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Abstract. We use limb emission spectra of the Michelson
Interferometer for Passive Atmospheric Sounding (MIPAS)
onboard the ENVIronmental SATellite (ENVISAT) to derive
the first global distribution of peroxyacetyl nitrate (PAN) in
the upper troposphere. PAN is generated in tropospheric air
masses polluted by fuel combustion or biomass burning and
acts as a reservoir and carrier of NOx in the cold free tropo-
sphere. PAN exhibits continuum-like broadband structures
in the mid-infrared region and was retrieved in a contigu-
ous analysis window covering the wavenumber region 775–
800 cm−1. The interfering species CCl4, HCFC-22, H2O,
ClONO2, CH3CCl3 and C2H2 were fitted along with PAN,
whereas pre-fitted profiles were used to model the contri-
bution of other contaminants like ozone. Sensitivity tests
consisting in retrieval without consideration of PAN demon-
strated the existence of PAN signatures in MIPAS spectra ob-
tained in polluted air masses. The analysed dataset consists
of 10 days between 4 October and 1 December 2003. This
period covers the end of the biomass burning season in South
America and South and East Africa, in which generally large
amounts of pollutants are produced and distributed over wide
areas of the southern hemispheric free troposphere. Indeed,
elevated PAN amounts of 200–700 pptv were measured in
a large plume extending from Brasil over the Southern At-
lantic, Central and South Africa, the South Indian Ocean as
far as Australia at altitudes between 8 and 16 km. Enhanced
PAN values were also found in a much more restricted area
between northern subtropical Africa and India. The most sig-
nificant northern midlatitude PAN signal was detected in an
area at 8 km altitude extending from China into the Chinese
Sea. The average mid and high latitude PAN amounts found
at 8 km were around 125 pptv in the northern, but only be-
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tween 50 and 75 pptv in the southern hemisphere. The PAN
distribution found in the southern hemispheric tropics and
subtropics is highly correlated with the jointly fitted acety-
lene (C2H2), which is another pollutant produced by biomass
burning, and agrees reasonably well with the CO plume de-
tected during end of September 2003 at the 275 hPa level
(∼10 km) by the Measurement of Pollution in the Tropo-
sphere (MOPITT) instrument on the Terra satellite. Simi-
lar southern hemispheric PAN amounts were also observed
by previous airborne measurements performed in Septem-
ber/October 1992 and 1996 above the South Atlantic and the
South Pacific, respectively.

1 Introduction

Peroxyacetyl nitrate (PAN) is generated in air masses pol-
luted by fuel emissions or by biomass burning and is a pos-
sible indicator of photochemical smog. Its production is ini-
tialized by the reaction of hydrocarbons with the hydroxyl
radical (OH) and subsequently with O2 to form the perox-
yacetyl radical CH3C(O)OO as specific intermediate. The
reversible reaction of the peroxyacetyl radical with nitrogen
dioxide produces PAN

CH3C(O)OO+ NO2 
 CH3C(O)OONO2. (1)

PAN was first detected in the Los Angeles area during smog
episodes (Stephens et al., 1956). Phytotoxic episodes with
PAN amounts of more than 15 ppbv were observed in South-
ern California in the 1980s (Temple et al., 1983). Even higher
amounts of more than 30 ppbv were measured in 1997 in
Mexico City (Gaffney et al., 1999). Since the 1980s PAN
production has decreased in North America and Europe, but
increased in Eastern Asia. The PAN amounts in clean air ar-
eas are generally substantially lower, namely between 50 and
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100 pptv (Singh et al., 2000a). Widespread southern hemi-
spheric PAN pollution extending from South America over
the South Atlantic, East and South Africa, the Southern In-
dian Ocean as far as Australia has been observed during the
annual biomass burning period in South America and South
Africa in September and October (Singh et al., 1996, 2000a).

The thermal decomposition rate of PAN is highly temper-
ature dependent, resulting in lifetimes between 1 h at 298 K
and about 5 months at 250 K (Singh, 1987). However, due
to photolysis its mean lifetime is restricted to 3 months. Be-
cause of its temperature sensitivity PAN can only be trans-
ported over a few hundred kilometres in the lower tropo-
sphere, but over distances of more than 10 000 km in the cold
upper troposphere (Singh, 1987). Thus it serves as a reservoir
and carrier of NOx in this height region. When these polluted
air masses warm up, PAN is destroyed and NO2 is released
(Eq. 1), which is photolysed at wavelengths less than 420 nm.
This leads to formation of nitric oxide (NO) and atomic oxy-
gen:

NO2 + hν (λ < 420 nm) −→ NO + O, (2)

Subsequently, atomic oxygen reacts with O2 and produces
tropospheric ozone:

O + O2 + M −→ O3 + M. (3)

Thus, PAN can contribute to the pollution of remote clean air
areas, but has also strong influence on the oxidising power
of the atmosphere. After photolytic destruction during day-
time re-formation of PAN at night is possible. The fact, that
contrary to ozone it has no important natural sources in the
stratosphere, is an advantage of PAN over ozone as indica-
tor of upper tropospheric hydrocarbon-NOx photochemistry
(Singh, 1987).

Up to now there exists no global dataset of upper-
tropospheric PAN. Only a few airborne campaigns covering
supra-regional areas have been performed in the free tropo-
sphere, e.g. the Global Tropospheric Experiment/Transport
and Atmospheric Chemistry Near the Equator-Atlantic
(GTE/TRACE A) experiment above the Tropical and South
Atlantic (Singh et al., 1996) and the Pacific Exploratory Mis-
sion (PEM) Tropics-A campaign above the Pacific (Singh et
al., 2000a). These missions were dedicated to study the ex-
tent and composition of the southern hemispheric biomass
burning plume during September/October 1992 and 1996, re-
spectively. Another airborne campaign off the west coast of
North America, the Intercontinental Transport and Chemical
Transformation 2002 (ITCT 2K2) project, was carried out to
investigate the intercontinental PAN transport from East Asia
(Roberts et al., 2004). Most of the other PAN data avail-
able are groundbased measurements in the boundary layer
in highly polluted as well as very remote regions (Temple
et al., 1983; Beine et al., 2000; Gaffney et al., 1999; Jacobi
et al., 1999). Whereas all these airborne and groundbased

measurements employed in-situ techniques, only quite re-
cently the first detection of upper-tropospheric PAN in infra-
red remote sensing spectra of MIPAS/ENVISAT and of the
balloon-borne MIPAS instrument (MIPAS-B2) was reported
(Allen, 2005a; Remedios et al., 2006, 2007). The MIPAS-B2
instrument is described in Fischer and Oelhaf (1996) and in
Friedl-Vallon et al. (2004).

In this paper we present the first global distribution of PAN
derived from spaceborne mid infra-red emission spectra. In
detail, we will describe the retrieval method, give an error
estimation, discuss sensitivity tests, and present the global
PAN distribution observed between 4 October and 1 Decem-
ber 2003. This period covers the end of the biomass burn-
ing season in South America, Central and South Africa and
in Australia. Thus, a widespread distribution of elevated
PAN amounts and of other pollutants was expected in the
southern hemispheric tropical and subtropical upper tropo-
sphere. While this paper is focused on the description of
the PAN retrieval scheme and on the presentation of the re-
trieved PAN distribution, a more detailed investigation of the
biomass burning plume by combined analysis of several pol-
lutants and by trajectory calculations will be presented in a
subsequent paper.

2 Michelson Interferometer for Passive Atmospheric
Sounding

The Michelson Interferometer for Passive Atmospheric
Sounding (MIPAS) was launched onboard the Sun-
synchronous polar-orbiting European ENVIronmental
SATellite (ENVISAT) on 1 March 2002. It is a limb-viewing
Fourier transform infrared (FTIR) emission spectrometer
covering the mid-infrared spectral region from 685 to
2410 cm−1. Its wide spectral coverage and high spectral
resolution, which is 0.035 cm−1 (unapodised) for spectra
of the original full resolution measurement mode evaluated
here, enables simultaneous observation of numerous trace
gases (Fischer and Oelhaf, 1996; European Space Agency
(ESA), 2000). This measurement mode consists of rearward
limb-scans covering tangent altitudes between about 6 and
68 km within 17 altitude steps. The step-width is 3 km up to
42 km and increases up to 8 km above 52 km. The level-1B
radiance spectra used for PAN retrieval are data versions
4.61–4.62 provided by the European Space Agency (ESA)
(Nett et al., 2002). Several data processors, amongst others
one at the Institut f̈ur Meteorologie und Klimaforschung
(IMK), have been developed for near-real time and off-line
retrieval of profiles of atmospheric trace species from
level-1B MIPAS spectra (von Clarmann et al., 2003a). The
PAN distribution presented in this paper was produced with
the retrieval processor of the IMK, which was developed
to produce consistent datasets containing considerably
more trace species than included in the operational dataset
provided under ESA responsibility.
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3 Retrieval method and error estimation

The retrievals performed with the IMK data processor consist
of inversion of MIPAS level-1B spectra to vertical profiles of
atmospheric state parameters by constrained non-linear least
squares fitting (e.g., Rodgers, 2000, and references therein)
in a global-fit approach:

xi+1 = xi + (KT S−1
y K + R + λI)−1

×(KT S−1
y (ymeas− y(xi)) − R(xi − xa)), (4)

wherexi+1 is the vector of the unknown state parameters cal-
culated in iterationi+1,ymeasis the measurement vector, and
y(xi) is the result of the radiative transfer model using the
parametersxi of iteration numberi. Sy is the measurement
noise covariance matrix,K is the Jacobian matrix contain-
ing the partial derivatives∂y(xi)/∂xi , R is a regularization
matrix, λI (scalar times unity matrix) is a damping term as
proposed by Levenberg (1944) and Marquardt (1963), and
xa is an a-priori profile used to constrain the retrieval re-
sult. To avoid any influence on the shape of the retrieved
PAN profiles, an all-zero a-priori profile is chosen, whereas
a midlatitude PAN profile of the Model for OZone And Re-
lated chemical Tracers (MOZART) (Horowitz et al., 2003)
is used as first-guess. Application of a smoothing constraint
is necessary to attenuate instabilities, because the retrieval
grid used has an altitude spacing of 1 km up to 44 km and of
2 km between 44 and 70 km, which means oversampling in
comparison with the height distance between the tangent alti-
tudes. Similar as in other retrievals of MIPAS data performed
at IMK, Tikhonov’s regularization scheme is used with a first
derivative operator as constraint (Steck, 2002, and references
therein).

Radiative transfer calculations are performed with the
Karlsruhe Optimized and Precise Radiative Algorithm (KO-
PRA) (Stiller, 2000). Prior to PAN many other trace species
are evaluated in the retrieval chain. First, spectral shift,
the temperature profile and the tangent heights are fitted.
Thereafter various trace gas profiles are retrieved in a suc-
cessive manner, in which the major species H2O, O3, CH4,
N2O, and HNO3 are analysed first. The fitted profiles of all
these species are used to model their radiative contribution
in the PAN retrieval unless they are joint-fitted again. Beside
each target species, one continuum profiles and one height-
independent zero level calibration corrections are jointly fit-
ted for each microwindow. The retrieval strategy is described
in more detail in, e.g., von Clarmann et al. (2003b), Glatthor
et al. (2004) and Ḧopfner et al. (2004) and references therein.
Cloud-flagging, i.e. removal of cloud-contaminated spectra
prior to retrieval, is performed following the standard method
applied at IMK, using a threshold of 4.0 (Glatthor et al.,
2006).

Since PAN is a relatively heavy and complex molecule
(141 atomic mass units), the line positions are very dense
and the line wings of its single rotational-vibrational transi-
tion lines overlap, which leads to broadband continuum-like
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Fig. 1. PAN signatures at 10 km altitude (black), displayed as dif-
ference spectrum between model calculations for a tropical atmo-
sphere containing a PAN amount of∼200 pptv (at 10 km) and for
a tropical PAN-free atmosphere. The main features are the bands
centred at 794, 930, 991 and 1163 cm−1. The red curves show the
typical noise-equivalent spectral radiance (NESR) in MIPAS spec-
tra from channels A, AB and B (only low-wavenumber edge).

signatures. For this reason spectroscopic data are available
as tabulated absorption cross sections only. In our retrievals
PAN is modelled using a cross section dataset provided by
the University of Leicester, which consists of measurements
at three temperatures, 250, 273 and 295 K, with a nominal
unapodised spectral resolution of 0.25 cm−1 (Allen et al.,
2005b, c). Based on model calculations for a climatological
tropical atmosphere, the most prominent atmospheric PAN
band is that centred at 794 cm−1 (theν16 NO2 stretch), fol-
lowed by a second band at 1163 cm−1 (theν10 C-O stretch)
and other considerably weaker bands. Figure1 shows the
difference spectrum for a tangent altitude of 10 km between
an atmosphere containing a PAN amount of∼200 pptv (at
10 km) and a PAN-free atmosphere. Comparison with the
noise-equivalent spectral radiance (NESR) of MIPAS indi-
cates that for this PAN amount a signal-to-noise ratio of
larger than 10 can be obtained in the band at 794 cm−1. Af-
ter test of different sizes of the analysis window, PAN re-
trievals were finally performed in one contiguous microwin-
dow in the wavenumber region 775–800 cm−1, which covers
the strongest signatures of the band at 794 cm−1. Due to the
large amount of MIPAS data to be analysed, the weaker part
of this band between 800 and 830 cm−1 as well as the band
at 1163 cm−1 were not used for retrieval to save computa-
tion time. However some sample consistency tests were per-
formed, in which the whole band at 794 cm−1 as well as the
band at 1163 cm−1 were evaluated. For correct modelling of
the CO2 Q-branch at 792 cm−1 radiative transfer calculations
were performed with inclusion of CO2 line-mixing. Because
of its relatively weak signal and broadband structure, PAN
requires a careful retrieval to separate its signature from the
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atmospheric continuum and from other broadband species,
namely CCl4, HCFC-22, ClONO2 and CH3CCl3, which also
contribute to the atmospheric signal in this spectral inter-
val. Thus, beside PAN these species as well as H2O and
C2H2, one continuum profile and one height-independent
offset (one microwindow only) were also fitted. The results
of preceding retrievals were used to model the temperature
profile and the contribution of other interfering species like
ozone, because test calculations had demonstrated that joint-
fit of these species had only little influence on the retrieved
PAN profile.

Figure 2 shows a PAN profile obtained on 21 October,
2003, over Eastern Africa (top left) and another profile from
the same orbit obtained above northern midlatitudes (top
right). Over East Africa a PAN volume mixing ratio (vmr) as
high as 700 pptv was detected at the lowermost height use-
able for retrieval at this geolocation (11 km, due to clouds).
Towards higher altitudes PAN decreases to 65 pptv at the
tropopause (17 km) and to 50 pptv at 20 km. The midlatitude
profile exhibits PAN values of∼175 pptv in the troposphere,
a rapid decrease at the tropopause and also values around
50 pptv in the lowermost stratosphere. The corresponding
averaging kernels (middle panels) indicate, that at the trop-
ical geolocation a PAN signal is obtainable between 11 and
23 km and at the midlatitude geolocation, which is not con-
taminated by clouds, between 5 and 23 km. The calculated
number of degrees of freedom is 2.4 for the tropical and 4.6
for the midlatitude geolocation. The higher midlatitude value
is due to higher temperatures between 11 and 25 km and
further extension of the scan into the troposphere. In both
cases the height resolution is 3.5–6 km (degrading with al-
titude). The averaging kernels show that the PAN amounts
retrieved in the lowermost stratosphere have a certain tro-
pospheric contribution. Nevertheless, these PAN values are
in good agreement with PAN amounts reported by Singh et
al. (2000b) for the lower stratosphere above the Northern At-
lantic (solid red squares).

The diagrams at the bottom of Fig.2 show the total esti-
mated PAN retrieval error, measurement noise and the major
error components for both geolocations, in which all error
components are 1-sigma uncertainties. The error estimation
is based on the actual retrieved temperatures, tangent heights,
PAN profiles and simulated spectra and Jacobians of the fi-
nal iteration (cf. Glatthor et al., 2004). The error contribu-
tions displayed for the tropical (left) and midlatitude geolo-
cation (right) are not exactly the same, because due to dif-
ferent atmospheric conditions slightly different components
proved important (only components larger than 2% or 4%,
respectively, are shown). The meaning of the various error
sources listed in the legend is the following: total: total re-
trieval error; noise: measurement noise; param: total con-
tribution of all error components except of noise; o3, hno3,
cof2, co2: errors due to uncertain knowledge on the respec-
tive trace gases; tem, los, tgra: errors due to uncertainty in
the temperature profile, in instrumental pointing and in the

horizontal temperature gradient (1 K, 150 m and 1 K/100 km
assumed, respectively); spectro, shift, gain, ils: errors caused
by uncertain knowledge on PAN spectroscopic data, fre-
quency calibration, gain calibration and on instrumental line
shape (3.2%, 0.0005 cm−1, 1% and 3% assumed). The errors
caused by temperature and instrumental pointing are some-
what overestimated, because the basing uncertainties of 1 K
and 150 m are assumed uncorrelated and rather conservative
in comparison with the estimated standard deviation result-
ing from the preceding retrieval of temperature and line-of-
sight. The error contribution of the joint-fitted gases CCl4,
HCFC-22, ClONO2, CH3CCl3, H2O and C2H2 is assumed
zero.

For the tropical geolocation the total error is minimal (5%)
at the lowermost useable tangent height (13 km), because
here the sensitivity of the retrieval is maximal, expressed
by the maximum of the averaging kernel at this altitude.
Due to the considerably smaller averaging kernel the error
is larger at 11 km. Towards higher altitudes, where the PAN
amount declines rapidly, the total error increases to 40% at
the tropopause (17 km) and remains above 30% in the strato-
sphere. The stratospheric error estimates do not approach
or exceed 100%, because, among other things, the smooth-
ing error is not taken into account in our error assessment.
Measurement noise increases from 3% at 13 km to more than
25% at the tropopause. Except for 13 km, uncertain knowl-
edge on the instrumental line-of-sight (LOS) is the dominant
error contribution in the altitude range 10–17 km. Further
important error sources in this altitude range are the uncer-
tainties in spectroscopic data, instrumental line shape (ILS),
temperature and, above 15 km, in the ozone vmr. The spec-
troscopic uncertainty is around 3% at most altitudes, which
corresponds to the assumed 1-sigma error of 3.2% of the
PAN cross sections at 250 K (cf. Allen et al., 2005b, c).
Uncertain knowledge on ILS and temperature causes errors
of up to 3 and 4%, respectively, in the altitude range 10–
17 km. The error due to unknown knowledge on ozone, as
calculated from the estimated standard deviation (ESD) of
the pre-fitted ozone profile, is 7% at 17 km, but decreases
rapidly towards lower altitudes. At the northern midlatitude
geolocation (bottom right), where considerably lower PAN
amounts were detected, the total error amounts to 14–20%
between 7 and 12 km. Towards lower altitudes the total error
increases strongly up to 75% at 5 km because of decreasing
sensitivity of the retrieval (cf. Fig.2, middle right). Due to
declining PAN amounts the error increases up to 30% in the
lower stratosphere. The main error component below 9 km
is the uncertainty in LOS and above 9 km the noise error,
the latter ranging from 5% at 8 km to 25% in the strato-
sphere. Further major error components are the same as at
the East African location. The upper tropospheric total er-
rors derived here are considerably smaller than the natural
variability of PAN, which, e.g., in a compilation given by
Roberts et al. (2004) ranges from 20 to 700 pptv.
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Fig. 2. Left: (top) PAN vmr-profile measured by MIPAS on 21 October, 2003, in polluted air masses over Eastern Africa (12.9◦ S, 37.2◦ E);
due to cloud-contamination no PAN data are available from below 11 km; the error bars represent the noise error; the black arrow indicates
the tropopause height and the red square the average PAN amount in the lowermost stratosphere given by Singh et al. (2000b) along with the
scatter of the dataset; (middle) rows of the respective averaging kernel plotted versus altitude; (bottom) total retrieval error (solid black line),
noise error (dotted black line), total parameter error (dashed black line), and contributions of various other error sources (see legend, detailed
explanation in Sect. 3). Right: Same as left but for a geolocation from the same orbit at northern midlatitudes (51.4◦ N, 153.7◦ W).
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Fig. 3. Left: Modelled spectrum (black) and contributions of fitted PAN (red), CCl4 (blue), HCFC-22 (green) and H2O (brown) for 13 km
altitude at an East-African geolocation (12.9◦ S, 37.2◦ E), where high PAN amounts of 600 pptv were retrieved. The contributions of PAN,
CCl4, HCFC-22 and H2O are the differences between model spectra with and without the respective gas. The top ends of the H2O lines are
cut to zoom the broadband contributors. Right: Same as left, but for 19 km altitude.

An additional error source is the fact that the lowest labo-
ratory temperature, for which PAN cross sections have been
determined is 250 K, whereas the upper tropospheric tem-
perature often is considerably lower, e.g. 210 K at 13 km alti-
tude at the East African geolocation. To estimate the possible
bias resulting from this discrepancy, test retrievals were per-
formed using the PAN cross section data sets for 273 K or
295 K only. Thereby the retrieved PAN amount at this geolo-
cation, which due to the low temperatures had been evaluated
using the cross sections for 250 K in the standard retrieval,
increased by 13% and 26% at 13 km altitude, respectively.
Provided that this linear dependence on temperature maps
to laboratory PAN cross sections actually required for colder
upper tropospheric temperatures, this would mean that the re-
trieval overestimates the “true” PAN amount at 13 km at this
geolocation by 23%. For a general estimation of this effect,
average temperatures were calculated for the southern hemi-
spheric area of high PAN amounts (cf. Sect. 5), which were
247, 236, 221, 209 and 199 K for the altitudes of 8, 10, 12,
14 and 16 km. Under the assumption of linearity this means
that the retrieved PAN amounts at these altitudes would have
to be reduced by 2, 8, 14, 19 and 23%, respectively.

Figure3 shows the modelled spectrum and the retrieved
signatures of PAN, CCl4, HCFC-22 and H2O for the East
African geolocation at tangent altitudes of 13 km (left) and
19 km (right). To maintain clarity the weak signatures of
the other joint-fit parameters ClONO2, CH3CCl3 and C2H2
are not shown. At 13 km PAN exhibits a broadband sig-
nature of up to more than 200 nW/(cm2 sr cm−1) (bottom
left). The broadband structures of CCl4 and HCFC-22 are
mainly interfering between 792 and 800 cm−1, but only lit-
tle at lower wavenumbers, which enables a separation of the
PAN signal. At 19 km the signature of PAN has decreased
to 10 nW/(cm2 sr cm−1) (bottom right), which is a factor of

2 lower than the instrumental NESR and also lower than the
contributions of CCl4 and HCFC-22. Although the signal-to-
noise ratio is enhanced by the extension of the low PAN sig-
nature over a considerable number of gridpoints, this shows
that the retrieved stratospheric PAN amounts have a large un-
certainty.

4 Sensitivity tests

To check the retrieved PAN amounts we investigated, if the
measured MIPAS spectra can be modelled just as well by
complete neglect of PAN. Figure4 (left) shows the MIPAS
spectrum from 13 km altitude obtained on 21 October 2003
on orbit 8585 at the above presented East African geoloca-
tion (12.9◦ S, 37.2◦ E), where a high PAN vmr of 600 pptv
was retrieved. Further it contains fitted spectra and residuals
resulting from retrieval with and without inclusion of PAN,
i.e. assuming a PAN-free atmosphere in the latter case and re-
trieval of the joint-fit gases only. The residuals clearly show
that the fit without consideration of PAN is much worse than
the adjustment with modelling of PAN, confirming the large
PAN amount retrieved at this altitude. This is also expressed
by the RMS deviation between measured and modelled spec-
tra, which is reduced from 41.2 nW/(cm2 sr cm−1) for the re-
trieval without PAN to 26.9 nW/(cm2 sr cm−1), i.e. by 35%,
for the retrieval with inclusion of PAN. For comparison the
result of the same test for 19 km altitude at the same geoloca-
tion, where a very low PAN amount of 50 pptv was retrieved,
is also shown (Fig.4, right). In this case the residuals are
nearly equal (RMS of 16.82 and 16.76 nW/(cm2 sr cm−1)),
indicating that retrieval without inclusion of PAN is techni-
cally almost just as good. However the comparably good fit
for the PAN-free atmosphere is obtained with a slightly nega-
tive, i.e. unphysical, amount of CH3CCl3. This phenomenon
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Fig. 4. Left: MIPAS spectrum from 13 km altitude, obtained on 21 October 2003 over Eastern Africa (12.9◦ S, 37.2◦ E) (black), as well as
fitted spectra and residuals with (red) and without (blue) inclusion of PAN. Residuals are in the same units as the radiance plots themselves.
Right: Same as left, but for 19 km altitude.

becomes even much stronger at 13 km, where neglect of PAN
leads to large negative CH3CCl3 and ClONO2 amounts.

The result of this sensitivity test for the whole orbit 8585
is displayed in Fig.5, where the ratio of the RMS-values
from retrieval without and with inclusion of PAN is plotted
against the retrieved PAN amount. The colour code indicates
the tangent height of the respective spectra. For data points
from altitudes of 16 km or higher the RMS-ratio is very close
to unity for values below 100 pptv, indicating no sensitiv-
ity to PAN. These altitudes are at or above the tropopause,
where indeed only low PAN amounts are expected. How-
ever, at lower altitudes of 7–14 km there are other points with
PAN amounts below 100 pptv and larger RMS-ratios of up to
1.1. This indicates an altitude-dependent PAN significance-
threshold of∼100 pptv at altitudes of 16 km or higher and of
∼60 pptv for lower altitudes. In addition, there is a subset of
datapoints, which show a linear correlation of the RMS-ratio
with the retrieved PAN amounts, meaning an increasingly
worse fit without consideration of PAN. For these data points,
which are from altitudes between 7 and 13 km, the RMS-
ratio increases up to more than 1.6 for fitted PAN amounts of
200–600 pptv.

PAN detection in MIPAS/ENVISAT spectra, but follow-
ing a somewhat different method, has also been reported by
Allen (2005a) and by Remedios et al. (2006).

Additional tests performed in our investigation consisted
in correlation between the retrieved PAN and the jointly fitted
CCl4, HCFC-22 and CH3CCl3 amounts and showed no cor-
relation or anticorrelation. This ensured that the broadband
signatures of these species were not erroneously interpreted
as PAN.
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Fig. 5. Ratio of RMS-values resulting from retrievals without and
with inclusion of PAN plotted versus retrieved PAN amounts for or-
bit 8585 of 21 October 2003. Data are color-coded with the tangent
height; tangent heights higher than 18 km are also coded red.

5 Discussion

5.1 Observed PAN distribution

The analysed dataset consists of 150 orbits from 10 days be-
tween 4 October and 1 December, 2003, namely 4, 13, 21 and
26 October, 1, 4, 11, 21 and 24 November, and 1 December.
This period covers the end of the biomass burning season
in the southern hemisphere. Figure6 exemplarily shows the
global PAN distribution retrieved from single spectra for 21
October 2003 at 12 km altitude. The white areas, which are
mainly located in the tropics and subtropics, are data gaps
caused by cloud contamination. Nevertheless a contiguous
area of high PAN values (250–600 pptv) extending from the
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Fig. 6. Global PAN distribution on 21 October 2003 at 12 km alti-
tude, obtained from MIPAS data. The white areas are data gaps due
to cloud contamination.

Southern Atlantic to East Africa is visible, which we attribute
to extensive biomass burning. Interrupted by data gaps, this
area seems to be continued above the Southern Indian Ocean
as far as Australia. To enhance the spatial data coverage we
show the PAN distribution averaged over the whole period in
the next two plots.

The zonal average of the whole dataset (Fig.7) exhibits
clear differences between the northern and southern hemi-
spheric PAN distribution. In the southern hemisphere there
is a large plume containing elevated PAN amounts of more
than 100 pptv between the equator and about 50◦ S in the al-
titude range 7–15 km, which is obviously caused by biomass
burning. Maximum values of more than 200 pptv are be-
tween 20◦ S and 40◦ S at altitudes from 7 to 10 km. There
is another, but much more restricted, region of elevated PAN
amounts in the northern hemispheric tropics, which contains
maximum PAN amounts of 100–150 pptv. No data are avail-
able in the northern tropics below 8 km due to permanent
cloud contamination of the MIPAS spectra. Further there are
also elevated PAN amounts throughout the northern hemi-
spheric mid and high latitudes, decreasing from 150 pptv at
7 km to 75 pptv at 11 km. The major reason for these values
is probably industrial pollution. However, we cannot exclude
any other pollution source like boreal forest fires. In compar-
ison to the northern hemisphere, the upper tropospheric PAN
values at southern high latitudes, which are much less indus-
trially polluted, are much lower, namely between 75 pptv at
high midlatitudes and 25 pptv above the Antarctic. At strato-
spheric altitudes above 15 km the situation is reversed. Here,
obviously due to beginning subsidence over the Arctic, the
northern hemispheric mid and high latitude PAN amounts are
lower than those from the southern hemisphere.

Figure 8 shows the averaged global PAN distribution at
8, 10, 12 and 16 km altitude. At 8 km there are still large
data gaps in the tropics due to cloud-contamination. The

Fig. 7. Latitudinal PAN distribution, averaged zonally and over 10
days between 4 October and 1 December, 2003.

most prominent feature is a contiguous band of high PAN
amounts in the southern hemispheric tropics and subtrop-
ics, which extends from the tropical and subtropical Atlantic
over Southern Africa, the Southern Indian Ocean and Aus-
tralia as far as to the West Pacific. The PAN values in this
band are generally between 200 and 300 pptv and increase
up to 500 pptv above Southern Africa and the adjacent In-
dian Ocean. The high PAN amounts above the Western In-
dian Ocean are represented by 15 individual profiles. As al-
ready mentioned above, we attribute this feature to southern
hemispheric biomass burning. In the northern hemispheric
subtropics, a more restricted area of elevated PAN is visi-
ble at 8 km, extending from the African Sahel zone to In-
dia and, possibly strengthened by additional sources of PAN,
further northeast above China and the Chinese Sea. At 10 km
high PAN values appear above the whole southern and east-
ern Africa. At 12 km the area of high southern hemispheric
PAN amounts does not extend so far east and ends at the
West Australian coast. However, high PAN amounts of 400–
500 pptv are now visible above North-East Brasil, i.e. in an
area which was masked by clouds below. At 16 km altitude,
where deterioration by clouds has mostly disappeared and the
global coverage is nearly complete, the highest PAN amounts
of up to 200 pptv cover an area extending from tropical Brasil
above the Southern Atlantic and tropical Africa to the South-
ern Indian Ocean. Like in Fig.7, the northern mid and high
latitude PAN values are lower than those from the southern
hemisphere.

In order to check on a qualitative basis, if the observed
southern hemispheric tropical and subtropical PAN distri-
bution can be caused by biomass burning, fire counts of
the Tropical Rainfall Measuring Mission (TRMM) satellite
(Giglio et al., 2000) were inspected for the time period 25
September until 1 December 2003. Indeed, numerous fire
count clusters were found in South America, Central and
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Fig. 8. Global PAN distribution at 8, 10, 12 and 16 km altitude (top left to bottom right) averaged over 10 days between 4 October and 1
December, 2003. The white areas are data gaps due to cloud contamination.

Southern Africa and in Australia over the whole period,
indicating intensive biomass burning (http://tsdis.gsfc.nasa.
gov/tsdis/Fire/fireintro.html). This is also confirmed by fire
counts of the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) experiment on the Terra satellite published by
Edwards et al. (2006, Fig. 5a). As mentioned in Sect. 1, a
more detailed and quantitative investigation of the biomass
burning plume by combined analysis of several pollutants
and trajectory calculations starting above the observed fire
count clusters will be presented in a subsequent paper.

Figure 9 shows daily averages of the PAN values in an
area containing the southern hemispheric plume (left) and
from the same latitude band but from a much less polluted
area above the Central and Eastern Pacific (right) at 8, 12,
16 and 20 km altitude. Comparison of both plots shows that
the PAN values in the area containing the biomass burning
plume are strongly enhanced at 8 and 12 km and moderately
elevated at 16 km throughout the observation period, which
basically justifies the temporal averaging performed above.
At 8 km the PAN amounts in the plume range from 200 to
370 pptv, whereas they are around 200 and 80 pptv at 12 and
16 km. The corresponding values above the Pacific are much
lower, about 130, 90 and 60 pptv, respectively. At 8 km alti-
tude these PAN values seem also to be moderately enhanced.
As mentioned above, the stratospheric PAN amounts from

20 km are only little significant, but exhibit approximately
the same values in both areas.

5.2 Correlation of southern hemispheric PAN with joint-
fitted C2H2

Contrary to PAN the joint-fitted trace gas acetylene (C2H2)
exhibits narrow transition lines in MIPAS spectra (e.g. a well
separated line at 776.1 cm−1), which can not be misinter-
preted by other continuum-like structures. Since C2H2 is
another, although not unique, product of biomass burning
(Singh et al., 1996), it is suited for a cross-check of the PAN
amounts retrieved in the southern hemispheric tropics and
subtropics. In Fig.10 the PAN and C2H2 data from the lat-
itude band 0◦ to 40◦ S, i.e. from the biomass burning zone
and the adjacent background region, are plotted against each
other for the altitude region 10–16 km. The high correla-
tion between both datasets (r=0.79) confirms the measured
southern hemispheric PAN distribution. The slightly nega-
tive C2H2 values are mainly associated with PAN values be-
low 100 pptv from altitudes of 15–16 km, which are anyway
only little significant (cf. Sect. 4).
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Fig. 10. Correlation between PAN and joint-fitted C2H2 amounts,
measured by MIPAS on 10 days between 4 October and 1 Decem-
ber, 2003, in the latitude band 0◦ to 40◦ S between 8 and 16 km
altitude; correlation coefficientr=0.79.

5.3 Comparison with other space- and airborne measure-
ments

The biomass burning plume detected in the MIPAS PAN dis-
tribution (cf. Fig. 8) is in reasonably good agreement with the
area of enhanced CO observed by the Measurement of Pol-
lution in the Troposphere (MOPITT) instrument on the Terra
satellite (Edwards et al., 2006, Figs. 1b and 4a), which these
authors also attribute to biomass burning in South America,
South Africa and Australia. During the last week of Septem-
ber 2003 MOPITT measured a plume of elevated CO (up to
∼160 ppbv), which on the 275 hPa (∼10 km) level mainly
covered tropical Brasil, the Southern tropical and subtropi-
cal Atlantic, Southern Africa as well as the Western Indian
Ocean, and less distinct extended until Western Australia.
During the subsequent period 1–9 October 2003, which cor-

responds to the beginning of our measurement period, MO-
PITT observed a band of high CO total columns at 30◦S,
which even circumscribed the globe.

A qualitative comparison can also be made with airborne
in-situ PAN measurements performed by the NASA Global
Tropospheric Experiment (GTE) in September/October 1992
over the South Atlantic and the Pacific Exploratory Mission
(PEM) in September/October 1996 over the remote South
Pacific (Singh et al., 1996, 2000a). These campaigns were
dedicated to study the distribution of species in pollution
plumes originating from biomass burning regions in South
America and South Africa. Over the South Atlantic average
PAN amounts of about 300 pptv were found in the altitude
region 3–11 km. This agrees well with the average of MI-
PAS Southern Atlantic (10◦S to 30◦S) PAN data, which is
between 330 pptv at 8 km and 230 pptv at 11 km (cf. Fig.8).
For the remote South Pacific these authors report average
PAN values of about 60 pptv between 5 and 11 km altitude,
whereas the MIPAS values in this region (0◦ to 30◦ S and
90◦ W to 150◦ W) are between 115 pptv at 8 km and 80 pptv
at 11 km.

Enhanced northern hemispheric PAN as displayed in Fig. 7
and Fig. 8 (top left) has also be found by Kotchenruther et
al. (2001) and Roberts et al. (2004), who report on PAN
amounts of about 200 pptv in the altitude region 6–8 km
off the westcoast of the United States and attribute these
measurements to long-range transport of industrial pollution
from East-Asia. Further, Remedios et al. (2007) retrieved
PAN amounts of 260–180 pptv in the altitude region 7.5–
10.5 km from MIPAS-B2 spectra obtained over the Western
Mediterranean region. Elevated PAN values at high northern
latitudes as shown in Fig. 7 have also been measured by e.g.
Bottenheim and Gallant (1989), who report on PAN-vmrs of
up to 300 pptv at 7 km altitude at 70◦ N and attribute their
observations to arctic haze episodes caused by industrial pol-
lution.
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6 Summary and conclusions

We have used spaceborne mid-infrared measurements of MI-
PAS to derive the first global upper tropospheric PAN dis-
tribution. The evaluated dataset consists of ten days cover-
ing the period 4 October to 1 December 2003. PAN was re-
trieved in the wavenumber region 775–800 cm−1, which cov-
ers its most prominent mid-infrared signature. Beside PAN
the interfering broadband species CCl4, HCFC-22, CH3CCl3
and ClONO2 as well as H2O and C2H2 were joint-fitted.
PAN profiles were derived for the upper troposphere and
lower stratosphere, with about 2.5–4.5 degrees of freedom
(depending on useable tangent heights) and a height reso-
lution of 3.5–6 km. The total retrieval error, obtained from
an analytical error analysis, ranges from 5% for strongly en-
hanced tropical PAN amounts (600 pptv at 13 km) to 14–20%
for moderate midlatitude PAN amounts (175 pptv) near the
tropopause. The error increases up to 75% towards mid-
latitude lower tropospheric altitudes and to more than 30%
in the lower stratosphere. An additional uncertainty results
from incomplete coverage of the upper tropospheric temper-
atures by the PAN cross section data set used. Due to this dis-
crepancy the “true” PAN amounts in the cold tropical upper
troposphere might be overestimated by up to∼30%. A sen-
sitivity test to check the retrieved PAN data showed a degra-
dation of the fit quality for retrievals without consideration
of PAN, which increased with the PAN amount obtained be-
fore. Further, this test indicated a PAN significance-threshold
of ∼60 pptv for altitudes up to∼15 km and of∼100 pptv
above.

The analysed period covers the end of the biomass burn-
ing season in the southern hemispheric tropics and subtrop-
ics, in which large amounts of pollutants inclusive PAN are
produced, uplifted into the free troposphere and distributed
over large areas. Indeed, high PAN amounts were found in
the southern hemispheric tropics and subtropics in the alti-
tude range 8 to 16 km. At 8 km elevated PAN values formed a
nearly worldwide band extending from Brasil over the South-
ern Atlantic, Central and South Africa, the Southern Indian
Ocean and Australia as far as to the South Pacific, whereas
they were more confined to the area between Brasil and the
Western Indian Ocean at higher altitudes. The PAN amounts
in this biomass burning area ranged from 200 to 500 pptv at
8 km and from 100 to 200 pptv at 16 km. Enhanced PAN
amounts were also found in a much more restricted area
between northern subtropical Africa and India. The most
significant PAN signal at northern hemispheric midlatitudes
with values of up to 250 pptv was detected in an adjacent area
extending from China into the Chinese Sea. The average mid
and high latitude PAN values at 8 km altitude were 125 pptv
in the northern and between 75 and 50 pptv in the southern
hemisphere.

During the analysed period numerous fire count clusters
were observed in the southern hemispheric tropics and sub-
tropics by the TRMM satellite. Further, the southern hemi-

spheric PAN distribution is well correlated with the joint-
fitted C2H2, which is another pollutant produced by biomass
burning, and there is good agreement with the CO distribu-
tion measured by the MOPITT experiment in late Septem-
ber and early October 2003. On average, the retrieved PAN
amounts are also consistent to airborne PAN measurements
performed during the southern hemispheric biomass burning
periods of 1992 and 1996. These correspondencies confirm
the southern hemispheric PAN distribution observed by MI-
PAS and its characteristics as biomass burning plume. A
more detailed investigation of this plume by combined anal-
ysis of several pollutants will be given in a subsequent paper.
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