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Abstract. The ground-based measurements of the Global
Positioning System (GPS) allow estimation of the tropo-
spheric delay along the slanted signal paths through the at-
mosphere. The meteorological exploitation of such slant de-
lay (SD) observations relies on the hypothesis of azimuthal
asymmetry of the information content. This article addresses
the validity of the hypothesis.

A new concept of asymmetricity is introduced for study-
ing the SD observations and their model counterparts. The
asymmetricity is defined as the ratio of the absolute asym-
metric delay component to total SD. The model counterparts
are determined from 3-h forecasts of a numerical weather
prediction (NWP) model, run with four different horizontal
resolutions. The SD observations are compared with their
model counterparts with emphasis on cases of high asym-
metricity in order to see whether the observed asymmetry is
a real atmospheric signature.

The asymmetricity is found to be of the order of a few parts
per thousand. Thus, the asymmetric delay component barely
exceeds the assumed standard deviation of the SD observa-
tion error. However, the observed asymmetric delay compo-
nents show a statistically significant meteorological signal.
Benefit of the asymmetric SD observations is therefore ex-
pected to be taken in future, when NWP systems will explic-
itly represent the small-scale atmospheric features revealed
by the SD observations.

1 Introduction

Dense networks of ground-based receivers of the Global Po-
sitioning System (GPS) constitute a meteorological observ-
ing system for numerical weather prediction (NWP) (e.g.El-
gered et al., 2005). The applications of ground-based GPS
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meteorology show potential especially on short-range NWP,
where the forecast lead time is of the order of 3–18 h. This
time scale corresponds to atmospheric phenomena in hori-
zontal length scales of a few hundreds of kilometers or less.
Geodetic processing of raw GPS measurements results in de-
lay observations. These are measures of atmospheric refrac-
tivity integrated over either a vertical column (zenith total
delay, ZTD observations; e.g.Bevis et al., 1992) or a slanted
signal path between a satellite and a receiver station (slant de-
lay, SD observations; e.g.de Haan et al., 2002). Several stud-
ies show that data assimilation of the ZTD observations, pro-
cessed in near-real-time, can result in a positive NWP fore-
cast impact on humidity and precipitation in synoptic scales
(e.g.De Pondeca and Zou, 2001; Vedel and Huang, 2004; El-
gered et al., 2005). Considerably fewer reports are available
on data assimilation of the SD observations. As the existing
dense GPS receiver station networks do not yet cover areas
large enough for NWP, these studies are mainly conducted
by using hypothetical observations (MacDonald et al., 2002;
Ha et al., 2003; Liu and Xue, 2006).

The ZTD observations exhibit no information on az-
imuthal asymmetry of atmospheric refractivity field. In pres-
ence of humidity gradients, data assimilation of the ZTD ob-
servations in a high resolution NWP system can therefore
be considered suboptimal. In theory, the SD observations
are capable of detecting the azimuthal asymmetry. Since
strong humidity gradients are typical fingerprints of severe
weather, exploitation of the SD observations is an attractive
development. Forecasting of severe weather is considered as
one of the main challenges for the current NWP activities
(Hollingsworth et al., 2002; Bouttier, 2004).

An SD observation can be thought to consist of symmetric
and asymmetric components (de Haan et al., 2002). It is ob-
vious that the asymmetric component represents atmospheric
phenomena in considerably finer scales than the symmetric
component. Consequently, the SD observations are expected
to show potential on NWP in very high spatial resolution,
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but not necessarily in the synoptic scales. So far, there has
been only little evidence that the currently operational NWP
systems can benefit from the asymmetric property of the SD
observations.

This article assesses the potential of the asymmetric delay
components from data assimilation point of view. Answers
are searched especially to the following questions. First, how
large is the contribution of the azimuthally asymmetric in-
formation to the SD observations? Second, is the azimuthal
asymmetry in the SD observations related to real atmospheric
asymmetry? Third, are the currently operational NWP sys-
tems, with horizontal grid spacings of around 10–20 km, able
to represent the scales appropriate for extracting the asym-
metric information? Fourth, can the NWP models’ represen-
tation of the azimuthal asymmetry be improved by increasing
the horizontal resolution?

The structure of this article is as follows: The used SD
observations and the NWP model are described in Sect.2.
Following Sects.3 and4 focus on statistical properties of the
asymmetric components of the SD observations (Sect.3) and
NWP model counterparts to the SD observations (Sect.4). In
Sect.5, extreme cases of the azimuthal asymmetry in the ob-
servations and in the model counterparts are intercompared.
Section6 presents the conclusions.

2 Methodology and used data

2.1 SD observations and their NWP model counterparts

The SD observations used in this study are processed at the
Technical University of Delft, the Netherlands. The observa-
tions originate from 17 receiver stations in the North-Western
Europe over the time period 1–24 May 2003. Due to compu-
tational limitations of the NWP model, a subset of 296 604
observations from 13 receiver stations, with a time interval
of 10 min, is used. The receiver station locations are shown
in Fig. 1.

The fundamental assumption behind the SD processing
is that the fitting residuals of the geodetic network solution
are indicative of the atmospheric asymmetry (de Haan et al.,
2002). This assumption allows the usage of a two-step pro-
cedure for processing. First, thesymmetriccomponent of SD
is estimated as part of the network solution, using the least-
squares fitting. Second, the fitting residuals are added on top
of the symmetric component to obtain the final SD. Formally
one can write

SD = mhZHD + mwZWD︸ ︷︷ ︸
Symmetric component

+δs
r , (1)

wheremh andmw are the hydrostatic and wet mapping func-
tions, respectively, ZHD and ZWD are the zenith hydrostatic
and wet delays, andδs

r is the fitting residual, interpreted as
theasymmetriccomponent of SD, corresponding to the satel-

lite s and the receiverr. The processing applies the mapping
functions proposed byNiell (1996).

The applied methodology for the processing has been criti-
cised in geodetic literature. In particular,Elosegui and Davis
(2004) showed by a simulation study, that the azimuthally
asymmetric delay component cannot be completely retrieved
from the fitting residuals of the network solution. Moreover,
a gross measurement error in a single raw observation has a
considerable impact on the other SD observations processed
for the same receiver at the same time. This problem relates
to general properties of any least squares fit, and it degrades
the potential of the SD observations for any application, not
only for NWP.

The model counterparts to the SD observations are pro-
duced from the output of the High Resolution Limited Area
Model (HIRLAM ; Undén et al., 2002). Three hour HIRLAM

forecasts are transformed from the model grid to the observa-
tion space by applying the non-linear SD observation oper-
ator (Eresmaa and Järvinen, 2006). The hydrostatic forecast
model has been run with four different model resolutions.
The initial state for the model integration is obtained by the
three-dimensional variational data assimilation (3D-Var) sys-
tem of HIRLAM (Gustafsson et al., 2001; Lindskog et al.,
2001) separately for each model run. The SD observations
have not been assimilated in the model. The first model run
applies 40 model levels in vertical, horizontal grid spacing of
22 km and the operational analyses of the European Centre
for Medium-range Weather Forecasts (ECMWF) as the lat-
eral boundary condition. For the subsequent nested model
runs, the grid spacing is halved in horizontal, and the lateral
boundary conditions are retrieved from the NWP analyses
obtained from the previous model run with a coarser grid.
Consequently, the horizontal grid spacings in the nested runs
are 11, 5.6 and 2.8 km, respectively.

Use of a non-hydrostatic NWP system, rather than the hy-
drostatic HIRLAM system, would in theory be more justi-
fied for horizontal grid spacings below 5 km (Niemel̈a and
Fortelius, 2005). There is also a non-hydrostatic version of
the HIRLAM model, but it is not applied here. This is moti-
vated as follows: since the primary objective of running the
model in a nested mode is to gain insight specifically into the
role of the horizontal resolution in the SD modelling, the de-
tails of the four model runs are kept as close as possible to
each other. Different model dynamics and physical parame-
terizations would be likely to confuse the interpretation of the
results. Furthermore, since the area of interest is relatively
flat and the studied period is not characterized by strong con-
vective activity, the non-hydrostatic effects are believed to be
weak. Role of the non-hydrostatic modelling is considered
as a separate research issue, and it is not addressed in this
study.
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Fig. 1. The HIRLAM NWP model domain used in the run with grid spacing of 2.8 km. The GPS receiver station locations are marked with
dots.

2.2 Determination of the asymmetric SD components

Both the symmetric SD components and the fitting residuals
are available in the present SD observation data set. There-
fore, the asymmetric SD components would be readily avail-
able for examination. In contrast, since the SD observation
operator involves no least squares fitting, the NWP model
counterpart data sets contain only the total SD values. For
the sake of comparability, the asymmetric delay components
from the observations and from the model counterparts are
extracted in a similar manner using the following procedure.
Note that the term “observable” is used here to refer to both
the SD observations and the NWP model counterparts at the
four horizontal grid resolutions.

1. The SD observables are classified in groups such that
the observables at one receiver station at one time epoch
constitute a group.

2. For each group, the SD observables are projected to
zenith and averaged to yield a pseudo-ZTD, using a pre-
determined mapping function.

3. The pseudo-ZTD is projected back to the actual satellite
zenith angles to yield the symmetric component SDs of
each SD observable.

4. The asymmetric component SDa is finally obtained by
subtracting SDs from SD.

Note that the resulting SDa is not equal toδs
r in (1), because

the determination of SDa does not make use of separate map-
ping functions for hydrostatic and wet delay components.

Furthermore, a concept of asymmetricityra is introduced as

ra =
|SDa|

SD
(2)

associated to an SDa . ra is a measure of the azimuthally
asymmetric contribution to an SD observation or to a model
counterpart.

Errors of the predetermined mapping function are recog-
nized to contribute to the calculation of SDa even in a case
of a perfectly symmetric atmosphere. Specific attention is
taken in order to find the mapping function that most accu-
rately projects the SD observables to zenith (step2) and back
to the satellite zenith angle (step3). Performances of hydro-
static and wet mapping functions ofNiell (1996) andBoehm
et al.(2006) have been evaluated through histograms of SDa .
In principle, the better the mapping function, the narrower
the histogram, and the closer is the mean SDa to zero. As
a result, the hydrostatic mapping function ofNiell (1996) is
selected for this study.

3 Asymmetricity in the SD observations

In this Section, a statistical approach is taken in order to fo-
cus on the azimuthally asymmetric properties of the SD ob-
servations. Mean value of asymmetricityra of the SD obser-
vations is 0.82 parts per thousand (ppt). Table1 shows the
numbers of the SD observations at different satellite zenith
angle intervals, together with the percentages of those SD
observations that exceed certain threshold values ofra at dif-
ferent zenith angle intervals. Due to observing geometry,
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Table 1. Numbers of the SD observations (#SD) and percentages of
those observations that exceed the asymmetricity thresholds 0.5, 1,
2, and 3 parts per thousand (ppt) at different zenith angle intervals.

Interval #SD 0.5 ppt 1 ppt 2 ppt 3 ppt

0◦–5◦ 3566 64.2 36.3 8.10 1.37
5◦–15◦ 18365 62.3 33.2 6.98 1.24
15◦–25◦ 25901 59.0 29.3 5.15 0.76
25◦–35◦ 32047 56.9 26.4 3.92 0.46
35◦–45◦ 36842 56.0 25.5 3.64 0.44
45◦–55◦ 44382 57.2 26.5 3.93 0.57
55◦–65◦ 51088 59.0 29.1 5.47 0.97
65◦–75◦ 57822 64.4 36.4 8.74 1.77
75◦–80◦ 26591 71.2 46.2 15.4 3.91
0◦–80◦ 296604 60.5 31.3 6.47 1.21

the number of observations increases rather uniformly with
increasing zenith angle. The first threshold, 0.5 ppt, is ex-
ceeded by 60% of the observations, and nearly one third of
the observations exceed the threshold of 1 ppt. About 1%
of the observations exceed the threshold of 3 ppt. These per-
centages depend on the satellite zenith angle interval. The
observations at the largest zenith angles contain more asym-
metricity than the other observations. From geometrical per-
spective, this is not surprising, since those observations sense
atmospheric regions farther away from the receiver station
than the other SD observations.

Table1 also indicates that the observations near zenith can
be notably asymmetric. This is a rather surprising result,
which could perhaps be explained as follows. The geodetic
network solution is mostly contributed by the measurements
from large zenith angles, because more satellites are visible
there than near zenith. Consequently, the fitting residuals of
the network solution appear to be large at small zenith angles.
This phenomenon is solely due to the observing geometry
and it has no relation to the atmospheric asymmetry.

The statistical behaviour of asymmetricity is studied also
at separate GPS receiver stations. It is found that there are
considerable differences between different receiver stations
(not shown). The differences can be related to topographi-
cal effects, such as land-sea distribution and orography, or to
differences in the receiver station equipment, including re-
ceiver and antenna types. Moreover, the effect of multipath
propagation is highly dependent on the surroundings of the
receiver. Unfortunately, the data set used in this study does
not allow to draw any more specific conclusions on the re-
ceiver station dependency.

Asymmetricity threshold of 3 ppt corresponds to an asym-
metric delay component of about 7, 8 and 15 mm at the satel-
lite zenith angles of 0◦, 30◦ and 60◦, respectively. The SD
model counterpart error standard deviation is of nearly equal
magnitude, but the SD observation error standard deviation
is roughly 1.7 times larger (Järvinen et al., 2007). Thus, SD
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Fig. 2. Ratio of the standard deviations of the normalized asymmet-
ric and symmetric components of SD observations as a function of
satellite zenith angle.

observation error standard deviation clearly exceeds the 3 ppt
level of asymmetric delay component. Since the majority of
the SD observations exhibits asymmetricity less than 3 ppt,
the potential of the SD observations to NWP applications is
somewhat doubtful. On the other hand, the representative-
ness of the SD observations will increase through increasing
NWP grid resolutions in the future. This is expected to de-
crease the effective SD observation error from data assimi-
lation point of view. Nevertheless, all efforts aiming at in-
creasing the SD observation accuracy would be appreciated.
These efforts might include advances, for instance, at the re-
ceiver station equipment, increase in the accuracy of satellite
orbit data, improvement in the treatment of the ionospheric
refraction, or other breakthroughs in the SD processing pro-
cedure.

Comparing the variabilities of the symmetric and asym-
metric delay components provides another approach for as-
sessing the asymmetric information content of the SD obser-
vations. For this purpose, standard deviations of the sym-
metric and asymmetric delay components are calculated at
zenith angle intervals 0◦–5◦, 5◦–15◦, . . . , and 75◦–80◦. The
delay components are normalized by the hydrostatic map-
ping function of Niell (1996) prior to determination of the
standard deviations. Figure2 plots the ratio of the standard
deviations of the asymmetric and symmetric delay compo-
nents as a function of satellite zenith angle. The standard
deviation of the asymmetric delay component appears to be
between 6–10% of the standard deviation of the symmetric
delay component. The shape of the curve, showing max-
ima at both small and large zenith angles, is similar to the
columns of Table1. Overall, it is concluded that the variabil-
ity of SD is mainly due to variability of the symmetric delay
component.
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Fig. 3. Percentages of the SD observations and the model counter-
parts exceeding the given threshold of asymmetricity. Observations
(dotted line) and model counterparts with a grid spacing of 22 km
(dashed line) and 11 km (solid line).

4 Asymmetricity in the NWP model counterparts

In the previous section, the magnitude of the asymmetricity
of the SD observations was studied in terms of percentages
of observations exceeding certain threshold values. This Sec-
tion provides a statistical comparison of the asymmetricity
properties of the SD model counterparts with those of the SD
observations. Comparison of single observations with their
model counterparts will not be attempted yet. Motivation for
this approach rises from properties of the analysis increments
in data assimilation. The horizontal resolution of the analysis
increments is governed by the so-called structure functions,
which determine the spreading of information from observa-
tions to the model grid, taking multivariate balances into ac-
count (Berre, 2000). The structure functions are determined
in a way, which leads to domination of synoptic scales in the
analysis increments. The finer scale observational informa-
tion is filtered out. The fine scale information in the analysis
is provided solely by the background field and is generated
by the forecast model through e.g. model physiography and
land-sea distribution (Gustafsson et al., 2001).

The dotted line in Figs.3 and4 shows the percentages of
the SD observations exceeding given thresholds. The statis-
tics are calculated over all satellite zenith angles. Also the
corresponding curves for the model counterparts with the
four different horizontal grid resolutions are plotted. Fig-
ure3 shows the curves for the model run with 22 km (dashed
line) and 11 km (solid line) grid spacings, and Fig.4 shows
the curves for 5.6 km (dashed line) and 2.8 km (solid line)
grid spacings.

Among the large group of the most symmetric SD observa-
tions, covering 99% of all cases, the observed asymmetricity
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Fig. 4. As Fig.3, but for grid spacings of 5.6 km (dashed line) and
2.8 km (solid line).

is below 3 ppt. The model forecasts, especially those made
with grid spacings 22 and 11 km (Fig.3), fail to represent
the asymmetricity to a similar extent in these cases and only
reach 2 ppt. This could be explained by the SD observations
containing a significant amount of non-meteorological mea-
surement noise, resulting in too large asymmetricity in sym-
metric atmospheric conditions. Another possible explanation
is that the currently used NWP systems are unable to simu-
late these small scale features. The fact, that an increase in
the horizontal resolution results in closer agreement with the
observations (Fig.4), supports the latter interpretation. How-
ever, without additional data it is not possible to exclude the
former interpretation.

For asymmetricities above 3 ppt, the percentage curves of
the model forecasts tend to approach the observation curve.
At asymmetricity values higher than 5 ppt, the model coun-
terparts with a 5.6 and 2.8 km grid spacing show even more
asymmetricity than revealed by the observations. It is inter-
preted that part of the asymmetric information is lost in the
SD processing procedure in cases of extreme atmospheric
asymmetricity. This interpretation is in line with the simu-
lation study reported byElosegui and Davis(2004), and it
holds for 0.05% of the observations in the present data set.

Moreover, since the curves for the model counterparts with
a 5.6 and 2.8 km grid spacing are very close to each other, it
is concluded that the NWP grid with horizontal spacing of
5.6 km is likely to be dense enough in order to model the az-
imuthal asymmetricity of the SD observations in the present
data set with a reasonable accuracy. This means that data as-
similation of the SD observations can be expected to be bene-
ficial compared to data assimilation of the ZTD observations
in NWP systems with horizontal grid spacing of around 5 km
or less.
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Fig. 5. Frequency distributions of the asymmetric delay compo-
nents at zenith angle intervals 30◦

±5◦ (a), 50◦±5◦ (b) and 70◦±5◦

(c). Observations (dotted line) and model counterparts with a grid
spacing of 22 km (dashed line) and 11 km (solid line).

Figures5 and6 show the frequency distributions of SDa at
three satellite zenith angle intervals. Figure5 shows the dis-
tributions of the SD observations (dotted line) and the model
counterparts with a 22 km (dashed line) and 11 km (solid
line) grid spacing, and Fig.6 shows the distributions of the
model counterparts with a 5.6 km (dashed line) and 2.8 km
(solid line) grid spacing. At all zenith angle intervals, the
distributions of the model counterparts are too narrow com-
pared with the observed distributions. However, increasing
the NWP model’s horizontal resolution generally increases
the spread towards the observed distribution. At the zenith
angle interval of 70◦±5◦, the distributions of the model coun-
terparts at resolutions of 5.6 km and 2.8 km (panel (c) of
Fig. 6) are very similar. On the other hand, the 2.8 km reso-
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Fig. 6. As Fig.5, but for grid spacings of 5.6 km (dashed line) and
2.8 km (solid line).

lution provides clearly the best agreement with observations
at the smaller zenith angles (panels (a) and (b) in Figs.5 and
6). In conclusion, 5.6 km grid spacing appears to be suffi-
cient for explicit modelling of the asymmetricities in the SD
observations at the largest zenith angles, where the observed
azimuthal asymmetricity is relatively large (see Table1). De-
creasing the grid spacing closer to 2.8 km is probably neces-
sary in order to make the best use of the observations at zenith
angles smaller than 65◦.

The frequency distributions of the model counterparts are
generally not symmetric around zero. To be more specific,
the distributions are skewed towards positive asymmetric de-
lays at small zenith angles and towards negative asymmetric
delays at large zenith angles. This behaviour can be seen
also in frequency distributions corresponding to separate re-
ceiver stations (not shown). Such a behaviour suggests that
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the applied mapping function is inconsistent with the zenith
angle dependency of the SD model counterparts. This is in
line with the zenith angle dependent bias in the observation
minus model background statistics reported earlier byEres-
maa and J̈arvinen(2006). This study applies no algorithm for
bias correction. Note that it is impossible to say whether the
observations or the model counterparts are more responsible
for the bias. The symmetric distributions of SD observations
in Figs.5 and6 most likely follow from the fact that the SD
observation processing has made use of the same mapping
function as the one applied in this study.

It is important to note that the asymmetric delay compo-
nents of the model counterparts do not follow gaussian dis-
tributions, while those of the SD observations do. It seems
that the model counterparts contain too little asymmetricity
in the relatively symmetric cases, but overestimate the asym-
metricity in the cases of extreme asymmetricity. The reason
for this behaviour is unknown at the moment.

5 Intercomparison in highly asymmetric cases

In this section, the comparison is extended to pairs of obser-
vations and their model counterparts, focusing on cases of
exceptionally high asymmetricity as revealed by either ob-
servations or their model counterparts.

The asymmetricityra measures the azimuthally asymmet-
ric contribution to an SD observation or to a model coun-
terpart. Even though the high values of observedra can be
attributed to atmospheric properties in the vicinity of the GPS
receiver station, it is not obvious that all such cases are mete-
orologically interesting. This is due to a number of uncertain-
ties affecting the microwave propagation, signal reception
and GPS data processing. In this Section, the NWP model
forecasts are considered as reference atmospheres, which ei-
ther do or do not support the interpretation of atmospheric
properties as the source of high observed asymmetricity.

5.1 Support from the NWP model forecasts

In order to investigate whether the observed high asym-
metricity values are signatures of atmospheric properties, the
following procedure is applied:

1. The SD observations are ordered according to increas-
ing ra . The observations exceeding the thresholdra
value of 3.12 ppt are considered highly asymmetric. The
threshold is chosen such that the highly asymmetric ob-
servations cover 1% of all SD observations.

2. The model counterparts are ordered in a similar manner
as the observations. The threshold value corresponding
to 1% of the model counterparts varies between 2.19
and 2.65 ppt, depending on the horizontal grid spacing.

Table 2. Percentages, and their 95% and 99% confidence limits, of
highly asymmetric observations that are interpreted to indicate real
atmospheric asymmetry at different numbers of supporting model
forecasts (SMF).

SMF Observations 95% 99%

≥1 20.1 17.4 18.0
≥2 8.73 7.49 7.86
≥3 4.55 3.81 4.28
4 2.43 2.06 2.12

3. The counterparts to the highly asymmetric observations,
detected by the receiver station identification, observ-
ing time and the Satellite Vehicle Number (SVN), are
searched one by one from the group of highly asymmet-
ric model counterparts. Time difference of up to three
hours is allowed between the observation and the model
background.

4. If there is a matching highly asymmetric model coun-
terpart to the highly asymmetric observation, the NWP
model is concluded to support the interpretation that this
observation indicates a real atmospheric asymmetry.

5. The steps2–4 are repeated four times corresponding to
the model counterpart data sets at four different NWP
grid resolutions.

The interpretation of a highly asymmetric SD observation
showing real atmospheric asymmetry is thus supported by
up to four NWP model forecasts. The larger the number of
supporting model forecasts (SMF) is, the more convincing is
the interpretation. The second column of Table2 shows the
percentages of the SD observations receiving support of at
least one, two, three or four SMF. A fraction of the highly
asymmetric SD observations can be concluded to indicate a
real atmospheric asymmetry. This result shows the balance
between the noise influencing the SD processing and the me-
teorological, azimuthally asymmetric, information contained
in the SD observations.

5.2 Statistical significance of the support

It is obvious that the procedure described above would result
in non-zero percentages in Table2 even in a case of artificial
SD observations being definitely independent of real atmo-
spheric conditions. In other words, some unknown percent-
age of the artificial observations would accidentally receive
support from the NWP model forecasts and would further
be concluded to show an asymmetric meteorological signal.
Therefore, confidence limits to the percentages in Table2 are
estimated in the following way: A sample of one hundred
sets of gaussian random numbers is constructed. Each set
consists of 296 604 values being definitely not related to real
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atmosphere. Each individual random number in each set is
attached to one SD observation in the original data set; each
random number is thus considered to represent asymmetric-
ity of a single SD observation. The procedure applied above
to the data set of observed asymmetricities is then applied
one by one to each of the sets of random numbers. Repeat-
ing the procedure over the sample of one hundred sets allows
to assign the confidence limits. Note that the statistical pa-
rameters of the random numbers are irrelevant for this study.
The conclusions of the experiment will be sensitive only to
the order at which the random numbers happen to occur.

The resulting 95% and 99% confidence limits are included
in the third and fourth columns of Table2 for each level of
SMF. The percentage of highly asymmetric SD observations
indicating real atmospheric asymmetry exceeds the 99% con-
fidence limit at all SMF levels. The subsequent conclusion
is that the SD observations contain a statistically significant
asymmetric meteorological signal.

6 Conclusions

This article introduces and applies the concept of asym-
metricity on the SD observations and their NWP model coun-
terparts. Asymmetricity expresses the contribution of az-
imuthal asymmetry to the total SD. On the basis of the results
presented in the previous Sections, the following answers are
provided to the questions listed in Sect.1:

– How large is the contribution of the azimuthally asym-
metric information to the SD observations? The asym-
metric contribution, i.e. asymmetricity, is of the or-
der of a few parts per thousand of the absolute delay
value. In the extreme cases, mainly at satellite zenith
angles larger than 65◦, the asymmetricity can exceed
the threshold of 5 ppt. It is exceptional that the asym-
metric contribution is larger than the assumed standard
deviation of the SD observation error.

– Is the azimuthal asymmetry in the SD observations re-
lated to real atmospheric asymmetry? As far as the
NWP model represents the true atmosphere, it seems
to be related. This conclusion holds for the cases of ex-
treme asymmetricity and it is statistically significant at
the confidence level of 99%.

– Are the currently operational NWP systems, with hor-
izontal grid spacings of around 10–20 km, able to rep-
resent the scales appropriate for extraction of the asym-
metric information? The HIRLAM NWP system is only
partially able to represent the asymmetric properties of
the SD observations. The closest agreement with the ob-
servations is obtained at zenith angles larger than 65◦.

– Can the NWP model’s representation of the azimuthal
asymmetry be improved by increasing the horizontal

resolution? Yes, it can be improved. If the SD ob-
servations at zenith angles larger than 65◦ are consid-
ered, the horizontal grid spacing of around 5 km seems
to be dense enough in order to explicitly model the
asymmetricity. However, modelling of the asymmetry
at smaller zenith angles requires a denser grid.

This study makes use of a hydrostatic limited area NWP
system, originally intended to provide synoptic scale guid-
ance. It is possible that the conclusions would be some-
what different if a finer scale non-hydrostatic NWP system
was used. Moreover, the results are expected to depend also
on the horizontal resolution of the observing systems assim-
ilated in the model.

The currently operational limited area NWP systems are
already close to the highest horizontal resolution used in this
study. Therefore, the NWP data assimilation is expected to
be able to make use of the whole information content of the
SD observations in near future. At the moment, the most
obvious obstacle for SD data assimilation is the lack of data
processing in near real time.
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