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Abstract. The build-up of oligomeric compounds during
secondary organic aerosol (SOA) formation is subject of at-
mospheric research since several years. New particle forma-
tion and especially the SOA mass yield might be influenced
significantly by oligomer formation. However, the chemi-
cal nature of observed oligomers and their formation path-
ways are still unclear. In this paper, the structural charac-
terization of certain dimeric compounds (esters) formed dur-
ing the ozonolysis of cyclohexene and cyclohexene/α-pinene
mixtures are presented. The identification is based on the
comparison of the mass spectra and the retention times (LC)
of the oligomeric products with synthesized reference com-
pounds. Cyclohexene is used here as a model compound for
terpenes as globally most important SOA precursors, since it
possesses a simpler structure than the biogenic alkenes and
therefore offers the possibility to get access to reference com-
pounds for certain of its oxidation products. In addition to
cyclohexene, the formation of esters could also be observed
in experiments withα-pinene as reactant.

1 Introduction

Aerosols attract attention in atmospheric research due to their
effects on climate and human health. Secondary aerosols –
that are aerosols formed in the gas phase by chemical re-
actions of volatile precursors – typically have diameters be-
tween a few and some hundred nanometres. Therefore, the
atmospheric lifetime of most of these secondary particles is
relatively high (Finlayson-Pitts and Pitts, 2000). In addi-
tion, they have the ability to be inhaled deep into the human
lungs (Hinds, 1999).
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Monoterpenes are believed to be the major contributors
to secondary organic aerosol (SOA) emitted by biogenic
sources (Lack et al., 2004; Tsigaridis and Kanakidou, 2003),
although recently also isoprene received attention in respect
to its potential to form SOA (Claeys et al., 2004). The special
scientific interest about the atmospheric chemistry of these
natural alkenes is mainly due to the tremendous amounts
emitted globally from tropical, temperate or boreal forests.
However, also indoor air can contain considerable amounts
of terpenes, emitted from furniture, solvents or air fresheners
(Baumann et al., 1999; Hodgson et al., 2002; Sarwar et al.,
2004). The gas phase reactions of these alkenes with reac-
tive atmospheric species (ozone, OH-radicals, NO3-radicals)
lead to the formation of products with lower vapour pres-
sures. These low volatile oxidation products then generate
SOA, either by new particle formation (homogeneous nucle-
ation) or by condensation on pre-existing particles (Bowman
et al., 1997; Finlayson-Pitts and Pitts, 2000; Hoffmann et al.,
1997; Holmes, 2007; Odum et al., 1996; Seinfeld and Pandis,
1998).

The molecular level characterization of SOA observed in
the laboratory or in the ambient atmosphere has proven to be
a difficult task. During the last years, several atmospheric
simulation chamber experiments have been conducted, most
of them focussed on the estimation of aerosol mass yields
from different VOCs. Several groups also concentrated on
the chemical characterization of SOA but a significant part
remains unclear. The large number of products even from
a single precursor VOC and the wide range of polarities of
the products make the analysis on a molecular level diffi-
cult. Several classes of products (i.e. alcohols, carbonyls,
acids, peroxides, nitrates) have been identified and it could
be shown in numerous laboratory and field studies that var-
ious organic acids (monoacids, diacids, hydroxy acids etc.)
are major contributors to the particle phase from monoter-
pene precursors (Alves et al., 1999; Anttila et al., 2005; Gla-
sius et al., 2000; Hoffmann et al., 1998; Kavouras et al.,
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1999; Koch et al., 2000; Larsen et al., 2001; Warnke et al.,
2006; Yu et al., 1999). However, recent results showed ev-
idence that not only the introduction of oxygen-containing
functional groups into the precursor molecule is responsible
for the lower vapour pressure of the oxidation products, but
that also higher molecular weight products (oligomers) can
be formed (Barsanti and Pankow, 2006; Gao et al., 2004;
Kalberer et al., 2004; Tolocka et al., 2004).

For cycloalkene (terpene) SOA experimental studies pro-
pose various possible oligomer products, such as perox-
yhemiacetales (Docherty et al., 2005), alkoxyhydroper-
oxides (Tobias and Ziemann, 2000), dicarboxylic acid
dimers (Hoffmann et al., 1998), diacyl peroxides (Ziemann,
2002), esters and carboxylic acid anhydrides (Hamilton et
al., 2006), hemiacetals and acetals (Iinuma et al., 2004). This
broad list of potential candidates indicates the current under-
standing of the molecular identities of the higher molecular
weight products. The most important consequence of the ex-
isting lack of knowledge about the chemical structures of the
oligomers is the inability to incorporate oligomer formation
into atmospheric modelling, since their formation mecha-
nism remains unknown. Even the use of different mass spec-
trometric techniques, such as the combination of selective
fragmentation using ion trap MS and the determination of the
elemental composition by high resolution time of flight-MS
still leaves room for speculation (Hamilton et al., 2006).

The aim of this work was the unambiguous identifica-
tion of the molecular identity of certain dimer compounds
in SOA. For this purpose a complementary combination
of on-line atmospheric pressure chemical ionization mass
spectrometry (APCI-MSn) and off-line liquid chromatog-
raphy electrospray ionization mass spectrometry was used
(LC/ESI-MSn) for the definitive identification of selected
oligomer products observed from cyclohexene ozonolysis.
The ozonolysis of cyclohexene has been chosen as a sim-
plified system to investigate the composition and forma-
tion of dimeric products generated during ozonolysis. Even
though cyclohexene has a lower relevance for atmospheric
processes, it is – as a cyclic alkene – an appropriate surro-
gate for monoterpenes and, more importantly, allows access
to specific reference compounds by organic synthesis. There-
fore, the identification of certain dimeric products could be
carried out by comparing retention time and MSn-spectra of
synthesized reference compounds to the data received from
smog-chamber experiments. In the last step of the investiga-
tions presented here, results of cross experiments in respect
to dimer formation are discussed, in which cyclohexene is
introduced into an ongoingα-pinene-ozone chamber experi-
ment.

2 Experimental section

2.1 Materials

Delta-valerolactone (#162710500; 99%), epsilon-
caprolactone (#162710500; 99%), gamma-butyrolactone
(#108130250; 99+%), succinic acid (#219550250; 99+%)
and glutaric acid (#119960250; 99%) were obtained from
Acros Organics, adipic acid (#09582;≥99,5%), pinic acid
(#S762792; ≥99%) and cyclohexene (#240990;≥99%)
from Sigma-Aldrich, sulphuric acid (#84720; 95–97%),
HPLC grade solvents (methanol, acetone and acetonitrile)
from Carl Roth andα-pinene (#80606;≥99%) from Fluka.
Gases (nitrogen 5.0, synthetic air) were obtained from
Westfalen.

2.2 Chamber experiments

The ozonolysis of cyclohexene and the monoterpeneα-
pinene was carried out under dark and dry conditions (<1%
r.h.) without seed particles in a cylindrical 100 L reac-
tion chamber made of glass. No OH scavengers were
used. The chamber was constantly flushed with a hydrocar-
bon containing nitrogen flow (0.5 L/min), dry synthetic air
(2.1 L/min) and an ozone-containing air stream (2.6 L/min).
Therefore, the reaction chamber can be considered as a
continuous stirred-tank reactor (CSTR) with a mean resi-
dence time of the reactants of about 19 min. A total con-
centration of 1ppm ozone was adjusted by UV irradiation
of the ozone-containing air supply using the ozone gen-
erator of an ozone analyzer (Dasibi Environmental Corp,
Model 1008-RS, Glendale California). The same instru-
ment was used for monitoring the ozone concentration dur-
ing the experiments. The VOCs were added into the cham-
ber by using temperature-controlled, nitrogen flushed test
gas sources, which were based on an open tube diffusion
technique. The resulting hydrocarbon concentration in the
chamber was about 200 ppb for monoterpene experiments
and about 1000 ppb for cyclohexene experiments. The parti-
cle number concentration in the chamber was measured us-
ing a CPC (condensation particle counter, Porta Count Plus,
TSI Corp., USA). To determine the chemical composition
of secondary organic aerosol, two complementary methods
were applied: On-line analysis via an ion-trap mass spec-
trometer with an atmospheric pressure chemical ionization
source (APCI-IT/MSn) as well as an off-line investigation
using liquid chromatography technique coupled with electro-
spray ionization source ion-trap mass spectrometer (HPLC-
ESI-IT/MSn).

2.3 Sample collection and sample preparation

Particulate ozonolysis products were collected on 70mm
PTFE coated quartz fibre filters (PALLFLEX T60A20, Pall
Life Science, USA) with a flow of 4.5 L/min and a sam-
pling time of 6 h. The total sample volume added up to
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1.6 m3. The collected filter samples were stored at 5◦C. For
HPLC ESI-IT/MS investigations half of the filter sample was
extracted two times for about 30 min with 2 mL extraction
agent (methanol/water 1:10 v/v) by sonification. After fil-
tration (Sartorius Minisart SRP4, PTFE-membrane 0.45µm)
the unified extracts were concentrated under a gentle steam
of nitrogen and heating (60◦C) to a total volume of 0.2 mL.

2.4 HPLC-ESI-IT/MS Measurements (LC/MSn)

The obtained extracts were investigated by HPLC-ESI-
IT/MSn measurements using a HCT-Plus ion trap mass
spectrometer (Bruker-Daltonics GmbH, Bremen, Germany)
equipped with a HPLC-System (Agilent 1100 series, auto
sampler, gradient pump and degasser, Agilent Technologies
GmbH, Germany) and a Pursuit XRs 3 C8 150 mm× 2.0 mm
column with 3µm particle size (Varian, Germany).

The eluents were HPLC grade water (Milli-Q water sys-
tem, Millipore, Bedford, USA) with 0.1% formic acid and
2% acetonitrile (eluent A) and acetonitrile with 2% water
(eluent B). The gradient of the mobile phase, with a flow
of 0.2 mL/min, was chosen as follows: Starting with 0% B,
gradient to 100% B in 30 min, isocratic for 5 min and gradi-
ent to 0% B in 5 min. The column was equilibrated at 0%
B for 20 min. The LC System was directly connected to the
electrospray ion source with the following setup: nebulizer
pressure 2200 mbar, dry gas flow 10 L/min, dry gas tempera-
ture 365◦C, spray voltage 4500 V. The ion optic of the mass
spectrometer, operated in the negative ion mode, was opti-
mized for adipic acid (negative ion modem/z145).

2.5 On-line APCI/MS

When the investigation of the particle phase is aiming on
the chemical characterization of particle phase products, it is
favourable to apply a suitable on-line technique in addition to
off-line filter investigations. The on-line technique used here
allows a direct introduction of the reaction mixture into the
ion source. Possible analytical artefacts, such as incomplete
analyte extraction or reactions during sampling or extraction
can be avoided. Furthermore, on-line measurements provide
temporally resolved insights in the formation of secondary
organic aerosol (Hoffmann et al., 1998). On the other hand
the on-line technique provides no separation of the analytes
before ionisation and detection. Therefore, the results can be
affected by isobaric interferences and an unambiguous iden-
tification of single compounds is very difficult.

On-line-APCI/MS and -MS/MS analyses were performed
using a LCQ ion trap mass spectrometer (Finnigan MAT,
USA) with a modified atmospheric pressure chemical ion-
ization source (Hoffmann et al., 1998) in the negative ion
mode (Finnigan MAT, USA). The parameters were set to:
2µA discharge current, 350◦C vaporizer temperature, 200◦C
capillary temperature,−7.8 V capillary voltage, 16.4 V lens
voltage. The sheath gas flow rate was set to 5 units (arbitrary
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Fig. 1. Sketch of the modified atmospheric pressure chemical ion-
ization source (APCI) and the analytical setup used for on-line mea-
surements.

units defined by the instrument software). The APCI/MS/MS
experiments were recorded at different collision energies and
helium was used as the collision gas. To separate the gas
phase from the generated particle phase a charcoal-filled dif-
fusion denuder was connected between reaction chamber and
ion source (Fig. 1).

2.6 Synthesis

The synthesis of ester standards was carried out in a 250 mL
reaction flask. A solution of 0.01 mol carboxylic acid and
0.01 mol lactone in 30 mL acetone was acidified with two
drops of concentrated sulphuric acid and refluxed for 2 h.
Without any further purification the reaction solution was di-
luted by a factor of 1:1000 with a methanol/water – mixture
(1:10 v/v). The diluted solution was characterized by HPLC-
ESI-IT/MSn.

3 Results and discussions

3.1 Cyclohexene ozonolysis

The cyclohexene-ozone system has been intensively stud-
ied earlier as a simplified system for the reactions of cyclic
monoterpenes with endocyclic double bonds and ozone (Gao
et al., 2004; Kalberer et al., 2000). Several monomeric prod-
ucts in the mass range betweenm/z100 andm/z210 were
identified and reasonable suggestions about the underlying
reaction mechanisms have been published (Ziemann, 2003).
Figure 2a shows the on-line mass spectra of cyclohexene-
ozone reaction products in the particle phase recorded in
the negative ion mode as described above. The use of
APCI(-) will usually result in the formation of [M-H]−-
quasimolecular ions, especially for acidic compounds such
as organic acids. Them/z ratios up tom/z 145 shown in
Fig. 2a can mostly be explained by simple reaction prod-
ucts, e.g.m/z145 (adipic acid),m/z131 (glutaric acid) and
m/z129 (6-oxohexanoic acid). However, it is obvious from
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Fig. 2. On-Line mass spectra of cyclohexene/O3 reaction(a), α-pinene/O3 reaction(b) and cross-experiment ofα-pinene and cyclohexene
with O3 (c).

Fig. 2a that also higher molecular weight compounds are
formed in the reaction of cyclohexene with ozone (m/zbe-
tween about 200 and 320). As mentioned above, different
explanations for potential dimeric structures have been sug-
gested in similar reaction systems in the past (Docherty et
al., 2005; Hoffmann et al., 1998; Iinuma et al., 2004; Tobias
and Ziemann, 2000; Ziemann, 2002). One of the most recent
suggestions comes from Hamilton and co-workers, who sug-
gested the formation of esters or carboxylic acid anhydrides
as high molecular weight products (Hamilton et al., 2006).

To verify if esters are formed from cyclohexene ozonoly-
sis, the LC/MSn measurements of filter samples from cham-
ber experiments were compared with LC/MSn measurements
of certain synthesized reference esters. Table 1 shows an
overview of all synthesized ester compounds. MS2- and
MS3-spectra of the reference esters are shown in Fig. 3. The
comparison is shown in Fig. 4, where the base-peak chro-
matogram of a filter sample from the cyclohexene ozonol-
ysis (black line, Fig. 4a) and the corresponding extracted
ion chromatogram ofm/z 245 from the same sample (red
line, Fig. 4a) are directly compared with the extracted
ion chromatogram ofm/z 245 from two synthesized stan-
dards, hexanedioic acid mono-(4-carboxy-butyl)ester (red,
Fig. 4b) and pentanedioic acid mono-(5-carboxy-pentyl)ester
(green, Fig. 4b). The third (not labelled) peak at 17.0 min
(green line, Fig. 4b) is a by-product of the ester synthe-
sis, the condensation product of two hydroxyhexanoic acid
molecules (6-hydroxyhexanoic acid 5-carboxy-pentylester),

which derive from hydrolysis ofε-caprolactone. This prod-
uct could also be found in the chamber samples, how-
ever, just in very low concentrations. In them/z 245 ex-
tracted ion chromatogram of the filter sample (red line,
Fig. 4a) some additional peaks can be seen but they have
not been identified yet. Overall, six esters could be unam-
biguously identified in the cyclohexene-SOA by the com-
parison of their retention times and fragmentation patterns
with synthesized reference compounds. The other esters
observed in SOA from cyclohexene ozonolysis were pen-
tanedioic acid mono(4-carboxypropyl)ester (m/z218), pen-
tanedioic acid mono(4-carboxybutyl)ester (m/z 232), hex-
anedioic acid mono-(3-carboxypropyl)ester (m/z232) and in
traces hexanedioic acid mono-(5-carboxy-pentyl)ester (m/z
259). Other synthesized esters that could in principle be
formed in the cyclohexene-ozone system, such as butane-
dioic acid mono(5-carboxypentyl)ester (m/z 232) and 2-
oxopentanedioic acid mono-(4-carboxybutyl)ester (m/z245),
were not found. The synthesized esters are all characterized
by an additional carboxyl group at the alcohol-moiety, see
Fig. 3. The fragmentation patterns are very similar for each
compound. The first fragmentation occurs at the ester group.
The quasi-molecular ion of the dicarboxylic acid is the most
abundant fragment ion. However, also the hydroxyl com-
ponent of the ester is observable in the MS/MS spectra in
different intensities. The intensity seems to be dependent on
the molecular weight of the hydroxyl component or the ra-
tio of molecular weights of hydroxyl and dicarboxylic acid
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Fig.3: Structures and fragmentation patterns of synthesized ester compounds 
 

Fig. 3. Structures and fragmentation patterns of synthesized ester compounds.

component in the ester molecules. Furthermore, always vis-
ible in the MS/MS-spectra are low intensities of fragments
from losses of water, carbon dioxide and combined losses
of water and carbon dioxide of the dicarboxylic acid, which
is typical for dicarboxylic acids of different chain length
(Grossert et al., 2005). The MS3-spectrum of them/z 131
fragment ion (Fig. 3d), show a loss of 46 Da (m/z85), which
likely corresponds to a loss of formic acid. The loss of 46 Da
is not expected from the diacid precursor ion but from the hy-
droxycarboxylic acid, which in this case has the same mass.

3.2 α-Pinene/cyclohexene cross experiment

Based on the knowledge about the ester formation in the cy-
clohexene/ozone system, similar experiments were carried
out with the more relevantα-pinene/ozone system. Un-
fortunately, the relative complex structure of theα-pinene-
skeleton makes the access to appropriate reference com-
pounds by organic synthesis extremely difficult. There-
fore, an experiment in which cyclohexene was added to
an ongoingα-pinene ozonolysis experiment was conducted.
Figure 2b shows the on-line APCI-MS spectra of SOA
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Table 1. Synthesized ester structures and retention times in LC-MS/MS chromatograms.
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Fig.4: HPLC-MS: Base-peak-chromatogram (black) and extracted-ion-chromatogram 
m/z 245 of cyclohexene ozonolysis (red) (a) and extracted ion-chromatogram m/z 
245 of Pentanedioic acid mono-(5-carboxy-pentyl)ester (green) and m/z 245 of 
Hexanedioic acid mono-(4-carboxy-butyl)ester (red) (b) 

Fig. 4. HPLC-MS: Base-peak-chromatogram (black) and extracted-
ion-chromatogramm/z245 of cyclohexene ozonolysis (red)(a) and
extracted ion-chromatogramm/z 245 of Pentanedioic acid mono-
(5-carboxy-pentyl)ester (green) andm/z 245 of Hexanedioic acid
mono-(4-carboxy-butyl)ester (red)(b).

formed fromα-pinene ozonolysis prior addition of the cy-
clohexene. Beside the quasimolecular ions of well known
products such as pinic (m/z185), pinonic (m/z183) or hy-
droxypinonic acid (m/z199), also several signals in the dimer
region are clearly visible (m/zvalues between about 280 and
380). After 100 min cyclohexene was added. The mass
spectrum after cyclohexene addition is shown in Fig. 2c.
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Fig.5: On-Line MS² of m/z 285 from ozonolysis of cyclohexene and α-pinene and 
common peaks (red) from off-line measurement 
 

Fig. 5. On-Line MS2 of m/z285 from ozonolysis of cyclohexene
andα-pinene and common peaks (red) from off-line measurement.

As can be seen in the figure most of the monomeric prod-
ucts formed from the ozonolysis of the two individual pre-
cursors can still be observed. In contrast, the dimer re-
gion of the mass spectrum changed dramatically. Almost
none of the dimers from the single compound experiments
could be observed. However, two new signals emerged,m/z
283 andm/z285. On-line MS/MS-experiments ofm/z285
pointed to a mixed dimer fromα-pinene and cyclohexene
(see Fig. 5). Using the knowledge from the previous ex-
periments, an ester compound was synthesized that should
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Fig.6: HPLC-MS: Base-peak-chromatogram (blue) and extracted-ion-chromatogram 
m/z 285 of cyclohexene/α-pinene ozonolysis (purple) (a) and extracted ion-
chromatogram m/z 285 of Pinic acid mono-(4-carboxy-butyl)ester (b) 
 

Fig. 6. HPLC-MS: Base-peak-chromatogram (blue) and extracted-
ion-chromatogramm/z 285 of cyclohexene/α-pinene ozonolysis
(purple)(a) and extracted ion-chromatogramm/z285 of Pinic acid
mono-(4-carboxy-butyl)ester(b).
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Fig.7: On-Line (a) and off-line (b) MS²of m/z 283 from ozonolysis of cyclohexene and 
α-pinene and possible structure & fragmentation pattern of the compound (a) 
 

Fig. 7. On-Line(a) and off-line(b) MS2of m/z283 from ozonolysis
of cyclohexene andα-pinene and possible structure & fragmenta-
tion pattern of the compound (a).

fit to the mass, the fragmentation pattern and the structure
of the possible ester precursors formed during theα-pinene
and cyclohexene ozonolysis. The ester was synthesized from
pinic acid andδ-valerolactone (Table 1). The latter forms 6-
hydroxypentanoic acid if hydrolyzed. The resulting ester is
pinic acid mono-(4-carboxy-butyl)ester. Filter samples and
the synthesized product were characterized by LC/MS. The
upper chromatogram in Fig. 6 shows the base-peak chro-
matogram of the filter sample (blue line) together with the
extracted ion chromatogram ofm/z 285 (purple line). The
lower chromatogram shows the extracted ion chromatogram
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Fig.8: HPLC-MS: Base peak chromatogram of α-pinene oxidation products 
 

Fig. 8. HPLC-MS: Base peak chromatogram ofα-pinene oxidation
products.

of m/z285 of the synthesized reference compound (pinic acid
mono-(4-carboxy-butyl)ester). Retention time and MS/MS
spectra of the reference compound and the ozonolysis prod-
uct of the cross experiment fit perfectly.

Due to the absence of reference compounds the newly
formedm/z283 in the mixed ozonolysis experiment can just
be tentatively identified. The product could be an adduct of
pinic acid and cyclohexene oxide. Figure 7 shows the on-line
APCI(-)-MS2 (a) and the off-line ESI(-)-MS2 (b) spectra, as
well as a possible structure of the formed compound. Both
MS/MS spectra show the formation of the ionsm/z185, 167
and 141. These fragments could be explained as follows:
m/z 185 is the quasi molecule ion of pinic acid; the other
fragments are formed by dehydration (m/z167) and decar-
boxylation (m/z141) of pinic acid.

3.3 α-Pinene ozonolysis

Building up on the information and conclusions from the
experiments described above, it was also attempted to as-
sign molecular structures to selected dimer products formed
during a pureα-pinene ozonolysis experiment. Several
monomeric products observed in this system have already
been mentioned above. In the dimer region (see Fig. 2b) the
most abundant peaks in the on-line APCI-mass spectra were
m/z337, m/z351 andm/z367 as well as a smaller but sig-
nificant signal form/z 357. The LC/MS measurements of
the appropriate samples show essentially the same masses,
however, with different intensities. Here,m/z367 andm/z
357 are the most intensive signals in the higher molecular
mass range (Fig. 8). MS/MS experiments were carried out to
identify certain of these oligomers. Due to the reasons given
above no reference compounds were accessible for an un-
ambiguous identification. Consequently, the following sug-
gestions are tentative. Based on the knowledge from cyclo-
hexene ozonolysis and the cross-experiment it seems likely
that the productm/z367 again is a carboxylic acid ester, the
ester formed between pinic acid and hydroxypinonic acid.
The possible structure of this compound and off-line ESI(-)-
MS2- and MS3-spectra are shown in Fig. 9a–c. Beside the
signal of the dehydration product (m/z349), the acid compo-
nent (m/z185, pinic acid) of the ester is the most abundant
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Fig.9: LC-ESI-MS2 (a) and -MS³ spectra (b) of m/z 367 from ozonolysis of 
cyclohexene and α-pinene and possible structure of the compound (c) 
 

Fig. 9. LC-ESI-MS2 (a) and -MS3 spectra(b) of m/z 367 from ozonolysis of cyclohexene andα-pinene and possible structure of the
compound(c).

fragment in the MS/MS spectrum ofm/z367 (Fig. 9a). In
general, this fragmentation pattern was also observed for the
reference esters investigated (see Fig. 3). However, also hy-
droxypinonic acid can be observed as a fragment ion by its
quasimolecular ionm/z199. In the same spectrum also cer-
tain fragment ions, formed by the decomposition of pinic and
hydroxypinonic acid ions are visible, e.g. dehydration (m/z
167) and decarboxylation (m/z141) of pinic acid and dehy-
dration of hydroxypinonic acid (m/z181). This fragmenta-
tion pattern is significant for dicarboxylic acids (Grossert et
al., 2005) in general. The MS3-spectra of the daughter ion
with m/z185 of m/z367 (Fig. 9b) is practically identical to
the MS2-spectra of pinic acid. The only significant difference
between the MS/MS spectra of the ion withm/z367 and the
reference esters (Fig. 3) is the loss of water (18 Da), which
might be explained by the additional carbonyl group in the
proposed ester structure.

3.4 Possible reaction mechanisms

One of the most interesting aspects of the ester formation
is the question how these compounds are formed in SOA.
Up to now, the reaction pathways leading to these esters are
still unclear. One possibility would be the formation by the
classical condensation reaction between an alcohol and an
acid (esterification). Although this kind of ester formation
was described to be thermodynamically favoured (Barsanti
and Pankow, 2006), several aspects point against such a con-
densation reaction in the particle phase to explain the esters

formed from cycloalkene ozonolysis. At first, we observed
no significant influence of relative humidity (RH) on the for-
mation of esters in our studies. Since water is a product of
the condensation reaction one could expect that lower RH
should promote ester formation, although for a quantitative
discussion of such an influence more information would be
needed, e.g. about the concentration of particle phase wa-
ter and equilibrium constants. Furthermore, the influence of
relative humidity was not studied in detail here. However,
investigations in a RH range between about 1% and 50%
showed no significant change in the resulting mass spectra
or product distribution. Obviously, these observations can-
not rule out the possibility of condensation reactions lead-
ing to the ester, they just don’t immediately support such a
mechanism. Secondly, the ozonolysis of alkenes does not re-
sult in a high amount of hydroxyl carboxylic acids, which
actually represent the alcohol component for all identified
esters. One exception is 10-hydroxypinonic acid in case of
α-pinene (Glasius et al., 1999; Yu et al., 1999). Another
argument against classical esterification reaction is the tem-
poral behaviour of the concentrations of the “ester educts”,
e.g. pinic acids (m/z185) and hydroxypinonic acid (m/z199),
and the expected ester product (m/z367) shown in Fig. 10.
The fact that the product concentration (m/z367) increases
faster than the concentration of the potential educts again
does not directly suggest a second order reaction between
the acid and the alcohol in the particle phase, although very
fast consecutive reactions of the acids forming the ester or
the lower volatility of the high molecular weight compound
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Fig.10: On-line APCI-MS (neg. ion mode) of particulate products from the ozonolysis 
of α-pinene. Ozone is added at 13 min. Intensities of monomeric compounds like 
pinic acid (m/z 185), hydroxypinonic acid (m/z 199) and pinonic acid (m/z 183) rise 
slower than intensities of dimer compounds like m/z 337 and m/z 367. 

Fig. 10. On-line APCI-MS (neg. ion mode) of particulate prod-
ucts from the ozonolysis ofα-pinene. Ozone is added at 13 min.
Intensities of monomeric compounds like pinic acid (m/z185), hy-
droxypinonic acid (m/z199) and pinonic acid (m/z183) rise slower
than intensities of dimer compounds likem/z337 andm/z367.

could also be made responsible for such behaviour. On the
other hand, results from Joutsensaari et al. (2004) show that
particulate organic acids can undergo auto-protonation cat-
alyzed esterification within the timescale of a tandem-DMA
experiment (seconds), although of course the reaction con-
ditions were quite different (saturated alcohol atmosphere).
Beside esterification reactions there exist other potential re-
action pathways for ester formation. Docherty and coworkers
suggest the decomposition of peroxyhemiacetals as forma-
tion pathway for esters in the particle phase (Docherty et al.,
2005). Likewise, the decomposition of other potential perox-
ides formed in such reaction systems, such as diacyl perox-
ides (Ziemann, 2002), can also lead to ester formation (De-
Tar and Weis, 1957; Greene, 1955; Kharasch et al., 1954).
Finally, other yet unidentified formation pathways might be
involved, e.g. the direct ester formation by reactions of re-
active intermediates in the gas or condensed phase. Clearly,
more work is needed to clarify whether the esters observed
here result from direct formation, from decomposition of un-
stable products or from heterogeneous reactions of alcohols
and acids.

The formation the diacyl peroxide is believed to result
from the recombination of acyl peroxy radicals in the gas-
phase (Ziemann, 2002). Ziemann suggests that these low-
volatility diacyl peroxides therefore might act as a nucleating
agent in the atmosphere and that such products could play
a role in new particle formation. Actually, the same would
be true if the formation of the esters identified in this study
would also occur via a gas phase mechanism, e.g. based on a
similar reaction mechanism. At least the rapid formation of
the esters in the reaction system, an observation that was al-
ready mentioned above, indicates the involvement of a very
fast chemistry. Figure 11 shows that ester formation is at
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Fig.11: On-line APCI-MS (neg. ion mode) of particulate products from the ozonolysis 
of α-pinene and cyclohexene. Cyclohexene is added at 100min to the running 
reaction of ozone and α-pinene. Intensities of monomeric compounds from 
cyclohexene ozonolysis like glutaric acid (m/z 131) and adipic acid (m/z 145) rise 
slower than intensities of dimer compounds from the “cross reaction” of α-pinene and 
cyclohexene constituents like ester compound m/z 285 and m/z 283. 

Fig. 11. On-line APCI-MS (neg. ion mode) of particulate products
from the ozonolysis ofα-pinene and cyclohexene. Cyclohexene is
added at 100 min to the running reaction of ozone andα-pinene.
Intensities of monomeric compounds from cyclohexene ozonolysis
like glutaric acid (m/z131) and adipic acid (m/z145) rise slower
than intensities of dimer compounds from the “cross reaction” ofα-
pinene and cyclohexene constituents like ester compoundm/z285
andm/z283.

least as fast as the formation of other products during ozonol-
ysis. Extracted ion chromatograms of ester compoundm/z
285 rises even faster than the monomeric products during the
addition of cyclohexene to the runningα-pinene ozonolysis.
Also the intensity of them/zvalue of dimeric products in the
ozonolysis of pureα-pinene rises faster than the intensity of
monomeric products, such as pinic acid (Fig. 10). Therefore,
the observed strong nucleation ability of terpenes, especially
due to ozonolysis (Bonn and Moortgat, 2002) might also be
connected to the formation of esters in the gas phase. How-
ever, as already mentioned above this potential influence on
particle nucleation is only justified when the accretion re-
actions take place in the gas phase. When these reactions
turn out to take place in the condensed phase, just the growth
rate and the overall mass yield in organic aerosol formation
would be affected.

4 Conclusions

A series of oxidation products in the higher molecular mass
range from the cyclohexene/ozone reaction could clearly
be identified as ester compounds. The identification was
based on the comparison of mass spectra and retention times
with synthesized reference compounds. Furthermore, ester
formation was also verified in a cyclohexene/α-pinene/O3
cross-experiment. Based on the information and conclu-
sions from these experiments also certain dimeric products
formed from anα-pinene/O3 reaction are suggested to be es-
ter compounds. However, the reaction mechanism to the es-
ter formation is not clear, although especially the temporal
behaviour of the ester formation indicates that they are not
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formed by classical esterification reaction between alcohols
and acids.

More simple esters (i.e. methyl-, ethylester) have been
identified earlier in the ozonolysis of terpenes/cycloalkenes.
For example, Gao and coworkers suggested carboxylic acid
methyl- and ethylesters (Gao et al., 2004) and Yu and
coworkers formic acid esters (Yu et al., 1999). Recently, es-
ters were also found in SOA from isoprene (Surratt et al.,
2006).

The analytical techniques used in this study also indicate
that not all compounds in the dimer region of cycloalkene
SOA can be explained by the formation of esters. Espe-
cially due to the differences in the MS/MS spectra between
the identified esters and other oligomers observed in the re-
action chamber as well as the fact that several compounds
with the samem/zratio are formed simultaneously makes it
likely that also other classes of dimeric products are formed.
However, the chemical nature of these oligomers is not iden-
tified yet. Since for the incorporation of accretion reactions
into atmospheric models the chemical mechanisms have to
be understood, obviously the subject requires further investi-
gations. Furthermore, although the results presented here are
relevant to understand the results of reaction chamber exper-
iments, also additional investigations need to be performed
to evaluate the importance of these reactions under ambient
conditions, e.g. by field measurements of appropriate dimeric
target molecules.
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