, as such diagnostics might be a better predictor of a
model’s ability to make reliable projections.

Many other diagnostic tests could be used in this analysis,
such as those defined in Table 2 of Eyring et al. (2005). How-
ever, for this study we focus on a relatively small number of
diagnostics that have already been applied. These diagnos-
tics were chosen by E06 as they test processes that are key
for simulating stratospheric ozone. In particular, the diag-
nostics were selected to assess how well models reproduce
a) polar dynamics, b) stratospheric transport, and c) water
vapor distribution. Correctly simulating polar ozone deple-
tion (and recovery) requires the dynamics of polar regions,
and in particular polar temperatures, to be correctly simu-
lated. Assessing the reality of these aspects of the CCMs
is thus an important component of a model assessment. An-
other important aspect for simulating ozone is realistic strato-
spheric transport. Of particular importance is simulating the
integrated transport time scales (e.g. mean age), which plays
a key role in determining the distributions of Cly and inor-
ganic bromine (Bry). Changes in water vapor can have an
impact on ozone through radiative changes, changes in HOx,
or changes in formation of polar stratospheric clouds (PSCs),
and it is therefore also important to assess how well models
simulate the water vapor distribution.

Although the model-observations comparisons have al-
ready been presented further decisions still need to be made
to quantify these comparisons. For example, choices need
to be made on the region and season to be used in the grad-
ing metric (4). This choice will depend on the process to be
examined as well as the availability of observations.

Another important issue in the calculation of the grade is
the assignment ofσobs. For some quantities there are multi-
year observations and an interannual standard deviation can
be calculated, and in these cases we use this in metric (4). For
other quantities these observations do not exist and an esti-
mate of the uncertainty in the quantity is used asσobs. This
is not very satisfying, and it would be much better if in all
casesσobs included both measurement uncertainty and vari-
ability. Even if estimates of different measurements uncer-
tainties and the variability are available, combining these to
form a single uncertainty estimate is not straightforward, and
should be examined in future studies. Note, however, that
σobs does not impact the ranking of models for a particular
test, it only impacts comparisons of the grades for different
tests.

The regions, seasons, and observations used for each diag-
nostic are listed in Table2 and are described in more detail
below.

– For the polar temperature diagnostic we focus on the
lower stratosphere during winter and spring, as these
temperatures are particularly important for modeling
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Table 2. Diagnostic tests used in this study.

Short Name Diagnostic Quantity Observations Fig. E06

Temp-SP South Polar Temperatures SON, 60◦
−90◦ S, 30–50 hPa ERA-40 1

Temp-NP North Polar Temperatures DJF, 60◦
−90◦ N, 30–50 hPa ERA-40 1

U-SP Transition to Easterlies U, 20 hPa, 60◦ S ERA-40 2
HFlux-SH SH Eddy Heat Flux JA, 40◦ −80◦ S, 100 hPa ERA-40 3
HFlux-NH NH Eddy Heat Flux JF, 40◦ −80◦ N, 100 hPa ERA-40 3
Temp-Trop Tropical Tropopause Temp. T, 100 hPa, EQ ERA-40 7a
H2O-Trop Entry Water Vapor H2O, 100 hPa, EQ HALOE 7b
CH4-Subt Subtropical Tracer Gradients CH4, 50 hPa, 0–30◦ N/S, Mar/Oct HALOE 5
CH4-SP Polar Transport CH4, 30/50 hPa, 80◦ S, Oct HALOE 5
CH4-EQ Tropical Transport CH4, 30/50 hPa, 10◦ S–10◦ N, Mar HALOE 5
Tape-R H2O Tape Recorder Amplitude Amplitude Attenuation R HALOE 9
Tape-c H2O Tape Recorder Phase Speed Phase Speed c HALOE 9
Age-50 hPa Middle Stratospheric Age 10 hPa , 10◦ S-10◦ N and 35◦ −55◦ N CO2 and SF6 10
Age-10 hPa Lower Stratospheric Age 50 hPa , 10◦ S-10◦ N and 35◦ −55◦ N ER2 CO2 10
Cly-SP Polar Cly 80◦ S, 50 hPa , Oct UARS HCl 12
Cly-Mid Mid-latitude Cly 30◦

−60◦ N, 50 hPa , Annual mean multiple −
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Fig. 1. Times series of (a) annual-mean, 35◦- 60◦N, and (b) October-mean, 80◦S Cly at 50 hPa from CCM simulations (curves) and
observations (symbols plus vertical bars). See Table 1 for model names.
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Fig. 1. Times series of(a) annual-mean, 35◦–60◦ N, and (b) October-mean, 80◦ S Cly at 50 hPa from CCM simulations (curves) and
observations (symbols plus vertical bars). See Table 1 for model names.

polar ozone depletion. Specifically we consider polar
average (60–90◦ N or S) temperatures averaged over 50
to 30 hPa and January to March (60–90◦ N) or Septem-
ber to November (for 60–90◦ S). These tests will be re-
ferred to as “Temp-NP” and “Temp-SP”, respectively.
Climatological mean and interannual standard deviation
of ERA-40 reanalyses (Uppala et al., 2005) for 1980–
1999 are used for the observations in metric (4), and the

same period is used to calculate the model climatology.
The biases of the models relative to ERA-40 reanalyses
are shown in Fig. 1 of E06.

– The transition to easterlies diagnostic (“U-SP”) mea-
sures the timing of the break down of the Antarctic po-
lar vortices in the CCMs. It is based on Fig. 2 of E06,
which shows the timing of the transition from westerlies

www.atmos-chem-phys.net/8/5699/2008/ Atmos. Chem. Phys., 8, 5699–5713, 2008
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to easterlies for zonal-mean zonal winds at 60◦ S. The
grade is determined using the date for the transition at
20 hPa, and climatological ERA-40 reanalysis for the
observations.

– The vertical propagation of planetary waves into the
stratosphere plays a significant role in determining po-
lar temperatures during winter and spring (Newman et
al., 2001). This wave forcing can be diagnosed with the
mid-latitude 100 hPa eddy heat flux for the regions and
periods shown in Fig. 3 of E06: 40◦–80◦ N for January–
February (“HFlux-NH”), or 40◦–80◦ S for July–August
(“HFlux-SH”). This is only one aspect of the infor-
mation shown in this figure, and grades could also
be based, for example, on the slope of the heat flux–
temperature relationship.

– The tropical tropopause temperature diagnostic
(“Temp-Trop”) is based on the tropical temperature at
100 hPa, shown in Fig. 7a of E06. For this diagnostic
Eq. (4) is applied for each month separately, using
ERA-40 climatological mean and interannual standard
deviation for the observations, and then the average
of these 12 values is used as the single grade for this
diagnostic.

– The entry water vapor diagnostic (“H2O-Trop”) is based
on the tropical water vapor at 100 hPa, see Fig. 7b of
E06. As for the tropical tropopause temperature diag-
nostic Eq. (4) is applied for each month separately, this
time using HALOE climatological mean and interan-
nual standard deviation for the observations (Grooß and
Russell, 2005), and the average of these 12 values is
used as the single grade. The model climatology is for
1990–1999, whereas the HALOE observations are for
1991–2002.

– Three diagnostics that are mainly determined by trans-
port are based on comparisons of the simulated and ob-
served methane (CH4) distributions, see Fig. 5 of E06.
We focus on the lower stratosphere, and use these di-
agnostics to assess the lower stratospheric transport in
the tropics and polar regions. As CH4 at the tropi-
cal tropopause (100 hPa) is very similar in all models
and observations we use the tropical (10◦ S–10◦ N) av-
eraged values between 30 and 50 hPa to quantify dif-
ferences in transport in the tropical lower stratosphere
(“CH4-EQ”). Similarly, we use October CH4 at 80◦ S
averaged values between 30 and 50 hPa to quantify dif-
ferences in transport in the Antarctic lower stratosphere
(“CH4-SP”). Note there is limited coverage by HALOE
in southern polar regions leading to increased uncer-
tainty in the observed climatological mean values. The
coverage is even worse at 80◦ N in winter-spring, even
if equivalent latitude is used, which is why we do not in-
clude a diagnostic for 80◦ N. To test subtropical merid-

ional gradients we use the difference in 50 hPa CH4 be-
tween 0◦ N and 30◦ N, for March and between 0◦ N and
30◦ S for October (“CH4-Subt”). A grade is determined
for each month separately, and then averaged together
to form a single grade for subtropical gradients.

– Diagnostics of the water vapor tape recorder (Mote et
al., 1996) test the ability of models to reproduce the
amplitude and phase propagation of the annual cycle
in tropical water vapor, which in turn tests the model’s
tropical transport. As in Hall et al. (1999), we use the
phase speedc (“Tape-c”) and attenuation of the ampli-
tudeR (“Tape-R”) to quantify the ability of the models
to reproduce the observed propagation of the H2O an-
nual cycle. The attenuationR=H/λ, whereλ=c×1 yr
is the vertical wavelength andH is the attenuation scale
height of the amplitude,A= exp(−z/H). The values
of c (R) are determined from linear (exponential) fits
to the simulated phase lag (relative amplitude) from the
level of maximum amplitude to 10 km above this level,
and compared with similar calculations using HALOE
observations (see Fig. 9 of E06).

– The mean age diagnostics are based on comparisons of
the simulated with observed mean age at 50 hPa and
10 hPa shown in Fig. 10 of E06. The mean age is an
integrated measure of the transport in the stratosphere,
and together with tape recorder diagnostics place a strin-
gent test on models transport (e.g. Waugh and Hall,
2002). At each pressure level Eq. (4) is applied sepa-
rately for the tropics (10◦ S–10◦ N) and northern mid-
latitudes (35◦ N–55◦ N), and then the average of these
2 values is used as the single grade for each pressure
level (“Age-10 hPa” and “Age-50 hPa ”). Balloon ob-
servations are used for mean values and uncertainty at
10 hPa (see symbols in Fig. 10b of E06), whereas ER2
observations are used for 50 hPa (Fig. 10c of E06).

– The Cly diagnostics are based on comparisons with
the observed lower stratospheric (50 hPa) Cly shown
in Fig. 12 of E06 and Fig. 1 of E07, and repeated in
Fig. 1. We calculate grades separately for spring in
the southern polar region (80◦ S, October; “Cly-SP”)
and for annual-mean values in northern mid-latitudes
(30◦

−60◦ N; “Cly-Mid”). The observed mean values
and uncertainties used are the same as shown in Fig.1.
As the REF1 simulation in some models stops at the
end of 1999, only observations in the 1990s are used in
calculating the grade.

4 Results

4.1 Model grades

The diagnostic tests listed in Table 2 have been applied to
the thirteen CCMs listed in Table 1 and gradesg determined
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Fig. 2. Matrix displaying the grades (see color bar) for application of each diagnostic test to each CCM. Each row shows a different test, and
each column a CCM. The right most column is the “mean model”. A cross indicates that this test could not be applied, because the required
output was not available from that model. See Table 1 for model names.
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Fig. 2. Matrix displaying the grades (see color bar) for application of each diagnostic test to each CCM. Each row shows a different test, and
each column a CCM. The right most column is the “mean model”. A cross indicates that this test could not be applied, because the required
output was not available from that model. See Table 1 for model names.

using metric (4). We also calculate the grade for the “mean
model”, i.e., the mean over all models is calculated for the
various quantities listed in Table 2, and then a grade is calcu-
lated using this mean value in the metric (4).

We consider first, as an example, the grades of the Cly
tests. Figure1 shows the time series of mid-latitude and po-
lar Cly at 50 hPa from the 13 models, together with observa-
tions and the mean of the models. As discussed in E06 there
is a large spread in the modeled Cly, and some large model-
observations differences. For polar Cly, models 1, 11, and
12 produce values close to the observations, and these mod-
els have grades around 0.9 forng=3 (see second to bottom
row in Fig. 2). However, most of the models produce polar
Cly much lower than observed, and several models are more
than 3σ from the mean observations and have a grade of 0
(as noted above, values ofg less than zero are reset to zero).
Models 4 and 9 are in fact more than 5σ from the mean ob-
servations. For mid-latitude Cly the model-observations dif-
ferences are not as large as for polar Cly. Several models
are withinσ of the mean value (and haveg>0.66) and only
one model (model 4) is 3σ away from the mean value. Note
the model 8 has a high grade for mid-latitude Cly because it
agrees with observations before 2000, but Fig.1 shows that
the Cly in this model continues to increase and deviates from

observations after 2000. If these later measurements were
used the grade for this model would be much lower.

We now consider the grades for all diagnostics. The re-
sults of the application of each test to each model are shown
in Fig. 2. In this matrix (“portrait” diagram) the shading of
each element indicates the grade for application of a particu-
lar diagnostic to a particular model (a cross indicates that this
test could not be applied, because the required output was not
available from that model). Each row corresponds to a differ-
ent diagnostic test (e.g. bottom two rows showg for the two
Cly tests), and each column corresponds to a different model.
The grades for the “mean model” are shown in the right-most
column.

Figure2 shows that there is a wide range of grades, with
many cases withg≈0 and also many cases withg>0.8. As
discussed in Sect. 2.2, model-data differences are significant
at the 5% level forg less than around 0.7 forn=10 (or less
than 0.8 forn=20). These large variations ing can occur for
different diagnostics applied to the same model (e.g., most
columns in Fig.2) or for the same diagnostic applied to dif-
ferent models (e.g., most rows in Fig.2). The wide range in
the ability of models to reproduce observations, with varia-
tions between models and between different diagnostics, can
be seen in the figures in E06.
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Fig. 3. Average grade over all models for each diagnostic test.

This analysis quantifies these differences and enables presen-
tation in a single figure.

The wide range of grades for all diagnostic tests shows that
there are no tests where all models perform well or all mod-
els perform poorly. However, the majority of models perform
well in simulating north polar temperatures and NH and SH
heat fluxes (mean grades over all models are larger than 0.7),
and, to a lesser degree, mid-latitude age (mean grade greater
than 0.6), see Fig.3. At the other extreme the majority of
models perform poorly for the Tropical Tropopause Temper-
ature, Entry Water Vapor, and Polar CH4 tests (mean grades
less than or around 0.2). Note that caution should be ap-
plied when comparing grades from different diagnostics asg

is sensitive to the choice ofσ , e.g., use of a smallerσ in a test
results in lower grades, and some of the variations between
diagnostics could be due to differences in the assignedσ .

Figure 2 also shows that there are no models that score
high on all tests or score low on all tests. However, differ-
ences in the performance of models can be seen and quanti-
fied. For example, several models get low grades on multiple
tests, i.e., models 4, 7, 8, and 9 haveg near zero for 4 or more
transport tests. The poorer performance of these models for
several of the transport diagnostics was highlighted in E06.

To further examine the difference in model performance
we compare a single performance index calculated from the
average grades (ḡk) for each model. This is shown in Fig.4a,
where the average grade is calculated assuming that all diag-
nostic tests are equally important (i.e.,wj=1 in Eq. 1). If a
grade is missing for a particular test and model (crosses in
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Fig. 4. Average grade for each model for(a) average over all di-
agnostic tests used in this study (see Table 2),(b) average only over
transport diagnostics, and(c) average only over polar dynamics di-
agnostics. Note, we have evaluated only a subset of key processes
important for stratospheric ozone.

Fig. 2) then this test is not included in the average for that
model. There is a large range in the average performance of
the models, withḡ varying from around 0.2 to around 0.7.
The value ofḡ changes withng but there is a very similar
variation between models and the ranking of models for dif-
ferentng. For example, usingng=5 results in a grade around
0.1 larger, for all diagnostics.

The average grade for a model can also be calculated sep-
arately for diagnostics that are mainly determined by trans-
port or polar dynamics diagnostics, see Fig.4b and c. The
tropical tropopause temperature and H2O diagnostics are not
included in either the polar dynamics or transport averages.
The range of model performance for the transport diagnos-
tics is larger than the performance for dynamics diagnostics,
with ḡ varying from around 0.1 to around 0.8. Figure4 also
shows that some models simulate the polar dynamics much
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better than the transport (e.g., models 4, 8, and 9) while the
reverse is true for others (e.g., models 6 and 13). Part of this
could be because the dynamics tests focus on polar dynamics,
whereas the majority of the transport diagnostics measure, or
are dependent, on tropical lower stratospheric transport.

It is of interest to compare the model average grades shown
in Fig. 4 with the segregation of models made by E07. In
the plots in E06 and E07 solid curves were used for fields
from around half the CCMs and dashed curves for the other
CCMs, and E07 stated that CCMs shown with solid curves
are those that are in general in good agreement with the
observations in the diagnostics considered byEyring et al.
(2006). In making this separation E06 put more emphasis
on the transport diagnostics than the temperature diagnos-
tics, with most weight on Cly comparisons. As a result the
separation used in the E06 and E07 papers is not visible in
the mean grades over all diagnostics but can be seen in the
average of the transport grades. The models shown as solid
curves in E06 and E07 (models 2, 3, 5, 6, 12, and 13) all have
high average transport grades, while nearly all those shown
with dashed curves have low average transport grades. The
exceptions are models 1 and 11 which were shown as dashed
curves in E06 and E07 but whose average transport grades
in Fig. 4 are high. The reasons for this difference is, as
mentioned above, that E06 put high weight on the compar-
isons with Cly. Models 1 and 11 significantly overestimate
the mid-latitude Cly and have a very low score for the mid-
latitude Cly test (Fig.2).

Another interesting comparison is between the grades of
individual models and that of the “mean model”. Analy-
sis of coupled atmosphere-ocean climate models has shown
that the “mean model” generally scores better than all other
models (e.g. Gleckler et al., 2008). This is not however the
case for the CCMs examined here (see right most column of
Fig. 2). For some of the diagnostics the grade of the mean
model is larger than or around the grade of the best individ-
ual model, e.g., the NH polar temperatures, heat flux, 10 hPa
mean age, and mid-latitude Cly diagnostics (see right most
column in Fig.2). However, for most diagnostics the grade
for the mean model is smaller than that of some of the in-
dividual models, with a large difference for the transition to
easterlies, south polar CH4, tape recorder attenuation, and
polar Cly diagnostics. In these latter diagnostics there is sig-
nificant bias in most, but not all, of the models, and this bias
dominates the calculation of the mean of the models and the
grade of the mean model is less than 0.3. But for each of
these diagnostics there is at least one model that performs
well (e.g.,g around or greater than 0.8), and has a higher
grade than the mean model. The contrast between a diag-
nostic where the grade for the mean model is higher than
or around the best individual models and a diagnostic where
the grade for the mean model is lower than many individual
models can be seen in Fig.1. In panel a the Cly for individ-
ual models is both above and below the observations, and the
mean of the models is very close to the observations (and has

a high grade). In contrast, in panel b most models underesti-
mate the observed Cly and the mean Cly is much lower than
the observations (and several models).

4.2 Sensitivity analysis

As discussed above several choices need to be made in this
analysis. A detailed examination of the sensitivity to these
choices is beyond the scope of this study. However, a limited
sensitivity analysis has been performed for some tests.

We first consider the sensitivity of the grades to the source
of the observations. We focus on diagnostics based on the
temperature field, as data are available from different mete-
orological centers. Fig.5 shows the grades for the a) Temp-
NP, b) Temp-SP, and c) Temp-Trop tests when different me-
teorological analyses are used for the observations. The
grades for Temp-NP (panel a) are not sensitive to whether
the ERA40, NCEP stratospheric analyses (Gelman et al.,
1996) or UK Met Office (UKMO) assimilated stratospheric
analyses (Swinbank and O’Neill, 1994) are used as the ob-
servations. This is because the climatological values from
the three analyses are very similar (within 0.2 K), and the
differences between analyses is much smaller than model-
observations differences (see Fig. 1 of E06). There is larger
sensitivity for Temp-SP (panel b) as there are larger differ-
ences between the analyses. However, the general ranking of
the models is similar which ever meteorological analyses are
used in the grading, i.e., models 1, 5 and 9 have high grades
and models 4, 6 and 7 have low grades for all 3 analyses.

The above insensitivity to data source does not, however,
hold for the Temp-Trop diagnostic. Here there are signif-
icant differences between the meteorological analyses, and
the model grades vary depending on which data source is
used. The climatological mean UKMO values are around 1
to 2 K warmer than those of ERA40, depending on the month
(see Fig. 7 of E06), and as a result very different grades are
calculated for some models, see Fig.5c. For models that are
colder than ERA40 lower grades are calculated if UKMO
temperatures are used in the metric (e.g., models 3, 5, 9,
12, and 13), whereas the reverse is true for models that are
warmer than ERA40 (models 4, 6, 7, 8 and 10).

The above sensitivity to meteorological analyses high-
lights the dependence of the grading, and any model-data
comparison, on the accuracy of the observations used. It is
therefore important to use the most accurate observations in
the model-data comparisons. With regard to the tempera-
ture datasets used above, intercomparisons and comparisons
with other datasets have shown that some biases exist in these
meteorological analyses. In particular, the UKMO analy-
ses have a 1–2 K warm bias at the tropical tropopause, and
the NCEP analyses have a 2–3 K warm bias at the tropical
tropopause and a 1–3 K warm bias in Antarctic lower strato-
sphere during winter-spring (Randel et al., 2004). Given
these biases, it is more appropriate to use, as we have, the
ERA40 analyses for the model grading.
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Fig. 5. Comparison of model grades for the(a) Temp-NP,(b) Temp-
SP, and(c) Temp-Trop tests when ERA40 (black), UKMO (red), or
NCEP (blue) meteorological analyses are used for the observations
in the metric (4).

Another choice made in the analysis is the metric used to
form the grades. As discussed in Sect. 2.2, an alternate met-
ric to the one used here is thet-statistic. It was shown in
Sect. 2.2 that there is a simple linear relationship between
t andg in cases with the same number of data points and
same standard deviations for the models and observations
(see Eq. 6). To test this relationship in a more general case we
comparet andg for tests using temperature and CH4 fields.
For these tests there are multi-year observational data sets
available, and the mean and variance from these observations
and from the models can be used to calculatet andg.

Figure6 shows this comparison for the a) Temp-NP and
Temp-SP, and b) CH4-EQ and CH4-SP diagnostic tests. For
these comparisons we do not set negative values ofg to zero,
so that we can test how well the relationship (6) holds. If
we set negativeg to zero then the points left of the vertical
dashed lines move to the left to lie on this line. As expected
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Fig. 6. Comparison oft-statistic with grading metricg for (a)
Temp-NP and Temp-SP tests or(b) CH4-EQ and CH4-SP diagnos-
tic tests. The solid lines show the theoretical relationship given by
Eq. (6) for (a) n=20 and (b) n=11. The horizontal dashed lines show
the critical values oft for statistically significant differences at the
1% and 10% level.

there is a very close relationship between the calculated val-
ues oft andg. For all four diagnostics,g and t are highly
anti-correlated and models that have a high (low) value ofg

have a low (high) value oft . As a result, very similar rank-
ing of the models is obtained for both metrics. Furthermore,
the values oft are close to those predicted by (6), which are
shown as the solid lines in Fig.6. The deviations from this
linear relationship are due to differences inσ between mod-
els and observations.

The horizontal dashed lines in Fig.6 show the critical
values oft for statistically significant differences at the 1%
and 10% level, i.e. ift is above the lines then the model-
observations differences are significant at this significance
level. Similarly, if the value ofg is less than the value where
these horizontal lines cross the solid line the model-data
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differences are significant at these levels. Both metrics show
that statistically significant differences exist between some
models and the observations.

The above shows that a very similar ranking of the models
will be obtained whethert or g is used, and that Eq. (6) can
be used to estimate the statistical significance of values ofg.
Hence, the results presented here are not likely to be sensitive
to our choice ofg as the metric.

4.3 Relationships among diagnostics

We now examine what, if any, correlations there are between
grades for different diagnostics. If a strong correlation is
found this could indicate that there is some redundancy in the
suite of diagnostics considered, i.e., two or more diagnostics
could be testing the same aspects of the models. Identifying
and removing these duplications from the suite of diagnostics
would make the model evaluation more concise. However, an
alternative explanation for a connection between grades for
different diagnostics could be that the models that perform
poorly for one process also perform poorly for another pro-
cess. In this case the two diagnostics are not duplications,
and the consideration of both might provide insights into the
cause of poor performance.

Figure7 shows the correlation between the grades for each
of the different diagnostics. There are generally low correla-
tions between the grades, which indicates that in most cases
the tests are measuring different aspects of the model per-
formance. There are however some exceptions, and several
notable features in this correlation matrix.

As might be expected, several of these high correlations
occur between grades for diagnostics based on the same field,
e.g. between the two mean age diagnostics and the two tape
recorder diagnostics. There might, therefore, be some redun-
dancy in including two grades for each of these quantities,
e.g., it might be possible to consider a single grade for mean
age which considers just a single region or averages over
all regions. However, this is not the case for all fields, and
there are low correlations between the two Cly diagnostics,
between the two polar temperature diagnostics, and between
the CH4 diagnostics. Thus diagnostics using the same fields
can measure different aspects of the simulations, and averag-
ing into a single grade might result in loss of information.

High correlations between grades might also be expected
for some pairs of diagnostics that are based on different fields
but are dependent on the same processes. One example are
the Temp-Trop and H2O-Trop diagnostics. As the water va-
por entering the stratosphere is dependent on the tropical
tropopause temperature a high correlation is expected be-
tween these two diagnostics. There is indeed a positive cor-
relation, but the value of 0.48 may not be as high as expected.
The fact that the correlation is not higher is mainly because of
two models, whose performance differs greatly for these two
diagnostics. The 100 hPa temperature in model 2 is much
colder than observed (with a zero grade for this diagnostic)
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Fig. 7. Matrix displaying the correlation between the grades for
different diagnostics.

but the 100 hPa water vapor is just outside 1σ of the observed
value (g=0.61). The reverse is true for model 9, which has a
low water vapor grade but reasonable temperature grade. For
the remaining models, models with low grades for the tropi-
cal temperature tend to have low grades for the water vapor
diagnostic, and there is a much higher correlation (0.88). A
higher correlation is found between the tropical cold point
and 100 hPa water vapor correlation (Gettelman et al., 2008),
but the above two models are still anomalous. The sensitiv-
ity of the correlations to results of two models illustrates that
care should be taken interpreting these correlations. It also
suggests problems with, and need for further analysis of, the
two anomalous models that do not display the physically ex-
pected relationship between tropical tropopause temperature
and entry water vapor.

There are high positive correlations between many of the
transport diagnostics, i.e., there are generally high correla-
tions between the tape recorder, mean age, and equatorial
CH4 diagnostics. This is likely because these diagnostics
measure, or are dependent, on tropical lower stratospheric
transport, and a model with good (poor) transport in the trop-
ical lower stratosphere will have good (poor) grades for all
these diagnostics. Another area where strong correlations
might be expected is between the heat flux, polar temper-
atures, and transition to easterlies diagnostics. However, in
general, the correlations between these fields is not high. The
exception is the high correlation (0.75) between the eddy
heat flux and transition to easterlies in the Southern Hemi-
sphere. A high correlation between these diagnostics might
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Fig. 8. Temporal variation of(a) annual mean anomalies for total
ozone averaged over northern mid-latitudes (35◦ N to 60◦ N) and
(b) minimum Antarctic ozone for individual models (black curves),
unweighted mean (red) and weighted mean using performance in-
dices based on the average transport grade (blue) of all models. The
thick black curve and shaded region in (a) shows the mean and range
of observed ozone anomalies, while the black dots in (b) show the
observed minimum total ozone, see E06 for details.

be expected as weak heat fluxes might lead to a late transi-
tion. However, this is not likely the cause of the high corre-
lation. First, the heat flux diagnostic is for mid-winter (July-
August) and the late-winter/spring heat fluxes are likely more
important for the transition to easterlies. More importantly,
several of the models with late transitions, and very low
grades for this diagnostic, actually have larger than observed
heat fluxes (models 1, 5 and 13), which is opposite than ex-
pected from the above arguments. Again, this anomalous
behavior suggests possible problems with these models and
the need for further analysis.

Figure7 also shows some correlation between the trans-
port and dynamics diagnostics. In fact there are several cases
where there is moderate to high negative correlations be-
tween a dynamics diagnostic and a transport diagnostic, sug-
gesting that there are models that perform poorly for (trop-

ical) transport diagnostics but perform well for (polar) dy-
namical diagnostics. As discussed above this is indeed the
case for several models (most notably models 8 and 9), see
Fig. 4.

4.4 Weighted ozone projections

The assignment of grades to the diagnostic tests enables rel-
ative weights to be assigned to the ozone projections from
different models, and for a weighted mean to be formed that
takes into account differing abilities of models to reproduce
key processes. We explore this issue using ozone projections
for the 21st century made by the same CCMs, and shown in
E07. Note, models 6 and 11 did not perform simulations into
the future, and the analysis below is only for the other 11
models listed in Table 1. E07 examined the model projec-
tions of total column ozone for several different regions and
for different diagnostics of polar ozone.

To form a weighted mean it is necessary to assign weights
to each diagnostic so that a single model performance index
can be formed (e.g.̄gk in equation 1). We have calculated
the weighted mean ozone, for each of the regions and diag-
nostics considered in E07, for a variety of weights and sin-
gle model performance indices. This includes using equal
weights for all diagnostics so that the performance index is
the grade shown in Fig.4a, as well as performance indices
based only on transport diagnostics (Fig.4b), based only on
polar dynamics diagnostics (Fig.4c), or based on a single di-
agnostic (e.g., mid-latitude or polar Cly). In all cases there
are generally only small differences between the weighted
and unweighted mean values, even when there is a large vari-
ation between the model performance indices.

This weak sensitivity to weighting is illustrated in Fig.8
where the unweighted mean values (red curves) are com-
pared with weighted mean values (blue curves) using per-
formance indices based on the average transport grade, for a)
annual mean northern mid-latitude total ozone and b) min-
imum Antarctic total column ozone for September to Octo-
ber. Following E07, the mid-latitudes monthly anomalies in
Fig. 8 were calculated by subtracting a detrended mean an-
nual cycle calculated over the period 1980–1989, from each
time series. Ideally, a longer period of pre-1980 years should
be used to define the zero line, but several model simulations
only started in 1980. Shepherd (2008) showed that when the
baseline is defined by the 1960–1975 mean, the annual mean
northern mid-latitude total ozone time series in one of the
participating models agrees better with the observations than
implied by Fig. 8. The jumps in the mean curves, e.g. at
2050, in Fig. 8 occur because not all model simulations cover
the whole time period, and there is a change in the number
of model simulations at the location of the jumps, e.g. eight
models performed simulations to 2050, but only three mod-
els simulate past 2050.

For both the northern mid-latitude ozone and Antarctic
minimum ozone there are generally only small differences
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between the weighted and unweighted mean values (and
between weighted and unweighted variances), even though
there is a large variation in the model performance indices
used (see Fig.4b). This is because there is a wide range in
the ozone projections, and for most time periods models that
simulate ozone at opposite extremes have similar grades. For
example, there are large differences (≈100 DU) in minimum
Antarctic ozone after 2050 between one of the three models
and the other two, but the three models have similar aver-
age grades (̄g≈0.6–0.7) resulting in similar unweighted and
weighted means and variances. The largest difference be-
tween unweighted and weighted means occurs between 2030
and 2050. This difference is primarily because of the ozone
and index for model 8. During this period model 8 predicts
much lower ozone than the other models (the black curve
with lowest ozone between 2030 and 2050 is model 8), but
this model has a low transport index (≈0.2) which means
that less weight is put on the ozone from this model in the
weighted mean. As a result the weighted mean is larger than
the unweighted mean, and the uncertainty smaller, for this
time period.

Similar results are found for other regions and ozone di-
agnostics, and for different weights. The average transport
grade is used only for illustrative purposes, and not to imply
this is the best index to use.

The conclusion from the above analysis is that, at least
for the grading and diagnostics applied to these CCM sim-
ulations, weighting the model results does not significantly
influence the multimodel mean projection of total ozone. A
similar conclusion was reached by Stevenson et al. (2006)
in their analysis of model simulations of tropospheric ozone,
and bySchmittner et al.(2005) in their analysis of the ther-
mohaline circulation in coupled atmosphere-ocean models.

5 Conclusions

The aim of this study was to perform a quantitative eval-
uation of stratospheric-resolving chemistry-climate models
(CCMs). To this end, we assigned a quantitative metric of
performance (grade) to each of the observationally-based di-
agnostics applied inEyring et al.(2006), and quantified the
ability of the thirteen CCMs to simulate a range of processes
important for stratospheric ozone. The metric used is not a
standard statistical quantity, but has previously been used by
Douglass et al. (1999) and, more importantly, can be applied
to each of the diagnostics inEyring et al.(2006) even though
some lack long enough data records for calculation of vari-
ance in the observations.

This analysis quantified several features noted inEyring
et al. (2006). A wide range of grades were obtained, show-
ing that there is a large variation in the ability of the CCMs
to simulate different key processes. This large variation in
grades occurs both for different diagnostics applied to a sin-
gle model and for the same diagnostic applied to different

models. No model scores high or low on all tests, but dif-
ferences in the performance of models can be seen. This is
especially true for processes that are mainly determined by
transport where several models get low grades on multiple
diagnostics, as noted inEyring et al.(2006).

The assignment of grades to diagnostic tests enables a sin-
gle performance index to be determined for each CCM, and
for relative weights to be assigned to model projections. Such
a procedure was applied to the CCMs’ projections of 21st
century ozone (Eyring et al., 2007). However, except for
some time periods, only small differences are found between
weighted and unweighted multi-model mean and variances
of ozone projections, and weighting these model projections
based on the diagnostic tests applied here does not signifi-
cantly influence the results.

Although the calculation of the grades and weighting of
the ozone projections is relatively easy, there are many sub-
jective decisions that need to be made in this process. For ex-
ample, decisions need to be made on the grading metric to be
used, the source and measure of uncertainty of the observa-
tions, the set of diagnostics to be used, and the relative impor-
tance of different processes/diagnostics. We have performed
some limited analysis of the sensitivity to these choices, and
Gleckler et al. (2008) have discussed these issues in the con-
text of atmosphere-ocean climate models. However, further
studies are required to address this in more detail. In partic-
ular, determining the relative importance of each diagnostic
is not straightforward, and more research is needed to deter-
mine the key diagnostics and the relative importance of each
of these diagnostics in the weighting.

This study provides only an initial step towards a quanti-
tative grading and weighting of CCM projections. For exam-
ple, quantitative metrics could be used to explore the value
of weighting model projections based on their performance
in simulating the present day climate. The presented grades
are for a single version of each model, and we have eval-
uated only a subset of key processes important for strato-
spheric ozone, in particular we have focused on diagnos-
tics to evaluate transport and dynamics in the CCMs and
to a lesser extent the representation of chemistry and radi-
ation. Furthermore, we have only evaluated the climatolog-
ical mean state and not the ability of the models to repre-
sent seasonal and interannual variability and trends. How-
ever, this study does provide a framework, and benchmarks,
for the evaluation of new CCMs simulations, such as those
being performed for the upcoming SPARC CCMVal Report
(http://www.pa.op.dlr.de/CCMVal/). It is expected that the
grades will change with improvements in the models and ob-
servations, and once other diagnostics are evaluated.
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Response of the middle atmosphere to CO2 doubling: Results
from the Canadian Middle Atmosphere Model, J. Climate, 20,
1121–1144, 2007.

Garcia, R. R., Marsh, D., Kinnison, D., Boville, B., and
Sassi, F.: Simulations of secular trends in the middle at-
mosphere, 1950–2003, J. Geophys. Res., 112, D09301,
doi:10.1029/2006JD007485, 2007.

Gelman, M. E., Miller, A. J., Johnson, K. W., and Nagatani, R.:
Detection of long-term trends in global stratospheric tempera-
ture from NMC analyses derived from NOAA satellite data, Adv.
Space Res., 6, 17–26, 1996.

Gettelman, A., Birner, T., Eyring, V., Akiyoshi, H., Plummer, D.
A., Dameris, M., Bekki, S., Lefevre, F., Lott, F., Brühl, C., Shi-
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