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Abstract. The simulation of convection, lightning and con-
sequent NOx emissions with global atmospheric chemistry
models is associated with large uncertainties since these pro-
cesses are heavily parameterised. Each parameterisation by
itself has deficiencies and the combination of these substan-
tially increases the uncertainties compared to the individ-
ual parameterisations. In this study several combinations
of state-of-the-art convection and lightning parameterisations
are used in simulations with the global atmospheric chem-
istry general circulation model ECHAM5/MESSy, and are
evaluated against lightning observations. A wide range in
the spatial and temporal variability of the simulated flash
densities is found, attributed to both types of parameteri-
sations. Some combinations perform well, whereas others
are hardly applicable. In addition to resolution dependent
rescaling parameters, each combination of lightning and con-
vection schemes requires individual scaling to reproduce the
observed flash frequencies. The resulting NOx profiles are
inter-compared, however definite conclusions about the most
realistic profiles can currently not be drawn.

1 Introduction

Lightning represents one of the most energetic phenomena
in the Earth’s atmosphere. In the troposphere flashes are the
only natural process that can break up the highly stable triple
bonds of molecular nitrogen, transforming N2 into reactive
nitrogen species which strongly influence the chemistry of
the upper troposphere (e.g.Labrador et al., 2005; Schumann
and Huntrieser, 2007, and references therein). Therefore, an
accurate representation of lightning in global models of the
atmosphere is crucial. Additionally, lightning represents an
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important factor in the ignition of wild fires (e.g.Jacobson,
2002).

In contrast to small scale process models (e.g.Barthe
et al., 2005) atmospheric chemistry general circulation mod-
els (AC-GCMs) generally do not represent the global electri-
cal circuit, e.g. the electrical field and the detailed processes
involved in cloud electrification and discharges. Instead the
lightning and the subsequent NOx formation are determined
with the help of (semi-)empirical parameterisations. Since
it is difficult to measure such emissions in situ or by remote
sensing, there is a high uncertainty in the total amount of
NOx globally produced by lightning, i.e. ranging from 2 to
8 Tg N/yr (e.g.Schumann and Huntrieser, 2007).

The occurrence of flashes on the other hand can be ob-
served from satellites, e.g. the LIS/OTD missions (Christian
et al., 1999, 2003; Thomas et al., 2000), and an extensive cli-
matology has been established over the last decade and has
been used for comparisons with parameterisations. Even if
the occurrence of flashes could be predicted accurately by
the model, uncertainties in the NOx emissions remain, since
the amount of NOx produced per flash is not a constant. It
varies with flash strength, extension, type, branching, and
additional aspects. The amount of NOx per flash in a “typ-
ical thunderstorm” varies by more than an order of magni-
tude ((2−40)×1025 NO molecules per flash,Schumann and
Huntrieser, 2007). Nevertheless, the accurate prediction of
flash occurrence is a prerequisite to estimate lightning pro-
duced NOx emissions in the upper troposphere.

A problem with most parameterisations (some will be de-
scribed in detail below) is that they are mainly derived em-
pirically from correlations between other observable quan-
tities. However, their applicability to the global scale and
extended time periods of several years is limited since the
heterogeneity of phenomena can only be represented approx-
imately. Nevertheless, these parameterisations are used in
global AC-GCMs since the assimilation of observed flashes
at every model time step is computationally not feasible and
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not necessarily consistent with the desired occurrence of con-
vection in the model. Furthermore, for the calculation of
future scenarios such techniques are not applicable and the
lightning has to be parameterised.

Petersen and Rutledge(1998) found a relationship be-
tween convective precipitation and lighting with the goal to
estimate the rain rate from observed flashes. Even though
a precipitation estimate can be made from lightning events,
this study concludes that this is only valid for long-term av-
erages, and not to individual precipitation and related light-
ning events (Petersen and Rutledge, 1998). Further studies
of Petersen et al.(2005) combining satellite observations of
precipitation ice water content and flashes show that the cor-
relation of these two parameters can be applied globally, al-
most for individual events, but unfortunately convection pa-
rameterisations include too strongly simplified cloud micro-
physics so that the ice water content is difficult to determine
accurately. Therefore, the implementation of a lightning pa-
rameterisation for GCMs based on the ice water content is
not straight-forward.

On the other hand, the simulation of lightning based on
convection parameterisations offers the possibility to investi-
gate how realistic these schemes describe the processes. In a
previous study (Tost et al., 2006) we analysed convection on
a global scale with respect to temperature and the hydrologi-
cal cycle using several convection parameterisations, but did
not discuss the convective dynamics, e.g. the convective mass
fluxes. With the help of the updraft based lightning schemes
(details below), the updraft strength can be correlated to the
observable quantity of flashes.

The next section introduces the model and the parameter-
isations used, Sect.3 the simulation setup, Sect.4 presents
the analysed results, and the conclusions are given in Sect.5.

2 Model description

In this study the AC-GCM ECHAM5/MESSy (E5/M1)
(Jöckel et al., 2006) has been applied. It is based on
the general circulation model ECHAM5 (Roeckner et al.,
2006) (version 5.3) and the Modular Earth Submodel Sys-
tem (Jöckel et al., 2005) (version 1.3).

Most of the meteorological processes are calculated by
ECHAM5 based on a spectral representation of the prog-
nostic variables vorticity, divergence, temperature, and the
logarithm of the surface pressure, as well as grid point repre-
sentations of specific humidity, cloud water, and cloud ice.
In the vertical a hybrid pressure coordinate system is ap-
plied. The processes of radiation and cloud microphysics are
parameterised, as described in the ECHAM5 documentation
(Roeckner et al., 2003, 2004).

Additionally, the MESSy infrastructure and some of the
submodels, i.e. an extended convection submodel (Tost et al.,
2006) containing additional parameterisations, an extended
lightning NOx emission submodel (LNOX) and the diagnos-

tic tropopause and planetary boundary layer height submodel
(TROPOP) have been used. The output frequency for the
lightning and convection data for this study is set to hourly
average values, and to six hourly averages for the other me-
teorological data.

2.1 Convection parameterisations

The convection parameterisations included in the CON-
VECT submodel are:

– TheTiedtke(1989) scheme with modifications byNor-
deng(1994) (further denoted as T1). This scheme is
used as the default convection parameterisation.

– The convection parameterisation of the operational
ECMWF model (IFS cycle 29r1b (Bechtold et al., 2004,
and references therein), denoted as EC), which is a fur-
ther development of theTiedtke(1989) scheme;

– The Zhang-McFarlane-Hack scheme (Zhang and Mc-
Farlane, 1995; Hack, 1994) (ZH) as applied in the
MATCH model (Rasch et al., 1997; Lawrence et al.,
1999) and a version with an extended evaporation
scheme (Wilcox, 2003), denoted as ZHW;

– The scheme ofBechtold et al.(2001), denoted as B1.

For a more detailed comparison of these schemes, their de-
tailed configurations and extensions, and their influence on
the hydrological cycle we refer toTost et al.(2006) andTost
(2006).

2.2 Lightning parameterisations

The LNOX submodel applied in this study encompasses the
widely used lightning NOx parameterisation byPrice and
Rind (1992) with further updates (Price and Rind, 1993,
1994; Price et al., 1997a,b) based on the correlation between
the convective cloud top height (in the model determined as
the altitude of the top level, in which a convective updraft
mass flux is calculated) and the occurrence of flashes derived
from regional observations (Pcth):

Fc = 3.44× 10−5
· H 4.90 (1)

Fo = 6.40× 10−4
· H 1.73,

with Fc representing the continental andFo the oceanic flash
frequencies andH the convective cloud top height in kilome-
tres above ground. For each grid box the total flash frequency
is determined with the fractional land-sea mask.

In addition, the parameterisation byGrewe et al.(2001) is
included, linking updraft velocity as a measure of convective
strength and associated cloud electrification with the flash
frequency (Gupdr):

F = 1.54× 10−5
· (w · d0.5)4.9, with : (2)
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F is the flash frequency,w the updraft velocity,hi the grid
box height,d the cloud thickness,Mi the updraft mass flux
andρi the air density. Note that there is no differentiation
between land and sea, assuming that the weaker intensity of
convection (and consequently less intense cloud electrifica-
tion) over the ocean is represented adequately by the convec-
tion parameterisation.

Allen and Pickering(2002) propose two additional poly-
nomial parameterisations for lightning occurrence, one also
based on the updraft strength at a specific altitude (Aupdr):

Fcg=a + b · M+c · M2
+d · M3

+e · M4, (3)

and another on the amount of convective precipitation at the
surface (Aprec):

Fcg=ai+bi · P+ci · P 2
+di · P 3

+ei · P 4 (4)

with M the updraft mass flux at an altitude of 0.44σ 1, and P
the convective precipitation at the surface (only for precipita-
tion stronger than 7 mm/day). The parameters2 are constants
taken fromAllen and Pickering(2002) without any modifi-
cations, considering the lightning scheme was proposed as a
scheme for global models.

For the total flash frequency (over both land and ocean)
calculated with the Aprec scheme a weighting with the frac-
tional land-sea mask has been applied (similar to the Pcth
scheme). Note that these polynomial parameterisations de-
termine the cloud-to-ground flashes (Fcg) only, whereas the
first two approaches give the total flash frequency (cloud-to-
ground and in-cloud). Nevertheless, with the help of the re-
lationship between cloud-to-ground and total flash frequency
by Price and Rind(1993), for all four schemes the total
amount of flashes and the fractionation into cloud-to-ground
and in-cloud can be determined.

The amount of NOx emitted by lightning is cal-
culated using a number of 6.7×1026 molecules/flash
(≈15.6 kg N/flash) for cloud-to-ground flashes. The ratio of
NOx production by IC flashes is lower by a factor of 0.1.
Both these numbers are uncertain, but are within the range
proposed bySchumann and Huntrieser(2007).

1In this caseσ is the ratio between pressure and surface pressure.
2The indexi in Eq. (4) represents land (l) or ocean (o), the val-

ues are as follows:a=−2.34E−2, b=3.08E−1, c=−7.19E−1,
d=5.23E−1, e=−3.71E−2 andal=−3.75E−2, bl=−4.76E−2,
cl=5.41E−3, dl=3.21E−4, el=−2.93E−6, andao=−5.23E−2,
bo=−4.80E−2, co=5.45E−3, do=3.68E−5, eo=−2.42E−7;
the corresponding units are chosen such that after the multiplica-
tion with the respective quantity the unit of a flash frequency (1/s)
is achieved.

Fig. 1. Observed annual average flash density in flashes/(km2 day)
for the year 1999 from LIS/OTD data from 60◦ S to 60◦ N.

3 Simulation setup

A set of five simulations has been performed with a hori-
zontal resolution of T42 (≈2.8◦

×2.8◦ of the corresponding
quadratic Gaussian grid) and 31 layers in the vertical direc-
tion (the midpoint of the uppermost layer is at 10 hPa). In
each simulation all four lightning parameterisations are ap-
plied simultaneously and the emitted NOx is vertically dis-
tributed according to a parameterisation ofPickering et al.
(1998). Horizontal resolution dependent scaling factors for
the flash densities have been applied as proposed in the
original articles describing the lightning parameterisation
schemes. The individual simulation setups differ only with
respect to the convection scheme selected via a namelist.
Consequently, all simulations have been performed with the
same executable. Because of the feedback of the convection
on the atmospheric dynamics, the meteorology is different
for each simulation.

The simulation has been performed for the year 1999, with
several months of model spin-up. To overcome the issue of
different meteorology in the various simulations the “nudg-
ing” (Newtonian relaxation) technique (Jeuken et al., 1996;
van Aalst et al., 2004; Jöckel et al., 2006) with ECMWF
operational analysis data of vorticity, divergence, tempera-
ture and surface pressure for the year 1999 is applied in the
free troposphere with a similar nudging profile as inJöckel
et al. (2006). Even though the influence of the nudging is
relatively small (the nudging coefficients are comparable to
Jöckel et al., 2006), it is sufficient to achieve similar meteo-
rological patterns as observed in this specific year.

4 Results

Observational datasets

Observed lightning data is used from the LIS (Christian
et al., 1999; Thomas et al., 2000) and OTD (Christian
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Table 1. Scaling factors for the combination of lightning and con-
vection parameterisations.

P cth G updr A updr A prec

T1 5.92 4.28 4.22 2.78
EC 2.14 1.37 5.26 5.52
ZH 0.87 434.73 148.18 24.27

ZHW 0.74 227.32 114.95 18.69
B1 1.36 1.35 20.74 3.97

et al., 2003) satellite instruments3. In this study the grid-
ded products of the time series for the year 1999 (LIS-
TOTD LRTS V2.2) are applied as well as annual and daily
climatologies (LISTOTDHRADC V2.2 at high (0.5◦) and
LISTOTD LRADC V2.2 at low (2.5◦) resolution).

Additionally, satellite data from the Tropical Rainfall
Measuring Mission (TRMM) (Kummerow et al., 2000), i.e.
the 3A25 and the 3B42 products4, are used for the compari-
son of lightning data with observed convective cloud prop-
erties (convective precipitation, cloud top height, i.e. the
convective storm height). This is suitable since all satellite
products are obtained from the same orbital platform. Even
though the observations are also associated with uncertain-
ties (Christian et al., 1999; Thomas et al., 2000; Christian
et al., 2003) resulting from the sampling frequency, group-
ing of flashes, a bias of the sensor, etc., in this study these
factors are ignored and the measured data is treated as being
accurate.

4.1 Annual average lightning distributions

Figure 1 shows the annual average flash density for the
year 1999 taken from the long-term time series of ob-
served flashes from combined LIS and OTD data, i.e. the
LISOTD LRTS V2.2 dataset. The displayed region is re-
stricted to 60◦ S to 60◦ N because of the viewing angle of the
satellite. The observed maxima occur over the continents,
especially in Central Africa, with secondary maxima over
South America and the islands of the maritime continent.
Note that the colour scale of Fig.1 is logarithmic, because
of the large contrast in flash densities over the continents and
the oceans.

Figure 2 shows the simulated flash densities with the
different convection and lightning parameterisations. The
colour scale is identical to that of Fig.1. However, the sim-
ulated flash frequency had to be rescaled with the average
number of flashes per second over the globe (48.81 flashes/s

3Obtained from the Global Hydrology Resource Centre:http:
//thunder.msfc.nasa.gov/data/.

4Monthly mean gridded data (3A25) and 3 hourly gridded pre-
cipitation (3B42) from the precipitation radar, a 13.8 GHz radar, one
of three rain instruments on board the TRMM satellite, with the pos-
sibility to retrieve three-dimensional precipitation characteristics.

for the year 1999, regridded on the model coordinates, from
60◦ S to 60◦ N). The scaling factors for the different model
setups are listed in Table1.

This scaling, in addition to the resolution dependent
rescaling mentioned above in the formulation of the lightning
parameterisation, is needed for comparison and forces the re-
sults into the observed range. These scaling factors differ by
almost three orders of magnitude, showing the large varia-
tion of the input data from the different convection schemes
for each of the lightning parameterisations.

Using the Pcth parameterisation based on the convective
cloud top height (Eq. (1), first column of Fig.2) all simula-
tions show the strong contrast between ocean and land. How-
ever, the oceanic flash densities are systematically too low by
approximately a factor of 1.5 to 10, independent of the choice
of the convection scheme5. This originates from the weaker
exponential dependency of the cloud top height and the cal-
culated flash frequency (compare Eq.1). Consequently, the
continental flash densities are overestimated. The maximum
values occur mainly over South America, whereas the high
flash densities over Africa are captured only with the ZH, the
ZHW and the B1 simulation (lower three panels of the first
column). The other simulations show lower average cloud
top heights over Central Africa mainly caused by a lower
number of convective lightning events in that region. Except
for the EC simulation the simulated lightning activity over
the maritime continent is substantially overestimated. Since
the cloud top height does not differ significantly between
land and sea grid cells in that region, this is a result of the
different treatment in the Pcth convection parameterisation.
Over the tropical oceans the ZH and ZHW simulation are
characterised by substantially higher cloud top heights com-
pared to the other simulations. From the parameterised flash
frequencies this is not obvious, since the oceanic flash fre-
quency shows a lower dependence with the vertical extension
of the cloud, as mentioned above. The annual average cloud
top height (mean over convective and non-convective cases)
is lowest in T1, slightly higher in EC and B1 and highest in
ZH and ZHW. This results partly from deeper convection (as
analysed inTost, 2006), but also in the frequency of lightning
producing convective events: in the ZH and ZHW simulation
in the tropics the convection scheme triggers lightning activ-
ity in 60% to 100% of the time due to the high convective
cloud tops. This is caused by the too frequent activation of
the adjustment scheme ofHack (1994) of the ZH convec-
tion parameterisation (compareTost et al., 2006). This value
is much lower for the other three model configurations (T1,
EC, and B1). In the midlatitudes of the northern hemisphere
the simulated flash density in all simulations is lower than
observed, most pronounced in the southern part of the USA,

5The average values of the ratioffsim/ffobsover the ocean for
T1 are≈0.54, for EC≈0.46, for ZH and ZHW≈0.79, and for
B1≈0.37, but local differences can be substantially larger.
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Fig. 2. Simulated annual average flash densities from 60◦ S to 60◦ N in flashes/(km2 day). The rows represent the different convection
schemes (T1, EC, ZH, ZHW, B1 from top to bottom), whereas the columns depict the different lightning parameterisations (Pcth, G updr,
A updr, A prec from left to right).

caused by too low lightning activity during the boreal winter
months.

The updraft based lightning parameterisation ofGrewe
et al.(2001) (Eq. (2), second column of Fig.2) overestimates
the lightning activity over the oceans compared to the ob-
servations. The too high flash frequencies result from the
similar strength of the convective mass fluxes over ocean and
land and not – as required by the basic assumptions of the
lightning scheme – from less intense convective activity over
the ocean. This is a general weakness of convective bulk
mass flux schemes (it appears in all five simulations) that
only compute mean updraft mass fluxes for the whole grid
cell. These schemes consequently cannot differentiate be-
tween strong convection over a small (subgrid-scale) area
and weak convection over a large (subgrid-scale) area. To

overcome this weakness of the convection schemes in the
lighting parameterisation different parameters should be cho-
sen for land or ocean grid boxes. However, using the un-
modified scheme ofGrewe et al.(2001) without differentia-
tion between ocean and land the overestimation must be at-
tributed to the convection parameterisations. In combination
with the T1 and EC convection schemes the simulated flash
density generally represents the observed patterns except for
the overestimation over the tropical oceans. Furthermore, the
African maximum is underestimated. The T1/Gupdr com-
bination (second panel in the first row) yields only slightly
lower values in the southern USA than observed, whereas
in Siberia the occurrence of flashes is significantly under-
estimated. The simulations with the ZH and ZHW convec-
tion schemes are characterised by significant lightning in the
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midlatitude storm tracks, with an almost negligible land-sea
contrast, and stronger differences over land and sea in the
tropics and subtropics. The first aspect is likely caused by
the activation of theHack(1994) convective adjustment that
is part of the ZH and ZHW convection scheme, leading to
more convective activity and less large-scale clouds. The
second aspect is caused by the less frequent triggering of the
deep convection part (Zhang and McFarlane, 1995) over the
oceans. In some regions, especially over mountain slopes
(Himalaya, Andes) very high flash densities are calculated.
The latter effect results mainly from the convection scheme
which computes high convective mass fluxes in these loca-
tions (orographically forced convection). The combination
of the B1 convection with the Gupdr lightning results in
very spotty flash occurrences, which do not reproduce the
observed flash distribution well. This is caused by rare, un-
realistically strong convective updraft events, produced by
theBechtold et al.(2001) convection scheme. Consequently,
due to the strong exponential dependency of the lightning
frequency on the vertical velocity, this yields overestimated
flash densities. Applying the same mass fluxes with the
A updr scheme (using the updraft strength at 0.44σ , i.e.
approx. 500 hPa) these spikes do not occur (compare third
panel of the last row). This indicates that the intense flash
frequencies are likely caused by the occurrence of unrealisti-
cally strong shallow convection that affects the mean vertical
velocity (according to Eq.2c) within the clouds. The overall
flash frequency with this lightning parameterisation is lower
than with the Pcth approach in combination with all con-
vection schemes (highest values still with ZH and ZHW over
the continents), but the differences in the number of lightning
events between the simulations are smaller.

Using the polynomial function of updraft for the flash fre-
quency (Aupdr, Eq.3), the lightning over the ocean is even
more strongly overestimated as with Gupdr, and the con-
tinental maxima are substantially underestimated when it is
applied in combination with the T1 and EC convection (up-
per two panels of the third row of Fig.2). Furthermore, the
extratropical continental lightning density is too low. In com-
bination with the ZH and ZHW convection a similar distribu-
tion as with the Gupdr occurs with the maxima at the same
locations, however, not capturing the observed ones, espe-
cially over the continents. This cannot be attributed to shal-
low convection, but rather to the total number of convective
events which produce lightning. Moreover, the updrafts in
the middle and upper troposphere are substantially weaker
compared to the other convection schemes, which leads to
the high rescaling factors for these combinations (Table1).
Yet they are more widely distributed over large regions. As
mentioned above, the strong activity in the storm tracks re-
sults from the setup of the convection parameterisation, i.e.
the too frequent activation of theHack(1994) convective ad-
justment instead of the deep convection ofZhang and Mc-
Farlane(1995). This results in the overestimation of the
convection activity (compareTost et al., 2006). In contrast,

the combination with the B1 convection results in a much
smoother lightning distribution. The absolute maximum in
Central Africa is shifted too far northward, and the flash den-
sity is overestimated over the tropical oceans, while localised
events such as with Gupdr do not occur if the mass flux at
about 500 hPa is used to determine the number of flashes.
The resulting flash densities of the Aupdr lightning param-
eterisation show some similarities with respect to the global
annual average distribution with the T1, EC and B1 convec-
tion. Consequently the typical features, i.e. the overestima-
tion over the ocean and underestimation of the continental
maxima are likely to be attributed to the lightning scheme.

The precipitation based approach ofAllen and Pickering
(2002) (A prec, Eq.4) combined with the T1 convection (up-
per panel in the last row) does not reproduce the observed
land-sea contrasts similarly to the T1/Aupdr setup. The
maximum in Central Africa is underestimated as well as the
flash densities in Europe, North America and Siberia. On the
other hand, the values in the ITCZ over all oceans, the warm
pool region and the SPCZ are overestimated by a factor of
5 to 10 resulting from an overestimated convective precipi-
tation yield (Tost et al., 2006). In combination with the EC
convection scheme the oceanic flash density is overestimated
compared to the observations, but less significantly than with
the T1/A prec approach. The lower oceanic lightning activ-
ity results from the lower total amount of convective pre-
cipitation produced in this regions than with T1 (compare
Tost et al., 2006). In South America slightly higher values
than observed are simulated, and the maximum over Central
Africa is poorly reproduced. Similarly to T1, the occurrence
of lightning in the continental midlatitudes of the Northern
hemisphere is underestimated, since the contribution of con-
vective precipitation during frontal passages is too low, i.e.
the midlatitude precipitation associated with frontal nimbo-
stratus is not mainly produced by the convection but by the
large-scale condensation scheme in these two model configu-
rations. The ZH and ZHW convection schemes, which yield
a strong difference between precipitation over land and sea
(Tost et al., 2006), capture the distribution slightly better, but
strongly overestimate the flash frequency over the tropical
continents (especially ZH). On the other hand, in the midlat-
itudes continental lightning is underestimated, although the
differences to the observations are lower than with the other
convection schemes. However, since the precipitation dis-
tribution of neither ZH and ZHW does correspond well to
the observations (Tost et al., 2006), a better agreement with
the observed flash densities is likely the result of compensat-
ing “misconceptions” in both lightning and convection pa-
rameterisations. The combination of B1 and Aprec results
in a more realistic distribution of the annual average flash
density. Even though the maximum over Central Africa is
underestimated, and the values over the tropical oceans are
overestimated, the general patterns are captured quite well
(comparable to the T1/Gupdr combination) without any ex-
treme values over specific locations. This is a direct result
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Fig. 3. Taylor diagram for the various combinations of convec-
tion and lightning schemes compared with LIS/OTD data, showing
the spatial standard deviation of the calculated flash densities nor-
malised with the standard deviation of the observationsσ ? (on the
radial axis), the spatial correlationR (the angle) and the correspond-
ing RMSE (distance from the point marked with the open box with
correlation of one and normalised standard deviation of one). The
different convection schemes are depicted by the colours, and the
lightning parameterisations by the symbols.

of the relatively good agreement between the simulated and
observed precipitation patterns.

A statistical comparison of the observed and simulated
annual average flash densities is shown in the Taylor dia-
gram in Fig.3 (Taylor, 2001). In combination with the Pcth
scheme the overall performance of all convection schemes
is very similar (all “X”s are closely together, the green and
the red ones overlay). This indicates a very robust behaviour
of this approach: even though the cloud top height differs
and depends on the scheme, the average distribution agrees
well in all simulations. The correlation (R≈0.75 to 0.8) is
highest for these combinations, but the spatial variation is
slightly overestimated (σ ?

≈1.2 to 1.4 with σ ?
=σsim/σobs).

The rescaling factors of Table1 therefore result mainly from
the different frequencies of lightning producing convective
events, which is much higher in case of the ZH and ZHW
convection schemes. The T1/Gupdr combination achieves
a similar spatial correlation, and the lowerσ ? indicates an
even better performance in this simulation setup. However,
this approach is not working well with the other convection
parameterisations since it is highly dependent on the vertical
updraft velocity and easily deteriorated by less realistic con-
vective dynamics. WhileR is much lower for EC/Gupdr,σ ?

Fig. 4. Parameterised annual average flash density (in flashes/(km2

day)) calculated from TRMM monthly mean cloud top height data
for the year 1999, applying the Pcth scheme (upper panel) and cal-
culated from TRMM 3 hourly precipitation data using the Aprec
parameterisation (lower panel). The lightning activity has been
rescaled to the observations (see text).

is close to one, whereas the symbols for ZH, ZHW and B1
are out of scale (σ ?>2). The polynomial function of light-
ning and mass fluxes at about 500 hPa is slightly more robust,
but shows a large scatter in combination with the convection
parameterisations. None works as well as the Pcth approach
with respect to both spatial correlation and variation. The
precipitation based approach underestimates the spatial vari-
ation for T1, EC, and B1, but overestimates it for ZH and
ZHW. This results from the disagreement of the precipitation
distributions with the observations of the latter two schemes
(Tost et al., 2006). Especially the combination B1/Aprec
works almost as well as T1/Gupdr in capturing the observed
flash density distribution.

4.2 Applicability of lightning parameterisations

To check the applicability of the lightning parameterisations
monthly mean values for the convective storm height6 be-
tween 40◦ N and 40◦ S are used with the Pcth scheme as
depicted in the upper panel of Fig.4.

Using the cloud top based parameterisation with the ob-
served cloud top heights (5 and 0.5 degree resolution) and
applying a similar rescaling (for the high resolution data fig-
ure not shown) the maximum in Central Africa is well re-
produced with respect to shape, position and strength for the
low resolution data (for the high resolution data, the maxi-
mum is located too far northward), whereas in the northern

6Data from the TRMM 3A25 data set, derived from the precipi-
tation radar.
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part of South America lower values than observed are calcu-
lated. Additionally, the highest flash occurrences over South
America are shifted southward and to the Andes. In North
America the highest flash density is not calculated only in
the Southeast, but also more to the West. In Indonesia, flash
rates similar to the observed are calculated from the observed
cloud top height. The flash densities over the ocean are much
smaller than over the continents, in agreement with the ob-
served land-sea contrast. Even though high cloud top heights
in the Himalaya region are observed from TRMM, the re-
sulting flash densities are relatively low due to the high sur-
face elevation which leads to a smaller vertical extension of
the cloud (maximum vertical extension of the cloud = cloud
top height – surface elevation height). The land-sea contrast
and the main features of the spatial distribution can be repro-
duced with these calculations. However, the correlation of
the observed flash densities with the calculated flash densi-
ties from the observed cloud top heights are similar to those
of the model results, withR=0.74 for the low resolution and
R=0.69 for the high resolution TRMM convective cloud top
height data. Since the correlation of the calculated flashes
from the simulated and observed cloud top heights are simi-
lar, this seems to be the maximum accuracy achievable with
this parameterisation.

A similar comparison of offline calculated flash frequen-
cies with the Aprec parameterisation is not possible from the
3A25 data since the scheme is designed for strong individ-
ual precipitation events with a threshold value of more than
7 mm/day, which is hardly reached in the monthly averaged
TRMM data. Therefore, the 3 hourly precipitation data of the
3B42 TRMM dataset for the year 1999 are applied. From
this data set no distinction between stratiform and convec-
tive precipitation is available. However, since the parameter-
isation requires strong precipitation, all rainfall events with
values higher than the threshold are selected for the analy-
sis. The resulting annual average flash densities are shown
in the lower panel of Fig.4. It is obvious that the strong
land-sea contrast is not represented with this data compara-
ble to the results of the model simulations already analysed
in the right column of Fig.2. In general, the continental light-
ning activity is underestimated, whereas the oceanic contri-
bution is overestimated compared to the observations. The
distribution is comparable to those using the T1, EC, and B1
convection schemes, all producing precipitation distributions
which agree relatively well with the observations (Tost et al.,
2006). However, the following aspects must be considered
when interpreting the results of the flash distribution based
on observed precipitation:

– The parameterisation yields only the cloud-to-ground
flash frequency whereas the LIS/OTD observations
comprise both types of lightning events. For the lower
panel of Fig.4 a globally and temporally constant fac-
tor of 0.15 for the ratio between CG to IC flashes has
been applied. This is the average value derived from the

model results and determines the re-scaling factor with-
out changing the distribution patterns. Although this is
a substantial simplification, a spatial and temporal vary-
ing ratio cannot be calculated from the observations,
preventing the parameterisation from a direct evaluation
versus CG flashes.

– The subdivision of precipitation into stratiform and con-
vective rain in the model configurations is quite differ-
ent from that derived from the monthly mean TRMM
data (Tost et al., 2006). Furthermore, not all precipi-
tation must be related to lightning activity. However,
a global reduction of the total precipitation by a strati-
form fraction would not change the results, and a local
distinction within the 3 hourly intervals is not available.

– The time resolution of the satellite is different from that
of the model data, since a global coverage cannot be
achieved at every 3 h.

The correlation of the derived flash densities from the pre-
cipitation approach with the observed ones isR=0.60, also
comparable to the values obtained with the model.

4.3 Annual cycle of lightning

Figure5 depicts the annual cycle of the spatially averaged
(from 60◦ S to 60◦ N) flash densities in the different simula-
tions. Since the observations are provided as a 110-day run-
ning mean, the model output is smoothed in the same way,
suppressing the strong day-to-day variations.

As expected from Fig.3 using the Pcth lightning param-
eterisation yields a similar annual cycle for all simulations
(upper left panel). The black line, depicting the observed
annual cycle and the grey shaded area (showing the oneσ

spatial variation), show a strong maximum in boreal sum-
mer. This is also captured by the simulations, but the model
calculates the highest flash densities about 20 days earlier
than observed, independent of the choice of the convection
scheme. Furthermore, lower values than observed are simu-
lated (especially with T1 and B1, and to a lesser extent with
EC). During the boreal winter, in which the lowest lightning
occurrence is observed, all simulations substantially overes-
timate the global average flash frequency by approximately
30%. The overestimation at the beginning of the year occurs
mainly in the tropics (10◦ S to 10◦ N), since the observations
show a substantially smaller maximum during the first cross-
ing of the equator by the ITCZ in boreal spring compared to
the second maximum in autumn, whereas in the simulations
both crossing events result in similar lightning activity. This
results from an overestimation of the lightning activity in the
tropical South America with all convection schemes during
boreal winter. The lightning activity during summer is cap-
tured in better agreement with the observations in each hemi-
sphere (10◦ to 30◦). However, if the observed TRMM cloud
top height is used with the Pcth flash parameterisation, the
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a) P cth b) G updr

c) A updr d) A prec

Fig. 5. Average (60◦ S to 60◦ N, for the TRMM data only 40◦ S to 40◦ N) time series of the flash density for the year 1999. The four panels
show the different lightning schemes. The black line depicts the observations and the grey shaded area the spatial standard deviation. The
coloured lines represent the model simulations with the different convection schemes, and the dashed lines the calculated flash densities
determined from the TRMM precipitation radar data with the P cth and the A prec parameterisations as described in the text.

ences in the parameters are not very large) are hardly able
to reproduce the seasonal cycle. The reasons are the over-
estimated oceanic flash occurrences and the incorrectly cap-
tured seasonal displacement of regions with intense convec-
tion over the oceans.

4.4 Diurnal cycle of lightning

In contrast to reproducing the seasonal cycle the diurnal cy-
cle of the flash densities is captured much better by the
model simulations, in general for all combinations of con-
vection and lightning parameterisations; only ZH and ZHW
perform worse in combination with the updraft based light-
ning parameterisations. Figure 6 depicts the diurnal cycle

in UTC. Note that for the observations it is not the daily
climatology for 1999, but data from several years, i.e. the
“LISOTD LRADC V2.2” dataset. The upper left panel,
showing the P cth scheme, is able to reproduce the first flash
density maximum at 14:00 UTC (related to the African light-
ning activity (e.g. Price and Rind, 1994)), but the second
maximum which relates to the American early afternoon is
generally underestimated. Since the South American flash
density is simulated well or even overestimated, this must
be related to the underestimation of North American light-
ning activity. Due to an overestimation of the maximum and
the rescaling of the global flash density to the observations,
the model mainly underestimates the lightning activity dur-
ing the rest of the day, especially around midnight. Most of

Fig. 5. Average (60◦ S to 60◦ N, for the TRMM data only 40◦ S to 40◦ N) time series of the flash density for the year 1999. The four panels
show the different lightning schemes. The black line depicts the observations and the grey shaded area the spatial standard deviation. The
coloured lines represent the model simulations with the different convection schemes, and the dashed lines the calculated flash densities
determined from the TRMM precipitation radar data with the Pcth and the Aprec parameterisations as described in the text.

seasonal cycle of the flash densities does not match the ob-
served one, since double peaked maxima in May and August
are calculated with slightly lower values in July (dashed line
in the upper left panel of Fig.5). Nevertheless, the low ob-
served values during boreal winter can be reproduced.

The Gupdr (upper right panel of Fig.5) scheme has much
greater difficulty to reproduce the observed annual cycle of
lightning activity. In combination with T1 the temporal vari-
ability of the simulated flash densities has no features in com-
mon with the observations. Even though the short term vari-
ability (not shown) ranges from 0.008 to 0.012 it does not
reproduce the seasonal cycle. As for the Pcth scheme, the
largest differences between the observed and simulated an-
nual cycle occur in the central tropics (10◦ S to 10◦ N) show-
ing relatively poor agreement. The changing location of the
ITCZ with time cannot be detected in the lightning densities
calculated with this parameterisation, largely independent of

the convection scheme. This can be explained by the en-
hanced lightning activity over the oceans, which contributes
substantially to the simulated flash densities, but is not ob-
served in such strength. Furthermore, during boreal winter
the simulated lightning activity in South America is overes-
timated leading to the enhanced flash densities in February
and March. T1 and EC show a smaller annual variability
compared to ZH, ZHW and B1. ZH and ZHW also have a
substantial contribution of mid-latitude convection with pro-
nounced lightning activity during winter. B1 is characterised
by very large temporal extremes (very high day-to-day varia-
tions, substantial underestimation in boreal winter, but over-
estimation during boreal summer). In combination with the
poor correlation, indicated by the spatial analysis in Fig.2,
this leads to the conclusion that local extrema govern the
flash densities in this simulation setup.
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a) P cth b) G updr

c) A updr d) A prec

Fig. 6. Global average diurnal time series of the flash density for the year 1999. The four panels show the different lightning schemes. The
black line depicts the observations (multi-year climatology) and the grey shaded area the spatial standard deviation (one σ). The coloured
lines represent the model simulations with the different convection schemes.

the schemes compute the diurnal cycle almost within one σ
(spatial variation) of the observations, in agreement with the
results of Nickolaenko et al. (2006).

The updraft based approach (G updr) reproduces the ob-
servations well in combination with the T1 convection, es-
pecially the double peaked maxima in the afternoon and
evening. With the EC convection the diurnal cycle is less
pronounced. ZH, ZHW and especially B1, all shown to have
problems in our analyses above, also fail with respect to the
diurnal cycle, showing maximum values during the night, i.e.
highest lightning activity in the western part of South Amer-
ica (late afternoon in the Andes region, compare Fig. 2).

Using the A updr scheme, the agreement of the T1 and
EC simulation with the observations is comparable to the

P cth approach. Again, the North American lightning ac-
tivity (evening hours in UTC) is underestimated. ZH and
ZHW show a similar behaviour as with the G updr parame-
terisation with highest values around midnight, but with two
smaller maxima corresponding to the African and American
lightning activity. B1 captures the diurnal cycle comparable
to T1, with an overestimation of the first maximum and a
phase shift of one hour forward, while the second maximum
is not simulated.

The precipitation based flash parameterisation reproduces
the major features, but also fails with respect to the second
evening maximum. Only with ZHW the amplitude of the
diurnal cycle is underestimated. In general, the diurnal cy-
cle represents to some degree also the spatial patterns, since

Fig. 6. Global average diurnal time series of the flash density for the year 1999. The four panels show the different lightning schemes. The
black line depicts the observations (multi-year climatology) and the grey shaded area the spatial standard deviation (oneσ ). The coloured
lines represent the model simulations with the different convection schemes.

Even though the absolute variability is much lower when
the A updr scheme is used (lower left panel of Fig.5), the
annual cycle can also not be reproduced with this parame-
terisation. T1 and EC show a very similar behaviour, but
have hardly any monthly variation. The other three convec-
tion parameterisations are characterised by low values dur-
ing the maximum of the observations (July, August, Septem-
ber) and higher values than observed during the rest of the
year. The reason for this is again found in the central trop-
ics, where the annual cycle is not captured, or is even inverse
compared to the observations. Especially B1 shows a boreal
spring maximum originating mainly from oceanic convec-
tion and lightning activity. This oceanic lighting production
with all convection parameterisations also leads to the en-
hanced flash densities during the boreal winter and contra-
dicts the observed annual cycle.

A similar conclusion is drawn based on the lower right
panel of Fig.5, again showing large discrepancies compared
to the observations for all convection schemes when used
with the A prec flash frequency parameterisation. Again,
the major differences occur between 10◦ S and 10◦ N, the re-
gion with the strongest precipitation, and therefore (with this
scheme) also lightning activity. Comparing the annual cycle
of precipitation of TRMM data in this region with the simu-
lated flash densities from the Aprec parameterisation overall
agreement is found, apart from a forward shift of one month
in the simulated flashes. However, the derived flash densities
from the TRMM data are characterised by a weak seasonal
cycle, resulting in overestimated lighting activity during bo-
real winter and underestimated during the boreal summer.

In conclusion, the lightning schemes which do not use
a strict distinction between ocean and land flash parame-
terisations (Gupdr, A updr and also Aprec in which the
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a) P cth b) G updr

c) A updr d) A prec

Fig. 7. Vertical profiles of the annual average lightning produced NOx emissions, spatially averaged (meridional and zonal, the latter
restricted to 60◦ S–60◦ N). As in Fig. 5 the panels display the lightning schemes, and the colours the convection parameterisations.

by the nudging tendency. In combinations with some con-
vection schemes this causes a lower frequency of deep con-
vective activity, since the boundary layer stability directly or
indirectly determines the triggering of the convection algo-
rithm. The nudging causes slightly enhanced atmospheric
stability throughout the troposphere, since for the nudged
temperature profiles, convection and boundary layer param-
eterisations have been applied within the data assimilating
model (ECMWF forecast model). Consequently, a simula-
tion without nudging shows substantially stronger average
updraft mass fluxes in the middle and upper troposphere
(Tost, 2006).

4.7 Potential weaknesses of the convection schemes

The analysis of the simulated lightning data in combination
with the observations also indicates some weaknesses in the
convection schemes:

– The convective cloud top heights differ substantially, as
can be seen from the range of the rescaling factors for
the P cth lightning parameterisation and also from the
direct comparison of the cloud top heights. Further-
more, observed and simulated cloud top heights show
significant differences, comparable to the study of Kurz
and Grewe (2002).
This becomes most pronounced in South America,
where in contrast to the observations, the convection
reaches deeper with most convection parameterisations
than in Central Africa. The agreement of simulated and
observed cloud top heights from TRMM is better with
T1, EC and B1 (overestimated over the tropical oceans),
whereas ZH and ZHW show substantially higher cloud
tops over both the continents and the oceans.

– The convection schemes of ZH and ZHW simulate a
too high frequency of convective lightning events if the

Fig. 7. Vertical profiles of the annual average lightning produced NOx emissions, spatially averaged (meridional and zonal, the latter
restricted to 60◦ S–60◦ N). As in Fig.5 the panels display the lightning schemes, and the colours the convection parameterisations.

differences in the parameters are not very large) are hardly
able to reproduce the seasonal cycle. The reasons are the
overestimated oceanic flash occurrences and the incorrectly
captured seasonal displacement of regions with intense con-
vection over the oceans.

4.4 Diurnal cycle of lightning

In contrast to reproducing the seasonal cycle the diurnal cy-
cle of the flash densities is captured much better by the
model simulations, in general for all combinations of con-
vection and lightning parameterisations; only ZH and ZHW
perform worse in combination with the updraft based light-
ning parameterisations. Figure6 depicts the diurnal cycle
in UTC. Note that for the observations it is not the daily
climatology for 1999, but data from several years, i.e. the
“LISOTD LRADC V2.2” dataset. The upper left panel,
showing the Pcth scheme, is able to reproduce the first flash
density maximum at 14:00 UTC (related to the African light-
ning activity (e.g.Price and Rind, 1994)), but the second
maximum which relates to the American early afternoon is
generally underestimated. Since the South American flash
density is simulated well or even overestimated, this must

be related to the underestimation of North American light-
ning activity. Due to an overestimation of the maximum and
the rescaling of the global flash density to the observations,
the model mainly underestimates the lightning activity dur-
ing the rest of the day, especially around midnight. Most of
the schemes compute the diurnal cycle almost within oneσ

(spatial variation) of the observations, in agreement with the
results ofNickolaenko et al.(2006).

The updraft based approach (Gupdr) reproduces the ob-
servations well in combination with the T1 convection, es-
pecially the double peaked maxima in the afternoon and
evening. With the EC convection the diurnal cycle is less
pronounced. ZH, ZHW and especially B1, all shown to have
problems in our analyses above, also fail with respect to the
diurnal cycle, showing maximum values during the night, i.e.
highest lightning activity in the western part of South Amer-
ica (late afternoon in the Andes region, compare Fig.2).

Using the Aupdr scheme, the agreement of the T1 and
EC simulation with the observations is comparable to the
P cth approach. Again, the North American lightning
activity (evening hours in UTC) is underestimated. ZH
and ZHW show a similar behaviour as with the Gupdr
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parameterisation with highest values around midnight, but
with two smaller maxima corresponding to the African and
American lightning activity. B1 captures the diurnal cycle
comparable to T1, with an overestimation of the first maxi-
mum and a phase shift of one hour forward, while the second
maximum is not simulated.

The precipitation based flash parameterisation reproduces
the major features, but also fails with respect to the second
evening maximum. Only with ZHW the amplitude of the
diurnal cycle is underestimated. In general, the diurnal cy-
cle represents to some degree also the spatial patterns, since
the more intense continental convection usually occurs in the
early afternoon. Therefore the diurnal lightning cycle is char-
acterised by a local afternoon maximum.

4.5 NOx emission profiles

The most important impact of lightning parameterisations
in atmospheric chemistry models is on the vertical profiles
of the NOx emissions. From the calculated flash frequen-
cies using assumptions of total NOx emitted per flash, the
partitioning of all flashes into CG and IC flashes and the
production efficiency of both types (see above in Sect.2)
the total amount of lightning produced NOx can be calcu-
lated. Using the C-shape profile according toPickering et al.
(1998) a vertical distribution of the emitted NOx is deter-
mined. Even though the rescaling of the total flash fre-
quency to the LIS/OTD observed frequency is applied, the
total amount of emitted NOx can differ substantially because
of different freezing levels in the convective clouds. This re-
sults in different partitioning factors for CG and IC flashes.
Since both types are characterised by a different NOx pro-
duction efficiency, different total emissions which are placed
between cloud bottom and cloud top level in the C-shape pro-
file (with respect to mixing ratios) (Pickering et al., 1998) are
calculated.

Figure 7 depicts average NOx emission profiles. The
colours denote the convection schemes and the panels the
various lightning and subsequent emission parameterisa-
tions. The upper left panel (Pcth) exhibits a similar shape
for EC, ZH and ZHW after applying the flash frequency
rescaling. The double peaked shape of T1 originates from
the differentiation by the convection scheme between deep
and midlevel convection (i.e. penetrative convection trig-
gered above the boundary layer). Due to the formulation of
the Tiedtke scheme, the second type is artificially restricted
to a cloud top of 400 hPa, but it globally occurs more often
than deep convection. Since the vertical extension of these
clouds also extends more than 3 km they are also considered
for possible lightning production and cause the lower peak.
Even though the EC convection is also based on the original
Tiedtke scheme and distinguishes the same types of convec-
tion, the midlevel convection cloud top is not restricted and
consequently the second peak is not present. The Bechtold
scheme is characterised by the emission maximum at slightly

higher altitude (originating from higher cloud top levels), but
of smaller magnitude. The latter effect results from the dif-
ferent freezing altitude and consequently the partitioning into
cloud-to-ground and intra-cloud flashes.

The application of the Gupdr parameterisation leads to a
similar shape of the emission profiles for T1, EC, and B1.
ZHW and even more ZH show the maximum at lower alti-
tude. The altitude of the maximum emission differs by about
150 hPa. Additionally, the overall amounts of emitted NOx
differ substantially (factor of 2), even though the total num-
ber of flashes are rescaled to the observations. Addition-
ally, the emissions in the mid-troposphere are substantially
enhanced with ZH and ZHW.

A similar result is obtained when using Aupdr with the
different convection schemes: T1, EC, and B1 are similar
in emission strength and the altitude of the maximum emis-
sion level, whereas for ZH and ZHW the maximum is lo-
cated substantially lower, while the total amount of emitted
NOx is much larger. As with Gupdr the emissions are much
stronger between 400 and 700 hPa using ZH or ZHW.

The precipitation based lightning scheme (Aprec, lower
right panel of Fig.7), shows approximately the same maxi-
mum emission altitude for all convection parameterisations.
The total amount of emitted NOx varies by 20%, being high-
est for T1 and ZH, and lowest for B1, while the overall shape
of the emission profiles is similar.

In summary, using the different combinations of schemes
results in very different distributions of NOx from lightning,
even in the averaged profiles. In combination with the large
temporal and spatial differences in the flash densities it is ob-
vious that the effective emissions of NOx produced by light-
ning shows a wide range. The most realistic emission pro-
files cannot be determined from this study, but the evaluation
of the impacts of these emissions on atmospheric chemistry
is beyond the scope of this work and will be analysed sepa-
rately.

4.6 Dependencies on the model resolution and setup

Most of the lightning parameterisations take the dependence
on the horizontal resolution into account, mainly by a rescal-
ing factor (determined from the ratio of the model grid size to
a reference area) that is multiplied with the flash rate. How-
ever, for some model configurations this is not sufficient. In-
stead, a new set of parameters is required to give a better
representation of the different convective conditions caused
by the change in resolution. A sensitivity simulation using
the T1 convection scheme, but a lower vertical resolution (19
levels, but the midpoint of the uppermost layer also at 10 hPa)
results in strong differences in combination with the Gupdr
scheme, due to differences in the convective updraft mass
fluxes. For instance, the spatial distribution is captured sim-
ilarly, the required rescaling factor is lower and the seasonal
cycle of the lightning activity is represented much better in
this model configuration compared to the 31 layer version
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discussed above. The results are comparable to those ob-
tained with the Pcth scheme. This leads to the conclusion
that the vertical resolution is quite relevant for the parame-
terised convective dynamics. Consequently the parameters
of the lightning scheme must be adjusted with respect to the
vertical resolution of the model.

Even though the application of the nudging technique in
the simulation setup has the advantage of reproducing the
large-scale circulation close to reality (and therefore enables
direct comparison with observations), it also has some draw-
backs: The simulated meteorology is continuously perturbed
by the nudging tendency. In combinations with some con-
vection schemes this causes a lower frequency of deep con-
vective activity, since the boundary layer stability directly or
indirectly determines the triggering of the convection algo-
rithm. The nudging causes slightly enhanced atmospheric
stability throughout the troposphere, since for the nudged
temperature profiles, convection and boundary layer param-
eterisations have been applied within the data assimilating
model (ECMWF forecast model). Consequently, a simula-
tion without nudging shows substantially stronger average
updraft mass fluxes in the middle and upper troposphere
(Tost, 2006).

4.7 Potential weaknesses of the convection schemes

The analysis of the simulated lightning data in combination
with the observations also indicates some weaknesses in the
convection schemes:

– The convective cloud top heights differ substantially, as
can be seen from the range of the rescaling factors for
the Pcth lightning parameterisation and also from the
direct comparison of the cloud top heights. Further-
more, observed and simulated cloud top heights show
significant differences, comparable to the study ofKurz
and Grewe(2002).
This becomes most pronounced in South America,
where in contrast to the observations, the convection
reaches deeper with most convection parameterisations
than in Central Africa. The agreement of simulated and
observed cloud top heights from TRMM is better with
T1, EC and B1 (overestimated over the tropical oceans),
whereas ZH and ZHW show substantially higher cloud
tops over both the continents and the oceans.

– The convection schemes of ZH and ZHW simulate a
too high frequency of convective lightning events if the
P cth lightning scheme is used.

– The restriction of midlevel convection below 400 hPa in
the T1 convection parameterisation appears to be artifi-
cial. The explicit distinction between deep convection
originating close to the surface and penetrative convec-
tion starting at higher altitude is rather arbitrary, and
only applied in the T1 scheme. The EC scheme, also be-
ing developed from the originalTiedtke(1989) scheme,

but treating midlevel convection similar to deep convec-
tion, does not contain such a clear distinction.

– Even though the convective mass fluxes agree relatively
well with respect to the zonal averages (Tost, 2006),
the updraft strength of individual convective events can
be too strong and/or too localised (especially with B1).
On the other hand, the average vertical velocities in ZH
and ZHW appear to be much lower (very high rescal-
ing factors are required in the updraft based lightning
schemes), and the convective mass fluxes in the middle
and upper troposphere are lower compared to the other
schemes. However, this is partly caused by the applied
nudging technique as explained above.

– Oceanic convection is almost as intense as continental
convection with respect to the updraft strength (contra-
dicting the assumption of the updraft based lightning
parameterisation), since the parameterisations provide
only grid box mean updraft mass fluxes. The convec-
tive precipitation over the tropical oceans is too high
(seeTost et al., 2006), leading to an overestimation of
the flash frequencies from the Aprec parameterisation
over the ocean.

– Even though the influence of subgrid-scale convection
on the humidity and moist static energy is captured ac-
curately by the parameterisations independent of the
model resolution, the convective dynamics can be sub-
stantially influenced by the selected model resolution
(both horizontal and vertical), affecting both lightning
schemes and convective tracer transport.

5 Conclusions

Using parameterised model results (convection) as input data
for another parameterisation (lightning) leads to large uncer-
tainties in the prediction of flashes and additionally param-
eterised lightning NOx emissions. For all combinations of
lightning and convection schemes a scaling factor (in addi-
tion to the a priori performed resolution dependent rescaling)
must be applied to reproduce the observed global flash fre-
quency, and these factors can differ by orders of magnitude.
With none of the combinations is it possible to accurately re-
produce the observed lightning distributions, although some
combinations produce more realistic results than others.

The Pcth approach offers robustness with respect to both
spatial and temporal variations of the convective events, but
cloud top height is only indirectly (less physically) linked
with cloud electrification via the vertical extension of the
clouds which is affected by the strength of the updraft. The
updraft approaches must be used with caution, especially the
G updr scheme, since the exponential formulation tends to
create unrealistically high values for strong updrafts. How-
ever, in combination with T1 this approach is among the best
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in reproducing the observed lightning densities. This results
mainly from the development of the Gupdr scheme in com-
bination with this specific convection scheme in a previous
model version (ECHAM4,Grewe et al.(2001); Kurz and
Grewe(2002)). The precipitation approach has shown to
perform reasonably well for the long-term average, if the ob-
served precipitation distribution is reproduced (e.g. by B1),
whereas the temporal variability is poorly captured.

We conclude that the rescaling to the globally observed
flash frequency is not sufficient, and additional tuning of
the parameters is required. This procedure, however, is be-
yond the scope of this study. A re-determination of the co-
efficients is also desirable for the two approaches byAllen
and Pickering(2002), but this is also not straight-forward,
since either global information about the CG fraction of the
lightning events (which cannot be easily determined from
LIS/OTD data), or a completely new set of parameters for
the total flash frequency for each model configuration are re-
quired. The resulting parameters would have comparable un-
certainties (=variations) as the existing parameterisation ap-
proaches. Furthermore, it appears that except for the Pcth
approach the lightning parameterisations are hardly robust
against changes in the convective dynamics. The drawback
is the requirement of a continously re-tuning of the parame-
ters. Under the perturbed conditions of future scenarios such
a re-tuning is almost impossible.

The seasonal cycle is difficult to reproduce with all com-
binations, indicating general problems with the model con-
figurations, resolutions or the parameterisation concepts.

Even if the lightning events agree with the observations,
the resulting NOx emissions deviate due to the different con-
vective cloud properties (freezing level, distinction between
cloud-to-ground and intra-cloud flashes, etc.). From the re-
sults it is not possible to decide which emission profiles are
most realistic, since direct emissions are not observed. Only
the combination of lightning emissions with a chemistry
model can be evaluated e.g. using aircraft observations in the
anvil regions of convective clouds. This will be the focus of
an upcoming study. The large variability associated with the
tested combinations points to many unresolved problems in
simulating lightning and lightning produced NOx emissions
in atmospheric general circulation models.

For future model simulations some approaches, e.g. the
high correlation between precipitation ice and flash frequen-
cies (Petersen et al., 2005) are promising, though they require
improvements of both, the convection parameterisations with
respect to ice microphysics and the development of a scheme
that makes use of this relationship.

Appendix A

Abbreviations

σ 1) standard deviation
2) ratio of pressure to surface pressure (p/ps)

σsim standard deviation of the simulation results
σobs standard deviation of the observations
σ ? σsim/σobs
R correlation
RMSE root mean square error
CG flashes cloud-to-ground flashes
IC flashes inter- and intra-cloud flashes
GCM General Circulation Model
AC-GCM Atmospheric Chemistry General Circulation Model
ECMWF European Centre for Medium Range Weather Forecast
E5/M1 ECHAM5/MESSy1
MATCH Model of Atmospheric Transport and Chemistry
LNOX NOx emissions from lightning (submodel)
TRMM Tropical Rainfall Measuring Mission
ITCZ Inner Tropical Convergence Zone
SPCZ Southern Pacific Convergence Zone
LIS Lightning Imaging Sensor
OTD Optical Transient Detector
LISOTD
LRTS V2.2

Low resolution time series dataset of combined flash rates
from LIS and OTD

LISOTD
LRADC V2.2

Low resolution annual diurnal climatology dataset of
combined flash rates from LIS and OTD

T1 Tiedtke-Nordeng convection scheme
EC convection scheme from ECMWF
ZH convection scheme of Zhang-McFarlane-Hack
ZHW convection scheme of Zhang-McFarlane-Hack with addi-

tional evaporation following Wilcox
B1 convection scheme of Bechtold
P cth lightning parameterisation based on cloud top height

(Price and Rind)
G updr lightning parameterisation based on vertical velocity

(Grewe)
A updr lightning parameterisation based on vertical velocity

(Allen and Pickering)
A prec lightning parameterisation based on convective surface

precipitation (Allen and Pickering)
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Jöckel, P., Tost, H., Pozzer, A., Brühl, C., Buchholz, J., Ganzeveld,
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