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Abstract. Monoterpenes, emitted in large quantities by trees
to attract pollinators and repel herbivores, can exist in mirror
image forms called enantiomers. In this study such enan-
tiomeric pairs have been measured in ambient air over exten-
sive forest ecosystems in South America and northern Eu-
rope. For the dominant monoterpene,α-pinene, the (−)-
form was measured in large excess over the (+)-form over
the Tropical rainforest, whereas the reverse was observed
over the Boreal forest. Interestingly, over the Tropical forest
(−)-α-pinene did not correlate with its own enantiomer, but
correlated well with isoprene. The results indicate a remark-
able ecosystem scale enantiomeric fingerprint and a nexus
between the biosphere and atmosphere.

1 Introduction

Monoterpenes and isoprene together make up 55% of the es-
timated 1150 TgC (Tg=1012g) of biogenic volatile organic
compounds emitted each year into our atmosphere (Guen-
ther et al., 1995). Monoterpenes alone are comparable to
the 150 TgC yr−1 total emissions estimated from all an-
thropogenic sources including fossil fuel usage and biomass
burning (Müller, 1992). Both isoprene and the monoter-
penes react rapidly with the atmosphere’s primary oxidant
OH (Atkinson and Arey, 2003; Fuentes et al., 2000), and
are known to impact ozone and produce secondary organic
aerosol, thereby affecting the Earth’s radiation energy bud-
get (Seinfeld, 2003; Claeys et al., 2004; Williams, 2004).
The global effect of these gases on atmospheric chemistry
has been assessed by models (Wang et al., 1998; Houwel-
ing et al., 1998), however, such work is crucially depen-
dent on emission algorithms which are uncertain, particularly
in the case of monoterpenes (Guenther et al., 1995; Shao
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et al., 2001). Leaf scale studies have established that iso-
prene emissions can be parameterized as a function of light
and temperature (Guenther et al., 1995). Unlike isoprene,
monoterpenes may be stored in the leaf rather than emit-
ted directly and recently it has been a moot point whether
the monoterpene emissions are light dependent or not (Ler-
dau and Gray, 2003; Tarvainen et al., 2005). Many of the
monoterpenes considered in present day models are chiral
compounds, which means they exist in two distinct forms
that are mirror images called enantiomers. For exampleα-
pinene occurs as both (+)-α-pinene and (−)-α-pinene, see
Fig. 1, although they are typically measured and modeled
together as one substance in ambient air studies. Therefore
emission algorithms deduced from studies ofα-pinene as-
sume both enantiomeric constituents behave similarly (Shao
et al., 2001; Tarvainen et al., 2005), although from a biosyn-
thetic point of view, the two enantiomers of a chiral monoter-
pene often exhibit differences in biological activity (Croteau,
1987). Here we present the first set of monoterpene measure-
ments to resolve these enantiomers in air over large Tropical
and Boreal forest ecosystems.

2 Experimental

2.1 Analytical

For a given pair of monoterpene enantiomers (e.g. (+)-
and (−)-α-pinene, having absolute configurations (1R,5R)
and (1S,5S)α-pinene respectively), both compounds have
exactly the same molecular formula, mass, and physical
properties such as boiling point, freezing point, and den-
sity. Nonetheless, such compounds cannot be structurally
superimposed, and are distinguishable by their interaction
with plane polarized light. Unsurprisingly these compounds
are difficult to physically separate from a mixture and no
leaf scale emission rate studies to date have resolved these
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Fig. 1. Mirror image enantiomers of alpha-pinene. (−)-α-pinene S
(1S,5S) is labeled(a), and (+)-α-pinene R (1R,5R) labeled(b).

enantiomers. For ambient air analysis on an ecosystem scale
we exploit the recent development of modified cyclodextrin
chromatography columns, which have allowed enantiomers
to be resolved from single plant emissions and from essen-
tial oils (Yassaa et al., 2001; Yassaa and Williams, 2005).
The enantiomers are chromatographically resolved by selec-
tive inclusion into the cavity of a chiral macromolecule con-
structed from glycosidically connected glucose molecules
and detected by mass spectrometry.

The GC-MS analysis system used to analyse the car-
tridges consists of an air concentrating autosampler and a
thermal desorber (Markes Int., Pontyclun, UK), coupled to
a gas chromatograph (GC6890A, Agilent Technologies, CA,
USA) linked to a Mass Selective Detector (MSD 5973 inert)
from the same company. All pertinent analysis parameters
are summarised in Table 1. Laboratory multipoint calibra-
tions showed good linearity within the concentration ranges
measured. One-point calibrations of 250 ml VOC standard
(Apel-Riemer, CT, USA) and 100 ml of an enantiomeric ter-
pene (Apel-Riemer, CT, USA, stated accuracy 5%) standard
were carried out at the beginning and the middle of each
flight analysis for the Tropical data and at 3 hourly intervals
for the Boreal forest data. Blanks were taken regularly and
showed no high levels for the compounds discussed. The to-
tal measurement uncertainties were between 10 and 15%, the
detection limit ranged from 0.5 pptv to 5 pptv. An example
sample from the Tropical rainforest, the boreal forest and a
calibration chromatogram are shown in Fig. 2.

Airborne sampling for monoterpenes over the Tropical
rainforest was performed using a custom built cartridge sam-
pling device installed within a standard aircraft wingpod, see
Fig. 3. The device was mounted underneath the port wing
of a Learjet aircraft and operated from within the cabin via
a communication cable. The system was designed to col-
lect ambient air samples in flight within 18 cartridges and 18
stainless steel canisters. A flight was typically 3 h in dura-
tion, range ca. 1800 km so that a cartridge was filled every
10 min. Flights were performed in the daylight from 07:30–
17:30 local time. Three identical systems were built to allow
rapid changeovers between flights.

For the airborne samples, outside air was drawn by a metal
bellows pump (Senior Aerospace, Lambsheim, Germany)

Fig. 2. The wingpod and jet aircraft used for the Tropical rainforest
measurements.

Fig. 3. Example separations using the beta-cyclodextrin column.

into the system through an 8.5 mm diameter stainless steel
inlet located at the front of the wing-pod. The pump was
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Table 1. Sampling, desorption and analysis data for the Tropical rainforest measurement.

Sampling Cartridges:
Flow:
Duration:
Volume:

Carbograph I/Carbograph II
200 ml min−1

5 min
1 L

Thermal desorption

Primary desorption
(cartridges)

Prepurge:
Desorption:
Cold trap:

15 min
10 min, 200◦C
10◦C

Secondary desorption
(cold trap)

Desorption:
Flow Path:

5 min, 200◦C
140◦C

Analysis

Column β−cyclodextrin chiral capillary column: Cyclodex-B,
30 m, 0.256 mm I.D., 0.25µm film (J&W Scientific,
CA, USA)
40◦C, 5 min hold, 1.5◦C/min to 200◦C, 5 min hold

Mass Spectrometer EI in Single Ion Mode (SIM)

Potential ionization:
Source temperature:

70 eV
230◦C

connected to the canisters and the cartridge sampling sec-
tions by heated 0.64 mm stainless steel tubing. Calibrated
mass flow-controllers (MKS) regulated the air flow through
the system and a custom made processor was used to set the
parameters and record the sampling processes. The sample
tubes were fitted into the flow path approximately 80 cm af-
ter the pump with Swagelok Ultra-Torr stainless steel fittings
(B.E.S.T. GmbH, Maintal, Germany) and sealed with 2-way
electromagnetic valves (Fluitronics GmbH, Düsseldorf, Ger-
many) at the entrance and the exit. The valves could be
opened and closed simultaneously via the software. During
the sampling, the inlet and outlet valves of the selected car-
tridge are opened and the sample flow (200 ml/min) passed
over the sorbent for 5 min. Cartridges were filled every
10 min and, up to 17 of the 18 available cartridges (at least
one blank was flown i.e. cartridge that was not opened in
flight) were filled per measurement flight. To minimise the
sample contamination from airport air, the pump was started
5 min after take-off.

Prior to flight, the stainless steel, two-bed sampling car-
tridges (Carbograph I/ Carbograph II; Markes International,
Pontyclun, UK) were cleaned with the Thermoconditioner
TC-020 (Markes International, Pontyclun, UK). Clean-
ing was achieved by purging with helium 6.0 (99.9999%,
Messer-Griesheim, Germany) for 120 min at 350◦C and
30 min at 380◦C. For storage the cartridges were sealed with
brass caps with PTFE ferrules and put into an airtight metal
container (Rotilabo, Carl Roth GmbH & Co, Karlsruhe, Ger-
many). After sampling, the cartridges were stored in a sepa-

rate airtight metal container a maximum of 12 h. Shortly be-
fore the analysis, the brass caps were exchanged for DiffLok-
caps (Markes International, Pontyclun, UK). In total, 152
cartridges were sampled from 0–10 km altitude and between
6–3.5◦ N and 129–123◦ W.

2.2 Tropical forest location

The northeast coast of South America in October is an excel-
lent location to study the effects of the unperturbed Tropical
rainforest on atmospheric trace gas composition. In Octo-
ber 2005 the ITCZ was located to the north of Suriname at
approximately 10–15◦ N. Thus at this time of year, although
geographically in the Northern Hemisphere, Suriname was
atmospherically in the Southern Hemisphere and under the
influence of the steady south easterly trade winds. As clean
marine boundary layer air advected westwards over the pris-
tine tropical rainforests of French Guyana and Suriname,
trace gas exchange occurred over long fetches of pristine
rainforest. Trace gases emitted by the forest (e.g. isoprene,
monoterpenes) are released into the well-mixed boundary
layer (∼1.5 km) and oxidized as the air masses travel west-
wards. The ground based samples presented here were
taken at the Suriname meteorological station of Brownsberg
(4◦53′ N, 55◦13′ W, 500 m). Ambient air was drawn rapidly
(ca. 30 l/min) from the canopy top (50 m) through a 1.95 cm
diameter shrouded Teflon inlet mounted on a 50 m telecom-
munications tower. The tower was sited on a hill (500 m)
adjacent to the Brokopondo Lake. Upwind from the site is
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Fig. 4a. A view over the region probed by the aircraft from the ground based site Brownsberg.

Fig. 4b. The Boreal forest at the Hyytiälä meteorological station,
Finland.

300–400 km of pristine rainforest before the coast of French
Guyana. The ground based site, Brownsberg, was approxi-
mately central to the operational area of the aircraft which
ranged from 6–3.5◦ N and 129–123◦ W. A view from the
ground based site is given in Fig. 4a.

2.3 Boreal forest location

Chiral and achiral monoterpenes were measured in Scots
pine forest in the Hyytïalä (61◦51′ N 24◦17′ E) meteoro-
logical station located in the south of Finland. Monoter-
penes were sampled at 8 m height using a thermal desor-
ber (Markes Int., Pontyclun, UK) operated in on-line mode.
Volatile Organic Compounds (VOCs) collected in an adsor-
bent tube by drawing air at 50 ml/min for 1 h sampling dura-
tion, were thermally desorbed into GC/MS equipped with a
β-cyclcodextrin capillary column and operated with the same
conditions as described above. The same calibration proce-
dure was also adopted in boreal forest, in total 150 on-line

Fig. 4c. Greenhouse in the Mainz Botanical Garden.

samples were taken. Diel profiles of monoterpenes were ob-
tained for one month throughout April 2005. It should be
noted that the Scots Pine is weak or not an isoprene emitter
and hence isoprene/monoterpene correlations were not com-
pared for the Boreal forest in this work. A picture of the
Boreal forest is given in Fig. 4b.

2.4 Botanical garden location

For comparison with the Tropical data a further 30 cartridge
samples were taken from the Botanical Garden of the Jo-
hannes Gutenberg-University which is part of the Institut für
Spezielle Botanik in the Department of Biology. The Gar-
den covers an area of nearly 10 ha (3000 sqm under glass)
and cultivates some 8500 plant species, varieties and culti-
vars from all over the world. Cartridges were taken within
three large (ca. 300 m3) greenhouses (Fig. 4c). The sampling
procedure was exactly as used in the aircraft samples. The
plants within are from various continents. They are kept at
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30◦C and high humidity. The distance to the institute where
the samples were analyzed is approximately 500 m. All sam-
ples were analyzed on the same day as their collection.

3 Results

In October 2005, measurements of isoprene as well as chi-
ral and achiral monoterpenes were made from a jet aircraft
over a pristine rainforest (5–2◦ N, 51–58◦ W). The distribu-
tion of enantiomeric monoterpenes is shown in Fig. 5 for
both the Tropical forest in South America (French Guyana,
Suriname and Guyana) and a ground based campaign in
a Boreal forest (Hyytïalä, Finland) performed in the same
year. For the Tropical dataset, the monoterpene species de-
tected in order of decreasing average mixing ratio were:
(−)-α-pinene 74 pptv, (+)-β-pinene 45 pptv, (−)-limonene
40 pptv, (+)-α-pinene 34 pptv, (+)-camphene 9 pptv, (+)-δ-
3-carene 9 pptv, (−)-camphene 6 pptv, (+)-limonene 4 pptv.
When both enantiomers are summed then the most abun-
dant monoterpene wasα-pinene accounting about 51% of
the total of measured monoterpenes, consistent with previ-
ous rainforest studies (Kesselmeier et al., 2000; Rinne et al.,
2002). In the case ofα-pinene, highlighted green in Fig. 5,
the (−)-enantiomer was discovered to be clearly enriched rel-
ative to the (+)-enantiomer in 80% of measurements over
the Tropical forest (10 flights), in most cases between 2–
8 times. Additional ground based measurements from the
top of the Tropical forest canopy in the same region also
showed an enantiomeric excess of (−)-α-pinene throughout
the diel cycle. Since both enantiomers react with OH and
O3 at exactly the same rate (Nunes et al., 2005), the domi-
nance of the (−)-α-pinene enantiomer over the Tropical for-
est must be a function of selective emission or uptake rather
than chemical removal. Sharply contrasting results were dis-
covered in the Boreal forest of Finland in April 2005 us-
ing the same instrumentation. The air over the Boreal for-
est in spring showed a clear predominance of (+)-α-pinene
for all samples, see Fig. 5. Interestingly, although at much
lower mixing ratios beta-pinene exhibited the reverse enan-
tiomeric discrimination, namely that (+)-β-pinene predom-
inated over the rainforest. The relative abundance of the
monoterpenes over the Boreal forest is comparable to pre-
vious measurements (Komenda et al., 2003; Komenda and
Koppmann, 2000; Spirig et al., 2004) and the enantiomeric
distribution similar to Scots Pine leaf tissue (Persson et al.,
1993; Sj̈odin et al., 1996, 2000; Yassaa and Williams, 2007).
As far as we are aware, the only other enantiomeric selec-
tive study of emissions in ambient air available in literature
examined individual Mediterranean tree species and showed
that for some species (−)-α-pinene dominated (e.g.Quercus
ilex L.) while for others it was (+)-α-pinene (e.g. Cypresses
and Eucalyptus) (Yassaa et al., 2001). In order to confirm
the apparent dominance of (−)-α-pinene over the rainfor-
est ecosystem we also tested three mixed-species Tropical

Fig. 5. Enantiomeric distributions of monoterpenes in Tropical for-
est (October 2005) and Boreal forest (April 2005). The enantiomers
of α-pinene are highlighted in green. Vertical bars show the range
of the measurements.

greenhouses (ca. 300 m3) in the Mainz University Botanical
garden, Germany. In all three cases an enantiomeric excess
of (−)-α-pinene was found, consistent with our findings over
the rainforest.

Most remarkable for the Tropical rainforest measurements
was the correlation of the individualα-pinene enantiomers
with isoprene, shown in Fig. 6. While (+)-α-pinene showed
no significant correlation with isoprene, the (−)-α-pinene
enantiomer showed a significant correlation in the terrestrial
boundary layer (r=0.6, altitude range 0–2 km). As the indi-
vidual monoterpene enantiomers have not been considered
in previous studies of this kind, one might reasonably as-
sume the (+)- and (−)-α-pinene correlate to some extent, or
be emitted in response to the same stimuli, however, (−)-
α-pinene correlates much better with isoprene than it does
with it’s own mirror image enantiomer (+)-α-pinene. This
suggests that while (−)-α-pinene emission is light depen-
dent like isoprene, (+)-α-pinene is temperature dependent
only and therefore unlikely to be of significance in the Trop-
ics. This hypothesis is consistent with our results from the
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Fig. 6. Correlations of (−)-α-pinene and (+)-α-pinene with iso-
prene. The data presented were taken by aircraft over the forest
between 0–2 km. The enantiomeric structures of (−)-α-pinene and
(+)-α-pinene are inserted top left in each panel.

Boreal forest which was (+)-α-pinene dominated, see Fig. 5,
since recent independent results from the same location have
found that non-enantiomerically resolvedα-pinene emission
rates could be described solely by a temperature dependent
emission algorithm (Tarvainen et al., 2005). Furthermore the
monoterpene emissions forQuercus ilex, which has been es-
tablished to be predominately (−)-α-pinene emitting (Yassaa
et al., 2001), have been shown to fit a light and temperature
dependent emission algorithm in independent studies (Plaza
et al., 2005).

4 Discussion

We assume the broad scale predominance of (−)-α-pinene
in air over the biodiverse rainforest was biologically deter-
mined. However, previous enantiomeric analyses of individ-
ual tree xylem have shown highly variable enantiomeric ra-
tios from 90% (−)-α-pinene to 80% (+)-α-pinene, even from
different parts of the same tree (Norin, 1996; Fäldt et al.,
2001). In contrast, the spatially and temporally more exten-

sive ecosystem scale data presented here shows a clear enan-
tiomeric predominance in ambient air, so what could be the
underlying reason for the clear dominance of the (+)-form
of α-pinene over the Boreal forest and the (−)-form in air
over the rainforest? The Boreal forest consists of a limited
number of species types, predominately Scots pine (Pinus
sylvestris) (Keronen et al., 2003). Thus the dominance of
(+)-α-pinene in Finland may simply reflect the emission pat-
tern of the Scots pine. More difficult to elucidate is the enan-
tiomeric preference exhibited by the very biodiverse rainfor-
est. If the enantiomeric emission predominance of any given
tree species is determined by chance one may expect a more
or less even distribution of (+)- and (−)-α-pinene emitters
over a very heterogeneous ecosystem such as the rainfor-
est. An alternative explanation to the light dependence of the
(−)-α-pinene presented in the preceding section would be
that the strongest monoterpene emitters in this region of the
rainforest are by chance predominately (−)-α-pinene emit-
ters (L. Cool, personal communication, 2006). It should,
however, be remembered that the Tropical forest samples ex-
hibiting the enantiomeric enhancement in (−)-α-pinene were
taken at different times of day (07:30–17:30 local time) and
over several hundred kilometers. The effect seen in Fig. 6 is
therefore not the result of a specific distribution of trees at a
single location, as is the case in ground based rainforest stud-
ies, rather it is consistently observable over the entire Guyana
region.

The natural world uses the air as a communication medium
and such specific volatiles can signal opportunity to insects,
pathogens and pollinators alike, or serve as a chemical de-
fense (e.g. Croteau, 1987; Baldwin et al., 2006). The ecosys-
tem relies on the atmosphere to rapidly oxidize these signal-
ing compounds to preserve chemical gradients and thus the
communication bandwidth. Trees, insects and even our own
sense of smell can distinguish between certain enantiomeric
monoterpenes since sensory organs are made up of proteins
which are also chiral and hence chirally selective (Greer and
Wainer, 2002). One possibility is that, in addition to the ther-
motolerance and antioxidant effects of (−)-α-pinene emis-
sions (Penuelas et al., 2005), it is advantageous for communi-
cation that certain monoterpenes are available throughout the
ecosystem. Some insects (e.g. the bark beetle,Ips paracon-
fusus) can transform the specific monoterpene enantiomer
(−)-α-pinene where available, into a specific product (+)-cis-
verbenol which acts as an aggregation pheromone (Renwick
et al., 1976). Such interactions are complex and usually in-
vestigated for single compounds and specific species of tree
and insect. Since it has been established that the presence of
one enantiomer can re-enforce, negate or enable the sensory
effect of the other (Mori, 2002), the widespread presence
of particular monoterpenes in the forest air may be consid-
ered as the “background noise” through which the vegetation
communicates.
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5 Conclusions

We conclude that for future atmospheric chemistry, biolog-
ical and ecological studies, the enantiomers of monoter-
penes should be regarded and measured separately as distinct
species. Moreover if insect/insect or insect/plant interactions
are being investigated the distribution in air rather than solely
in the xylem of individual species should be analysed, and
this rainforest background distribution of monoterpenes con-
sidered in future experiments. The unexpected correlations
between isoprene and theα-pinene enantiomers shown here
suggest that monoterpene responses to light and temperature
may have been confused in the past because of the co-elution
of the enantiomers. Perhaps the Tropical trees make use of
the diel cycle in solar intensity in communicating with in-
sects, whereas in Boreal latitudes the information would be
obscured by the highly variable day length and the much
stronger temperature variations. The implication is that many
leaf scale studies of temperature and light responses (Owen
et al., 2002), and large scale emission distribution measure-
ments (Klinger et al., 2002; Geron et al., 2000) should be
repeated with enantiomeric discrimination of monoterpenes,
while there is a need to better understand forest emissions
and genotype distribution. It should be noted, however, that
the measurement of enantiomeric monoterpenes represents
an increase in analytical difficulty. Since it has already been
shown through non-enantiomeric VOC measurement inter-
comparisons that such determinations can be subject to large
errors (Apel et al., 1994, 1999, 2003; Slemr et al., 2002),
particular care must be taken with these measurements in the
future. Accurate knowledge of monoterpenes will be essen-
tial for the accurate modelling of present and future atmo-
spheric hydrocarbon emissions by forests, and recognise the
sophistication of interactions between flora, fauna and the at-
mospheric environment.
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