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Abstract. Cloud droplet activation of wettable insoluble
compounds has been studied theoretically by assuming that
droplet growth happens through multilayer adsorption. The
idea is to include an adsorption isotherm in Köhler theory
instead of the solute term. This makes it possible to de-
scribe the equilibrium growth of insoluble particles and to
find out their critical saturation ratios. The critical satura-
tion ratios calculated in this way are comparable to those of
completely soluble particles at certain ranges of adsorption
isotherm parameter values. The results indicate that adsorp-
tion could cause wettable insoluble compounds to activate in
atmospheric conditions. However, more data on the adsorp-
tion parameters for wettable organic substances is needed to
confirm this conclusion.

1 Introduction

The uncertainty related to the magnitude of the indirect ef-
fects of atmospheric aerosols on cloud properties is large and
causes problems when evaluating the climate forcing caused
by anthropogenic aerosols (IPCC, 2001). This is largely due
to insufficient information about atmospheric aerosol com-
pounds and their ability to act as cloud condensation nu-
clei (CCN) and to form cloud droplets. While the effect
of water-soluble inorganic compounds on cloud formation is
well characterized, the effect of organics has remained some-
what unclear even though intensive studies have been carried
out during the recent years. The reason for this is the enor-
mous number of different organic compounds with different
chemical and physical properties present in the atmosphere.

Several laboratory studies have been carried out in order to
find out the CCN efficiencies of different single-component
organic aerosols (Cruz and Pandis, 1997; Corrigan and No-

Correspondence to:R. Sorjamaa
(riikka.sorjamaa@uku.fi)

vakov, 1999; Hegg et al., 2001; Raymond and Pandis, 2002;
Kumar et al., 2003; VanReken et al., 2005; Huff Hartz et al.,
2006) while also mixtures of inorganic and organic com-
pounds have been studied (Cruz and Pandis, 1998; Hegg
et al., 2001; Bilde and Svenningsson, 2004). As the knowl-
edge of the properties of organic compounds has increased
also theoretical steps forward have been taken. The tradi-
tional Köhler theory that describes the equilibrium growth
of a droplet as a function of supersaturation explains well
the CCN activation of water soluble inorganic compounds,
but is inadequate in explaining the same in the presence of
trace gases and for many organic compounds. Therefore
it has been modified to include the effects of surface ten-
sion (Shulman et al., 1996; Li et al., 1998; Sorjamaa et al.,
2004; Sorjamaa and Laaksonen, 2006), slightly soluble com-
pounds (Shulman et al., 1996; Laaksonen et al., 1998), and
condensable trace gases (Laaksonen et al., 1998). However,
there are still discrepancies between the theory and measure-
ments when it comes to activation of wettable and insoluble
or slightly soluble particles.

Hegg et al.(2001) studied the CCN efficiency of organic
aerosols and discovered that with sufficiently long particle
growth time, slightly soluble organic aerosols activated in ac-
cordance with the model predicted values assuming full solu-
bility. Raymond and Pandis(2002) measured the CCN activ-
ity of several organics and compared the results to theoretical
values calculated both with traditional and modified Köhler
theory. They found significant differences between the ex-
perimental and theoretical activation diameters with low sol-
ubility organics such as glutamic acid and cholesterol when
low solubility and surface tension effects were taken into
account. The differences diminished when wettable com-
pounds, that are those whose contact angle with water is zero,
were treated as completely soluble.Huff Hartz et al.(2006)
gave an explanation for such a behavior. They concluded that
some organic particles existed as liquid droplets at very low
relative humidities, which would cause erroneous results in
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Fig. 1. Schematic adsorption isotherms for wettable (solid line)
and hydrophobic (dashed line) surfaces.

CCN studies. This would be because low solubility com-
pounds would act as fully soluble due to insufficient dry-
ing of the particles in the diffusion dryer. They also found
out that predicted activation diameter is sensitive to small
changes in the solution bulk surface tension and that the sur-
face tension in the nanoparticle must be approximately 37%
lower than the surface tension of the bulk solution to gain an
agreement between the measured and theoretical activation
diameters. This conclusion is, however, contradictory to the
results from surfactant partitioning studies (Li et al., 1998;
Sorjamaa et al., 2004; Sorjamaa and Laaksonen, 2006) that
have shown surface active compounds to partition between
droplet surface and interior in such a way that for a given
overall solute concentration (total amount of solute divided
by total amount of solute plus solvent) the surface tension in
fact increases as particle size decreases.

In this paper we suggest an alternative way for wettable
organic compounds with very low solubility and/or hygro-
scopicity to activate as cloud droplets – that is, through mul-
tilayer adsorption. Already in the 1960’s adsorption was sug-
gested to be a possible cause for particle activation (McDon-
ald, 1964; Jiusto and Kocmond, 1968), but the results from
various studies have been somewhat ambiguous and the dis-
crepansies have not been fully explained (Mahata and Alofs,
1975). In our theoretical approach we essentially replace the
solute term in K̈ohler theory by an adsorption isotherm term.
As isotherm parameters for water vapor adsorbing on many
organic compounds are unknown, we have altered the pa-
rameters within reasonable bounds to investigate if adsorp-
tion could induce cloud drop activation in atmospheric con-
ditions. The results show that it is possible for adsorption to
cause certain types of insoluble particles to activate; however,

adsorption measurements for wettable insoluble compounds
are required in order to validate this conclusion.

2 Theory

Traditionally the cloud activation of insoluble particles has
been investigated with the theory of heterogeneous nucle-
ation (e.g.Fletcher, 1958). Heterogeneous nucleation only
accounts for adsorption effects in description of the kinetics
of water molecule transport to a critical water nucleus on the
particle. However, it has also been suggested that cloud ac-
tivation of insoluble particles could proceed via multilayer
adsorption (McDonald, 1964; Jiusto and Kocmond, 1968).

Adsorption depends on properties of the (solid) surface.
Consider a perfectly wettable (i.e. zero contact angle) flat
surface interacting with water vapor. As relative humidity
(RH) is increased, a point is reached where the surface is
covered with a monolayer of water molecules. Further in-
crease of RH causes multilayer adsorption, and at 100% RH
continuous condensation of water vapor follows, which in
terms of adsorption means that the number of adsorbed wa-
ter layers becomes infinite. Figure1 depicts schematically
a multilayer adsorption isotherm, i.e. surface coverage as a
function of RH, for a wettable surface (solid line).

Most surfaces, however, are not perfectly wettable: water
poured on such surfaces forms spherical caps with nonzero
contact angle between the cap and the surface. For con-
tinuous condensation of water vapor to take place on a hy-
drophobic surface (i.e. one with a large contact angle), it is
not sufficient to increase the RH to 100%. Figure1 shows
a schematic isotherm (Adamson, 1968) for adsorption on a
hydrophobic surface (dashed line): now, the RH must reach
some supersaturated value for the continuous condensation
to become possible (in practice, this requires that the ad-
sorbed spherical caps fill the surface completely).

Ideally, we would like to study the efficiency of insolu-
ble particles to act as CCN as a function of the contact an-
gle. This would require an adsorption model connecting the
thickness of the adsorbed water layer and the contact angle.
Adamson(1968) has in fact presented such model for the
purpose of calculating contact angles from adsorption data.
Unfortunately, it turns out that the Adamson model does not
behave correctly at the limit of zero contact angle. We there-
fore have to limit our calculations to more traditional ad-
sorption models, which also implies that our results strictly
speaking only apply to perfectly wettable insoluble particles.

The adsorbed amount of water can be described with sur-
face coverage (2), that is the adsorbed number of molecules
divided by the number of molecules in a monolayer. Sur-
face coverage is in this context calculated as a number of
water molecule layers (monolayers) on dry particle surface.
The thickness of water layer on top of a solid particle is
(D−Ddry)/2, whereD=droplet diameter andDdry=dry parti-
cle diameter. Dividing it by the diameter of a water molecule
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(Dw) gives the surface coverage2 = (D − Ddry)/(2Dw).
Here water molecules are approximated as spherical and in-
termolecular forces are assumed not to affect the thickness of
the water layer.

Model selection in this paper is based above all on prac-
tical issues, that is, the amount of data available. There is
plenty of adsorption data available for lower saturation ratios
and compounds that are not completely wettable but less for
high saturation ratios and even less for completely wettable
surfaces. The Langmuir isotherm is one of the most well-
known adsorption models, but it only applies to surface cov-
erages up to a monolayer. Isotherms such as BET (Brunauer,
Emmet and Teller) and FHH (Frenkel, Halsey and Hill) are
probably the most well-known multilayer adsorption models
and they were chosen as there was data available to limit the
parameter range.

In general, adsorption isotherms can be divided into
five types (Brunauer classification, seeAdamson and Gast,
1997). Type I characterizes only adsorption up to one mono-
layer. Types II and III describe multilayer adsorption, and
types IV and V capillary condensation in porous solids. Out
of the multilayer isotherm types, type III is relatively rare,
and we only consider type II isotherms (both BET and FHH
belong to this class).

BET isotherm gives the surface coverage as a function of
saturation ratio of gas (S):

2 =
cS

(1 − S)(1 − S + cS)
, (1)

wherec=constant related to the heat of adsorption. The BET
model is based on the assumption that average heat of ad-
sorption equals the heat of condensation from the second
layer upwards. Furthermore, all adsorption sites on the ad-
sorbing surface are assumed equal, each molecule adsorbed
in a particular layer is a potential site for adsorption in the
next layer, and there are no horizontal interactions between
adsorbed molecules. Equation (1) is valid at low pressures,
where adsorption is proportional to gas partial pressure.

The idea of FHH isotherm

S = exp(−A/2B) (2)

is that the potential field at the surface of a solid decreases
with a power of distance. The model is applicable when
pressures are close to saturation. The parameterA character-
izes interactions between adsorbed molecules and between
the surface and adjacent adsorbate molecules (i.e. those in
the first monolayer).B characterizes the attraction between
the solid surface and the adsorbate in subsequent layers. The
smaller the value ofB, the greater the distance at which the
attractive forces act. The values ofA andB can be calculated
for simplified model potentials (e.g. Van der Waals), but in
practice, with real adsorbates and adsorbents, they must be
treated as adjustable parameters, and the ranges of their val-
ues can only be deduced from experimental data.

The traditional K̈ohler theory describes the saturation ra-
tio of water vapour over a solution droplet of diameterD to
depend on water activity (aw) and droplet curvature (Kelvin
effect)

S = aw exp

(
4σMw

RTρwD

)
(3)

where σ=surface tension,Mw=molar weight of water,
R=universal gas constant,T =temperature, andρw=mass
density of water. K̈ohler theory is an equilibrium theory ne-
glecting the droplet growth kinetics. Furthermore, it is valid
for soluble compounds, such as inorganic salts, but not for
compounds with very low or zero solubility. For such com-
pounds we assume adsorption to be the phenomenon that
causes particle to grow. Therefore, by substituting theaw

with theS obtained from e.g. the FHH adsorption isotherm,
the equilibrium saturation ratio for a solution droplet is ob-
tained from

S = exp

(
4σMw

RTρwD

)
exp(−A2−B). (4)

In general, the FHH isotherm in the above equation can
of course be replaced by any desired multilayer adsorption
isotherm. (A few days before the submission of this paper
it became to our knowledge that B. Henson has presented a
similar theoretical idea in a manuscript submitted elsewhere.)

Molecular interactions that would affect monolayer thick-
ness have been disregarded due to lack of explicit data. Fur-
thermore, dry particles are assumed spherical and the ef-
fect of surface roughness has not been considered explic-
itly, although it might affect the results by enhancing ad-
sorption and supressing critical supersaturation (McDonald,
1964; Mahata and Alofs, 1975). However, below we present
calculations of the critical supersaturation as a function of
the adsorption isotherm parameters, and surface roughness,
porosity etc. can be thought of as factors affecting the values
of those parameters.

3 Results

Because of the scarcity of adsorption data of water vapor on
wettable organic surfaces, we explore the behavior of our the-
ory as a function of the FHH parametersA andB. As shown
by Hill (1949) the FHH model can be derived assuming an
idealized system of spherical molecules where the surface
interactions on the adsorbed liquid vanish after a few layers,
whence the parameterB becomes equal to 3. In real sys-
tems,B is lower. As indicated already byHalsey(1948) and
later confirmed by others (see e.g.Carrot and Sing, 1989),
B for nitrogen has a value close to 2.7 regardless of sub-
strate material. For other substances, even lowerB values
have been observed that can also depend on the substrate.
Halsey(1948) suggested, based on the data ofBoyd and Liv-
ingston(1942), thatB equals 1 for water vapor adsorption on
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Fig. 2. Köhler curves for a 100 nm dry particle assuming full sol-
ubility (traditional Köhler theory, solid lines) and adsorption (FHH
isotherm, broken lines)
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Fig. 3. Köhler curves for a 100 nm dry particle assuming full sol-
ubility (traditional Köhler theory, solid and dotted line) and adsorp-
tion (BET isotherm with parameterc=2, dashed line)

graphite.Romakkaniemi et al.(2001) studied the adsorption
of water on small sodium chloride and ammonium sulphate
particles, compounds that are presumably completely wet-
table due to their high solubilities, and found atypical values
for FHH parameters when relative humidity was below the
deliquescence point. There is a possibility that the small size
of the particles may have affected the parameter values. In
any case, they foundB values of 0.67 and 0.93, for sodium
chloride and ammonium sulphate, respectively (A had val-
ues of 0.91 and 0.68). Halsey(1948) assumed thatA can be
taken as unity for practical reasons, while values on the or-
der of 2.5 have been found for notrogen adsorbing on sand
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Fig. 4. BET isotherms with four different values of parameterc.

0 0.2 0.4 0.6 0.8 1
10

−2

10
−1

10
0

10
1

10
2

10
3

Saturation ratio

C
ov

er
ag

e

 

 
A = 0.1, B = 1
A = 1, B = 1
A = 2, B = 1
A = 3, B = 1
A = 0.1, B = 3
A = 1, B = 3
A = 2, B = 3
A = 3, B = 3

Fig. 5. FHH isotherms with different values of parametersA and
B.

(Khachikian and Harmon, 2000). Reflecting this span of lit-
erature values, we examine the range 0.5<B<3 below, and
A is taken to be between 0.1 and 3. It is to be noted that
the range of parameters chosen for calculations is based on
adsorption studies made on inorganic compounds merely be-
cause adsorption parameters for organics were not available.
Nevertheless, we have no reason to assume the adsorption pa-
rameters for organic compounds to differ substantially from
those of inorganics.

Figures2 and3 present equilibrium growth curves (Köhler
curves) for an initially 100 nm dry particle assuming droplet
growth by adsorption. For comparison we also present
curves calculated for fully soluble substances with two
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different molar weights, 50 and 400 g mol−1 (assuming a
density of 1 g cm−3, these correspond to molecular volumes
of 0.83·10−28 m3 and 6.64·10−28 m3, respectively). In Fig.2
adsorption is described with the FHH isotherm using three
sets of parameters as an example. With these parameters
the critical supersaturation is comparable with the one cal-
culated for a fully soluble compound with molar weight of
400 g mol−1.

Figure3 shows also the K̈ohler curves for the fully soluble
particles together with an equilibrium adsorption curve cal-
culated with the BET model instead of FHH. The resulting
BET curve is in reasonable agreement with the FHH curves
of Fig. 2. However, in case of BET, the maximum supersat-
uration depends very weakly on the value of the parameter
c. The reason for this can be seen in Figs.4 and5, where
we show BET and FHH isotherms at different parameter val-
ues. Regarding critical supersaturation, the crucial factor is
the behavior of the isotherm at RH’s very close to 100%. It
can be seen that the BET isotherms become indistinguishable
after the water coverage is a few tens of monolayers, whereas
the FHH isotherms converge only at much higher coverages.
However, it might be that adsorption occurs in a very similar
manner for all wettable compounds when relative humidity
is close to 100%. As far as we know, there is no experimen-
tal data to confirm or deny this. Our results indicate that the
FHH distinguishes the adsorption behavior at high RH’s on
different types of substrates better, and thus we present fur-
ther calculations for FHH only.

Figure6 presents curves for critical supersaturation as a
function of the parametersA andB. As the value of parame-
terB increases and/or parameterA decreases, the critical sat-
uration ratio required for the droplet to activate increases as
well. Broken lines represent the critical saturation ratios for a
completely soluble 100 nm particle again with two different
molar weights. It is seen from the figure that when the value
of parameterA approaches unity andB diminishes close to
unity, the critical saturation ratio for a droplet growing by
adsorption becomes reasonable and comparable to those ob-
tained for a completely soluble compound. Thereby, it could
be possible for an insoluble wettable compound to activate
as a cloud droplet assuming that FHH isotherm parameters
close to unity are realistic. In this regard, the assertion of
Halsey(1948) that such parameter values apply for water ad-
sorption on graphite is interesting. However, reliable liter-
ature data for water vapor adsorption on perfectly wettable
organic surfaces is scarce or nonexistant, preventing any firm
conclusions at this point.

4 Conclusions

The prevailing understanding is that the equilibrium growth
of a droplet can be described with traditional Köhler theory
or with modified K̈ohler theory when the compound in ques-
tion is either water soluble or slightly soluble, respectively.
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Fig. 6. Critical saturation ratio for a 100 nm particle as a function of
FHH isotherm parameterB. Horizontal lines represent the critical
supersaturation calculated with traditional Köhler theory assuming
full solubility for particles with molar weight of 50 g mol−1 and
400 g mol−1

These theories generally consider the effect of droplet cur-
vature and the effect of dissolved material that decreases the
vapour pressure of water (solute effect). In this paper we
have presented a theoretical framework that sheds light on
the activation of insoluble wettable particles, a problem that
has remained unresolved for decades. The growth and activa-
tion of such particles was described by substituting the solute
effect in Köhler theory by a term that can be obtained from
any multilayer adsorption model. In this work we consid-
ered the FHH and BET isotherms, and found that the FHH
isotherm is probably more useful from the cloud drop acti-
vation viewpoint as it is much more flexible than the BET
isotherm at very high relative humidities.

As adsorption data for atmospherically relevant, insoluble,
but wettable compounds is scarce, several sets of FHH ad-
sorption parameters were used in calculations of critical sat-
uration ratios. It was found that with certain parameter val-
ues the critical saturation ratio of a 100 nm insoluble particle
was close to those of completely soluble particles. Whether
or not such FHH parameter values are realistic, however, re-
mains unclear, and is a subject of future study.
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