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Abstract. The low temperature aerosol chamber AIDA was
used to study the nucleation of nitric acid dihydrate (NAD)
in super-cooled nitric acid aerosols under simulated strato-
spheric conditions in the temperature range 192 K–197 K.
The nucleating solution droplets had median diameters be-
tween 225 and 290 nm and molar fractions of nitric acid be-
tween 0.26 and 0.28. Nucleation of solid particles was unam-
biguously observed in two out of three experiments during
time periods of up to five hours. The newly formed crys-
tals could be clearly distinguished from the remaining liquid
droplets by their increasing size with an optical particle spec-
trometer. The solid particles could be unequivocally identi-
fied as strongly aspherical nitric acid dihydrate crystals (α-
NAD) by in-situ FTIR-spectroscopy. From our experimental
data set there is no indication of direct nucleation of NAT or
a conversion of NAD into NAT while having saturation ratios
with respect to NAT of about 20–26. The temporal evolutions
of the NAD particle concentrations were used to derive indi-
vidual nucleation rates for NAD. The measured volume nu-
cleation rates ranged from 3.9×105 cm−3 s−1 at 195.8 K and
XNA=0.27 to 1.9×107 cm−3 s−1 at 192.1 K andXNA=0.28.
The corresponding hypothetical surface nucleation rates of
2×100 to 1×102 cm−2 s−1 are smaller than the parameteri-
zation of Tabazadeh et al. (2002) by factors between 25 and
>103.

1 Introduction

Since the discovery of the ozone hole in 1985 (Farman
et al., 1985) and the mechanisms that led to the ozone de-
struction over Antarctica (Crutzen and Arnold, 1986; Molina
and Molina, 1987) there has been an increasing interest in
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the evolution and composition of polar stratospheric clouds
(PSCs) which play a crucial role in the destruction of strato-
spheric ozone in the polar winters (McElroy et al., 1986;
Solomon et al., 1986; Molina, 1991). PSCs are mostly
liquid droplets, denoted as PSC type Ib particles, consist-
ing of sulphuric acid, nitric acid, and water (STS) with
compositions that vary strongly with decreasing temperature
(Carslaw et al., 1994). At the lowest temperatures that oc-
cur in the polar winter stratosphere PSC particles can freeze
to become ice particles (PSC type II) or solid nitric acid
hydrates (PSC type Ia) such as nitric acid dihydrate or tri-
hydrate (NAD, NAT). There have been some evidences for
the presence of STS, NAT and ice in PSCs (Schreiner et al.,
1999; Voigt et al., 2000) which were only recently further
supported by spectroscopic measurements (Hopfner et al.,
2006).

One key component in the ozone destruction cycle is nitric
acid and its “family” members, collectively denoted as NOy.
These substances are capable of deactivating the ozone de-
struction agent Cl under certain conditions by forming chlo-
rine reservoir species (Solomon, 1999). When NAD or NAT
particles form in PSCs they eventually can grow to sizes of
a few microns and sediment out to lower layers in the atmo-
sphere. This process is called denitrification because it can
lead to a strong depletion of NOy in the polar stratosphere
and thereby enhance the destruction of ozone because active
chlorine no longer can be trapped into the reservoir species.
However, it is still not entirely clear which of the different ni-
tric acid hydrate phases (see below) forms in PSCs and what
conditions and mechanisms are driving these phase changes.

Both NAD and NAT are known to crystallize in two differ-
ent phases, the low temperature phases calledα-NAD andα-
NAT and the high temperature phasesβ-NAD andβ-NAT. In
laboratory studies which investigated the crystallization be-
havior and structure of these phases by X-ray powder diffrac-
tion and FTIR spectroscopy (Tisdale et al., 1997; Tizek et al.,
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2002; Grothe et al., 2004) α-NAD and α-NAT were typ-
ically nucleated by shock freezing of nitric acid solutions
with different molar composition.Tisdale et al.(1997) for
instance induced the nucleation ofα-NAT by cooling of liq-
uid thin films with a stoichiometric water to nitric acid mo-
lar ratio of 3:1 to temperatures below about 170 K. Conver-
sion of the thin films toβ-NAT occurred upon warming to
higher temperatures.Grothe et al.(2004) nucleated the two
NAD modifications by shock freezing liquid nitric acid so-
lution droplets of different molar compositions deposited to
a sample support which was cooled to 80 K. Subsequent an-
nealing upon warming to temperatures above 180 K led to
the formation of almost pureβ-NAD when starting with liq-
uid aerosols of 2:1 water to nitric acid molar ratio. Non-
stoichiometric compositions favored the predominant forma-
tion of α-NAD.

Currently, there are two possible mechanisms being dis-
cussed that try to explain and parameterize the formation of
nitric acid hydrates by homogeneous nucleation out of liquid
PSC droplets: The first parameterization is based on classical
nucleation theory which assumes that nucleation takes place
in the volume of a droplet (Salcedo et al., 2001). These au-
thors found that1Gact is a linear function ofSNAD in the
investigated range of saturation ratios.Knopf et al.(2002)
pointed out that the linearSNAD-dependence may not be ex-
trapolated to lower saturation ratios. A new parameteriza-
tion (Tabazadeh et al., 2002) suggests that nucleation takes
place at the surface of a particle. There is an ongoing debate
on the validity and applicability of these two mechanisms
(Tabazadeh, 2003; Kay et al., 2003). Both mechanisms in-
cluding the modifications suggested byKnopf et al.(2002)
have already been used in modeling studies (e.g.Drdla and
Browell, 2004) but there is still a lack in agreement with
measured denitrifications. In a recent study the validity of
volume-based nucleation for ice nucleation in water droplets
could be demonstrated (Duft and Leisner, 2004). However,
the authors stress the fact that their conclusion is limited to
relatively large droplets with diameters>8 µm.

In this paper we describe experiments with the AIDA
chamber (Aerosol Interactions and Dynamics in the Atmo-
sphere) where we investigated the nucleation of nitric acid
hydrates under PSC conditions. In particular, we are able to
experiment with a large quantity of very small droplets. In
contrast to flow-tube experiments (Bertram and Sloan, 1998)
we can observe chemical compositions and size distributions
of particles for a couple of hours which enables us to conduct
experiments with lower supersaturations and nucleation rates
which are closer to the conditions prevalent in polar strato-
spheric clouds. We are also able to test recent assumptions
that NAT may form immediately out of freshly nucleated
NAD crystals (Tabazadeh et al., 2001; Larsen et al., 2004).

Based on the experimental results a new parameterization
of the activation energy for the nucleation of NAD as a func-
tion of temperature and the saturation ratio with respect to
NAD is suggested and compared in a process modeling study

to the parameterizations given bySalcedo et al.(2001) and
Tabazadeh et al.(2002). Those results are discussed in a
companion paper (Möhler et al., 2006).

2 Experimental

2.1 The experimental facility: AIDA

The experiments were carried out in the aerosol chamber
AIDA of Forschungszentrum Karlsruhe which is described
in detail in Möhler et al.(2003). Briefly, the chamber con-
sists of an aluminum vessel with a volume of 84 m3 which is
placed inside a thermostated housing. By using liquid nitro-
gen as a coolant the chamber can be operated at temperatures
as low as 183 K with reduced pressures similar to conditions
that occur in the polar stratosphere during winter. A variety
of instruments is attached to the chamber in order to mea-
sure temperature, pressure, trace gases, and aerosol param-
eters such as number concentrations and size distributions
(cf. Fig. 1). Some of the instruments were modified in order
to operate at these low temperatures and reduced pressures
(Seifert et al., 2004). The instruments used in this study are
a FTIR-spectrometer, a chilled mirror hygrometer, a tunable
diode laser system (TDL) to measure in situ water vapor, and
optical particle spectrometers.

FTIR-measurements are done in-situ with a White-type
multiple reflection cell with an optical path of up to 254.3 m.
Spectra are recorded with a Bruker IFS 66v FTIR spectrom-
eter in the wave number range from̃ν=800 to 6000 cm−1 at
a resolution of 4 cm−1. The optical setup and the retrieval
of aerosol parameters from raw data is described in detail in
Wagner et al.(2003, 2005).

Particle size distributions were measured using an optical
particle spectrometer (WELAS, PALAS GmbH). In order to
avoid any changes in particle size due to evaporation, the
sampling line and the WELAS detector itself were held at
the same temperature as the AIDA chamber by placing the
detector inside the cooled housing of the chamber directly
underneath the AIDA vessel. As the detection efficiency
of the WELAS spectrometer decreases for particles smaller
than about 1 µm, correction factors were determined inde-
pendently of this study and used to calculate the corrected
particle number concentrations for this size range. This has
been done by size selecting a small mode of DEHS particles
with a DMA. The particle concentration of this mode was
then counted simultaneously with the WELAS instrument
and a CPC. The correction factor was derived by dividing
the two signals assuming that the CPC measures correctly.
The counting error after this correction is conservatively es-
timated as 40% or less.

The size determination relies on the scattering intensities
for single particles and thereby on the refractive index and
particle shape. For spherical solution droplets the actual par-
ticle size was calculated using Mie theory with a refractive
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Fig. 1. Schematic view of the aerosol chamber AIDA, showing the major instrumentation used in this study.

index of 1.45 and taking into account the geometry and spec-
trum (white light) of the WELAS detector (see also:Benz
et al., 2005). The deviation between 1.45 and the true ref-
reactive index of the droplets is less than 0.02 which results
in an error of not more than 10% for the reported particle
diameter. We made no attempt to correct this data for shape
effects to estimate the sizes of the nonspherical NAD par-
ticles. All sizes given for NAD particles should be strictly
interpreted as optical diameters and not as geometric diam-
eters. The actual geometric sizes can be markedly smaller
than the optical diameters given that the NAD particles were
oblate and had aspect ratios of more than five (Wagner et al.,
2005).

Water vapor concentrations in the AIDA vessel are mea-
sured in-situ with a tunable diode laser absorption spec-
trometer (Ebert et al., 2005). It is fiber-coupled to a White
type multi-path cell with 82 m optical path within the AIDA
chamber. Water absorption lines in the spectral region 1368–
1372 nm can be selected to measure water concentrations be-
tween 0.01 and 500 Pa with a time resolution of about 1.5 s,
an accuracy of 5–10%, and a resolution in the H2O(g) mix-
ing ratio of up to 15 ppb. The applied data evaluation proce-
dures are similar to those for earlier in situ TDL spectrome-
ters, which were developed e.g. for a sampling-free detection
of CO in power plants (Teichert et al., 2003).

2.2 Experimental implementation

Prior to experimentation the saturation ratios with respect
to NAD and NAT were calculated for a variety of different
conditions (temperature, relative humidity) using the online
version of the AIM model described inClegg et al.(1998).

Some scenarios from these calculations having temperatures
between 192 and 198 K were chosen as being appropriate for
NAD/NAT nucleation experiments in the AIDA chamber. In
particular, we tried to find conditions where supersaturations
with respect to the hydrates NAD and NAT were as high as
possible for a given temperature. It turned out that this is
achieved by using very dry conditions. Hence, we used a dry
AIDA chamber for this study in contrast to ice nucleation
studies (Möhler et al., 2003; Moehler et al., 2005).

For a typical experiment the chamber was cooled to the
desired temperature using liquid nitrogen. The evacuated
chamber was then filled with dry synthetic air to a total pres-
sure of about 180 hPa. This yielded an almost particle-free
simulation atmosphere with a background concentration of
0.1 cm−3 which has been measured with a condensation par-
ticle counter (model 3010, TSI Inc.) Simultaneously, back-
ground count rates with the optical WELAS instrument were
zero. The relative humidity was around 10% with respect to
ice. To produce the liquid aerosol particles two individual
flows of synthetic air were passed through saturators filled
with water and pure nitric acid. The saturators were held at
temperatures of 10◦C and−15◦C, respectively, to maintain
constant partial pressures for these components. The two gas
flows were then merged and injected into the cold chamber
through a heated teflon tube. Upon reaching the cold inte-
rior the two gases experienced a high supersaturation and
condensed immediately into supersaturated nitric acid/water
droplets.

The interior of the chamber was stirred with a fan to
achieve homogeneous conditions with a mixing time scale
of several minutes.
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Fig. 2. Time series of size distributions for experiments E1 and E2 measured with the optical particle spectrometer WELAS (upper panels). At
several points indicated by arrows the corresponding FTIR spectra are shown in the lower panels. The formation of NAD during experiment
E1 can be clearly identified by the change in the optical features marked with blue arrows (for details cf. text). In experiment E2 no change in
these features can be observed. Consequently, the WELAS size distributions show no significant change over the course of the experiment.
Please note that particle sizes for the NAD crystals are overestimated by the WELAS spectrometer because of their asphericity (see text for
details). FTIR-spectra are shifted vertically for clarity.

The composition of the droplets was monitored in 2–3 min
intervals by in-situ-FTIR-spectroscopy while the aerosol was
generated. Thereby it was possible to adjust the carrier gas
flows through the saturators to achieve the desired composi-
tion which was typically 45 wt% (≡ molar fraction of 0.2)
HNO3. The procedure was stopped when a mass concentra-
tion of about 1 mg NO−3 m−3 had accumulated, which took
about 20–30 min.

This initial mass concentration was chosen to ensure that
FTIR-spectroscopy, the filter measurements, and the WE-
LAS size distribution measurements would produce reliable
data with good signal-to-noise ratios even at the end of an
experiment when the depletion of aerosol mass due to wall
losses had led to NO−3 concentrations of only 0.2 mg m−3.

During the course of an experiment, the composition and
mass concentration of the HNO3/H2O-droplets were moni-
tored by recording FTIR extinction spectra in time intervals
of about 10 min. The FTIR composition data were also used
to calculate saturation ratios with respect to NAD and NAT
with the AIM model (Clegg et al., 1998). Only in exper-
iment E3 where FTIR spectra could only be measured for
the first hour and were not available for the rest of the ex-
periment due to technical problems, we used water vapor
data and compositions of the droplets from model runs to
derive the saturation ratios for NAD. The lower panels in
Fig. 2 show some sample spectra taken from two experi-
ments. The formation of a new phase could also be detected
with this technique as can be seen in the left part of this figure

Atmos. Chem. Phys., 6, 3023–3033, 2006 www.atmos-chem-phys.net/6/3023/2006/
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Table 1. Summary of data and parameters for the three experiments discussed in this paper. Values are given for two points where nucleation
rates were calculated by the formulas described in Sect.4. The parameters listed are total pressure (pg), gas temperature (Tg), experimental
time (t), and the time interval (1t) for which data were used to calculate the nucleation rates. FTIR spectra were used to retrieve the weight
fraction (fw,NA ) and the molar fraction of nitric acid (XNA ). The AIM modelClegg et al.(1998) was used to determine supersaturations
with respect to NAD (SNAD ) and NAT (SNAT ) using FTIR composition retrievals. Lognormal size distributions were fitted using WELAS
size distributions and provided number concentrations (N), mean particle diameters (dp), and geometric standard deviations (σg) for the
liquid aerosols.

Experiment E1 E2 E3

Physical parameters:

Tg (K) 192.2 192.1 197.1 197.0 195.8 195.8

pg (hPa) 164.5 163.5 174.1 172.9 180.0 180.0

t (h) 2.4 2.8 3.0 3.5 2.3 2.5

1t (s) 2400 2400 3600 3600 1240 1240

Aerosol parameters:

fw,NA 0.57 0.58 0.55 0.56 0.56 0.57

XNA 0.27 0.28 0.26 0.27 0.27 0.27

SNAD 9.67 10.2 6.59 7.06 7.71 7.80

SNAT 25.5 26.0 19.4 19.2 20.4 20.3

Lognormal parameters for droplets:

N (cm−3) 4.9×104 4.4×104 3.1×104 2.4×104 1.4×104 1.0×104

dp (nm) 255 255 290 290 225 225

σg 1.34 1.34 1.38 1.38 1.64 1.64

Nucleation rates:

Jv (cm−3 s−1) 4×106 2×107 <4×104 <6×104 4×105 6×105

Js (cm−2 s−1) 2×101 1×102 <3×10−1 <4×10−1 2×100 4×100

Js (cm−2 s−1) calc. (Tabazadeh et al., 2002) 1.3×103 2.5×103 4.6×102 8.2×102 9.2×102 9.2×102

(experiment E1). Since the newly formed solid phase is gen-
erally more stable than the remaining liquid droplets the crys-
tals grow to larger sizes and thus can be differentiated from
the droplets by size. This can be seen in the upper left panel
of Fig. 2 where the size distributions for experiment E1 are
plotted against time. The second mode of large particles at
t=3.2 h are NAD particles. We used a threshold size to dis-
tinguish between these two modes and to integrate the NAD
part of the size distribution to obtain total number concentra-
tions for NAD as plotted in panels (f) in Figs.3–5.

Furthermore, the total nitrate mass was measured by draw-
ing air samples through nylon filters for time intervals of 30–
60 min. The collected nitric acid on these filters was then
dissolved in 6 ml of distilled water and analyzed by means
of ion chromatography. To avoid losses upon sampling, the
tubes to the filter were heated to temperatures above 20◦C
and a sandwich of 2 filters was used. Test runs showed that
a second backup filter was needed at high HNO3 concen-
trations to achieve a high enough sampling efficiency. This
second filter could contain up to 10% of the total nitrate mass
for an individual measurement.

3 Results

3.1 Experimental observations

The discussion in this paper emphasizes three experiments
carried out at temperatures of 193 K (denoted E1), 197 K (de-
noted E2), and 196 K (denoted E3). As an overview, time
series of temperature, pressure, concentrations (water, nitric
acid, aerosol mass, and number concentration), and particle
compositions are shown for experiments E1 through E3 in
Figs.3–5. Experimental conditions and results including de-
rived nucleation rates are summarized in Table1.

The temperatures (panels a in Figs.3–5) were slightly de-
creasing from 194 to 192 K during experiment E1 and from
197.5 to 197 K during experiment E2. The pressure (cf. pan-
els b) also decreased during these experiments mainly due to
sampling losses. Experiment E3 was held at a constant tem-
perature of 195.8 K. The pressure was kept close to 180 hPa
by replenishing dry synthetic air if the pressure dropped by
more than 0.3 hPa due to sampling.

The relative humidity (panels c) as measured by the TDL
spectrometer is close to 100% with respect to ice dur-
ing aerosol generation and decreases continuously after the
aerosol production was stopped. Since the TDL spectrometer
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Fig. 3. Time series of temperature (panela), pressure (panelb),
saturation ratios with respect to ice and NAD (panelc), aerosol
mass (paneld) derived from FTIR and ion chromatography (IC),
aerosol composition (panele), and NAD crystal number concentra-
tions (panelf) for experiment E1. For details see Sect. 3.1 of the
text.

failed to operate in experiment E1, the vapor concentrations
from the model simulation are taken instead (cf. companion
paperMöhler et al., 2006).

Due to losses of the trace gases to the chamber walls the
total aerosol mass decreases with time (panel d) since equi-
librium vapor pressures are reestablished continuously by the
evaporation from the aerosol particles. Since both gases have
different vapor pressures, different diffusivities, and different
adsorption constants for the deposition to the chamber walls,
the composition of the droplets changes gradually towards
higher concentrations of nitric acid (panel e). As a direct re-
sult of this change in composition, the saturation ratio with
respect to nitric acid dihydrate (NAD) rose (cf. panel c Fig.3)
and induced the formation of solid NAD particles in experi-
ments E1 and E3. Since more highly concentrated solutions
of nitric acid have a lower saturation vapor pressure for wa-
ter, relative humidity decreases as the droplets become higher
concentrated (cf. panel c).

Both the changes in composition and the formation of
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Fig. 4. Time series of temperature (panela), pressure (panelb),
saturation ratios with respect to ice and NAD (panelc), aerosol
mass (paneld) derived from FTIR and ion chromatography (IC),
aerosol composition (panele), and NAD crystal number concentra-
tions (panelf) for experiment E2. For details see Sect. 3.1 of the
text.

NAD particles were observed by means of FTIR spec-
troscopy (cf. Fig.2).

The change in composition of the liquid droplets is repre-
sented in the spectra by an increasing intensity of the doublet
feature of the nitrate ion between 1300 and 1500 cm−1 rel-
ative to the OH stretching regime at about 3300 cm−1 (cf.
Fig. 2). The nucleation ofα-NAD is clearly indicated by
the development of a new sharp nitrate vibration feature at
1030 cm−1. This symmetric NO stretching modeν1(NO−

3 )
is only active for NAD and not for NAT or the monohydrate
NAM (Grothe et al., 2004; Fernandez et al., 2003). Fur-
ther indicators for the formation ofα-NAD are the two dis-
tinct peaks at 3490 and 3260 cm−1 which replace the broad
extinction band of the liquid droplets (blue arrows in Fig.2
at t=3.8 h for experiment E1 indicate theα-NAD features
discussed in this section). A quantitative analysis of theα-
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trations (panelf) for experiment E3. Due to operational problems,
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NAD spectra using T-matrix calculations indicates that the
new phase consists of strongly asphericalα-NAD crystals.
Best agreement between measured and calculated extinction
spectra was obtained by T-matrix fits assuming oblate par-
ticle shapes with aspect ratios greater than five. For a thor-
ough discussion of this analysis consultWagner et al.(2005).
(Please note that experiment E1 corresponds to B2 in this ref-
erence.) There is no evidence from the FTIR spectra that at
any time during our experiments NAT particles were formed.

Since the newly nucleated phase is thermodynamically
more stable (lower saturation vapor pressures) than the liq-
uid droplets, theα-NAD particles consume water and nitric
acid at the expense of the remaining liquid particles. Hence,
α-NAD particles grow while liquid droplets evaporate until
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Fig. 6. WELAS size distribution of a mixture of droplets and NAD
crystals during the nucleation phase (at 2.3 h experimental time) of
experiment E3 (symbols). The solid line represents the log-normal
fir against the data which is further constrained by the total aerosol
mass. The dashed line illustrates the threshold beeing used to dif-
ferentiate between droplets and crystals.

they vanish entirely. This behavior can be clearly seen in the
WELAS size distributions in Fig.2 during theα-NAD phase
for experiment E1. A second mode of growing particles (α-
NAD) evolves after about 2 h of experiment time with par-
ticle sizes of>1 µm in contrast to the liquid droplets which
were well below 1 µm. The difference in size is used to dif-
ferentiate between both particle classes in order to estimate
number concentrations for theα-NAD crystals (all particles
larger than 1.5 µm are counted as NAD, cf. panels f) in exper-
iment E1. These threshold depends on the size distribution
of the liquid droplets and is set in such a way that no droplets
could be miscounted as NAD crystals (cf. Fig.6). Hence,
different threshold sizes for NAD particles were defined for
the other experiments (E2: 4.0 µm and E3: 4.0 µm). We es-
timate the detection limit for these thresholds as 0.02 NAD
particles cm−3. This limit is indicated with a dashed line in
panels (f) of Figs.3–5, hence all data points below this limit
indicate that NAD particles are absent. In fact, data points
which were zero were set to 0.01 in these graphs to become
visible (but without error bars for differentiation).

In the beginning of some experiments a few larger parti-
cles could be observed and disappeared after some minutes
(cf. the first half hour in the upper left panel in Fig.2, labeled
as ice). As evidenced by FTIR-spectroscopy those were ice
crystals which formed during the aerosol production phase
out of the highly supersaturated vapors at the end of the inlet
tube. Since theses particles evaporated after some minutes
and conditions remained below ice saturation throughout the
experiment we believe that these particles had no influence
on the rest of the experiment and especially on the nucleation
of NAD.
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When interpreting the size distributions of the WELAS
spectrometer one has to be aware of the fact that particle sizes
are calculated from the scattering intensity 90◦ relative to the
incident light source. For non-spherical particles, the scatter-
ing intensity in that direction is enhanced (cf.Zakharova and
Mishchenko, 2000). Since we know from the analysis of the
FTIR spectra (seeWagner et al., 2005, for a detailed discus-
sion) that the NAD particles in experiment E1 are strongly as-
pherical, the WELAS spectrometer overestimates the size for
NAD particles by an unknown factor. Regardless, this effect
helps in differentiating NAD particles from liquid droplets by
particle size, or, more precisely, scattering intensity in 90◦.

4 Determination of nucleation rates

As listed in Table1 we derived nucleation rates for two dif-
ferent time intervals for each experiment. Since the nucle-
ation rateJv for classical volume based nucleation defines
the rate of formation of particles of the new phase per unit
time and unit volume we used total nitrate massmNO−

3
(mea-

sured by FTIR), the density for the dropletsρ (estimated to
be 1.5 g cm−3), and the weight fraction of nitric acidfw,NA
(derived from FTIR) to calculate the total volume of all nitric
acid solution droplets:

VNA =

mNO−

3

fw,NA · ρ
. (1)

Using the total droplet volume and the change in NAD parti-
cle concentration1NNAD for a given interval divided by the
duration of the interval1t one can calculateJv:

Jv =
1NNAD

1t · VNA
. (2)

Since no nucleation was detectable in experiment E2 we
used the lowest detectable increase in particle concentration
(0.1 cm−3) to estimate an upper limit for the nucleation rate
in that case.

We also tried to extract surface nucleation rates from our
data set in order to test which of the mechanisms discussed
in the introduction mirrors our experimental findings best.
In contrast to Eq. (1) for the total particle volume we need to
estimate a particle size distribution in order to obtain the total
surface area of all nitric acid solution droplets. We assume
a log-normal type distribution for the liquid droplets out of
which NAD may form. The total surfaceSNA of all particles
is then

SNA = N π d2
s (3)

and can be expressed in terms of the lognormal parameters of
a count size distribution using the HATCH-CHOATE (Hinds,
1999) conversion function for the diameter of average sur-
faceds multiplied by the total number of particles:

SNA = N π exp(2 ln2 σg) CMD2 , (4)

whereN is the total number concentration of all particles,
CMD is the count median diameter, andσg is the geometric
standard deviation of the lognormal distribution

dN

d ln dp

=
N

√
2π ln σg

exp

(
−

(ln dp − ln CMD)2

2 (ln σg)2

)
. (5)

With the total aerosol volumeVNA as obtained by Eq. (1) one
can use the HATCH-CHOATE equation for the mass average
diameterdm to get the following equation:

VNA = N
π

6
exp(4.5 ln2 σg) CMD3 . (6)

Solving this equation forN and inserting in the lognormal
distribution reveals a 2 parameter function fordp, where the
parameters CMD andσg can be obtained by a fit against
the part of the size distribution that is accessible to the WE-
LAS spectrometer (cf. Fig.6). Unfortunately, the fraction of
the droplet size distribution which could be measured by the
WELAS spectrometer is rather small. The fits thus allows for
some variations in CMD andσg which all agreed quite well
with the data. However, these variations resulted in rather
small changes in the total surface area. Even for the most ex-
treme choices for values of CMD andσg, the differences in
the total surface area were less than 10% for two experiments
and 25 % for the third. This is thus negligible if compared to
the differences between observed and calculated surface nu-
cleation rates. Due to the small radii of the supercooled ni-
tric acid/water solution droplets of less than .5 µm only total
volume densities but not individual size distribution param-
eters can be unambiguously retrieved from the FTIR spec-
tra. Hence we can only specify a range of different combi-
nations for the CMD andσg which all represent equivalent
solutions to the retrieval problem (Echle et al., 1998). As-
suming that the mode widthsσg of the droplet distributions
are in the range 1.2–1.8, median droplet diameters between
0.5–0.1 and 0.6–0.2 µm are retrieved for experiments E1 and
E2, respectively. As can be seen from Table 1, these fit
regimes are consistent with the size distribution parameters
retrieved from the WELAS measurements. The larger val-
ues forσg and CMD for experiment E2 in comparison with
experiment E1 are also in accordance with the FTIR mea-
surements. In the droplet spectra of experiment E2 (cf. lower
right graph in Fig.2), the increased scattering intensities at
non-absorbing wavelengths above 4000 cm−1 points to larger
droplet diameters compared to experiment E1.

The total surface areaSNA as calculated by Eq. (3) is fi-
nally used to obtain the surface nucleation rate:

Js =
1NNAD

1t · SNA
. (7)

For each experiment, the surface and volume nucleation rates
were calculated for two distinct time intervals1t during the
nucleation phase. The resulting values together with the pa-
rameters for the lognormal size distributions of the droplets
and the physical parameters of the experiment are summa-
rized in Table1.
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Fig. 7. Volume nucleation rates determined from our experimental
data (stars). Also shown are literature data from various sources
(cf. text). The individual data points are color coded by the molar
fraction for nitric acidXNA .

5 Discussion

The volume nucleation rates we obtained from these experi-
ments are plotted against temperature in Fig.7. Molar frac-
tions of nitric acid are represented by the color coding of the
data points. For comparison, we added literature data pub-
lished by different groups:Prenni et al.(1998); Bertram and
Sloan(1998); Bertram et al.(2000); Salcedo et al.(2001).
Except for the data by Salcedo et al. we only used experi-
ments with free floating aerosol particles in this comparison
to minimize any bias by surface effects that can occur in ex-
periments with particles which are deposited on a substrate.
It can be seen that our data fits well to the other data, consid-
ering that there is a significant scatter between the individual
nucleation rates reported. Classical nucleation theory pre-
dicts a strong temperature dependance to lower values ofJ

as temperature rises. These data extend the previously re-
ported nucleation rates to lower values inJ in accordance
with nucleation theory. SinceJ is a function of both the tem-
perature and the molar fractionXNA of a nucleating droplet a
direct comparison between different results is only valid for
experiments with the similar molar fractions. To overcome
this difficulty the discussion of results can be moved from
nucleation rates to the Gibbs free energies1Gact of critical
cluster formation. This discussion is done thoroughly in the
companion paper (Möhler et al., 2006).

The surface nucleation rates which we obtained from our
measurements are compared with the theory discussed in
Tabazadeh et al.(2002). Figure 8 shows our hypothetical
surface nucleation rates together with the calculated values
one obtains by using Eqs. (3) and (6) fromTabazadeh et al.
(2002). It can be seen that the published parameterization de-
viates from our data by a factor of 25 in the best case and by
more than three orders of magnitude in the worst case. Ad-
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Fig. 8. Hypothetical surface nucleation rates calculated from our
experimental data (triangles) versus temperature. The parameteri-
zation forJs by Tabazadeh et al.(2002) is depicted as a solid lines.
The colors represent different molar fractions for nitric acid.

ditionally, our derived nucleation rates decrease much more
strongly with increasing temperature than the parameteri-
zations. Interestingly, the data which were used to derive
the parameterization especially in the discussed range for
XNA of about 0.27 (Salcedo et al., 2001) were obtained with
much larger nucleating droplets (≈25 µm) than in this study
(≈0.25 µm). While these two datasets agree with each other
within one order of magnitude forJv (cf. Fig. 7), the dis-
agreement betweenJs values is much larger and agrees with
the difference in surface/volume ratios for these two particle
sizes. This is a clear indication that surface nucleation can
not explain our experimental findings. This finding is also
supported by simulations of our experiments using a micro-
physical process model. The description and the results of
these simulations where different parameterizations are com-
pared to experimental data is the subject of the second part
of this paper (Möhler et al., 2006). The findings in this study
complement the results byDuft and Leisner(2004) where
droplets with diameters of 40 µm and larger were used to
study the homogeneous nucleation of ice. The authors come
to the conclusion that, at least for droplet diameters larger
than 8 µm, the nucleation of ice is a volume-dominated pro-
cess. This study comes to the same conclusion, hence for
smaller droplets and for a different freezing substance.

Tabazadeh et al.(2001) and laterLarsen et al.(2004) sug-
gested, that NAT may form directly out of freshly nucleated
NAD particles. However, in our experiments where NAD
formation was observed, theα-NAD particles were stable
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for at least an hour. This is a strong evidence against this
hypothesis and is in agreement with the results presented by
Worsnop et al.(1993) that NAD particles are stable for long
time periods. It is still possible though, that a conversion into
NAT takes place at much longer time scales.

6 Conclusions

The nucleation of nitric acid dihydrate was investigated in
the large aerosol chamber AIDA. Liquid droplets of nitric
acid solutions were produced in the chamber and observed
for several hours under simulated stratospheric conditions.
At conditions with high saturation ratios with respect to NAD
(greater than 7) the nucleation and growth of solid particles
could be detected in two out of three experiments with an op-
tical particle spectrometer. These particles were unambigu-
ously identified asα-NAD by in-situ FTIR-spectroscopy. We
used our data to deduce nucleation rates for NAD for both
volume and surface based nucleation. Our volume based nu-
cleation rates, which cover the range 192–197 K, agree well
with the general temperature trend of data published by other
authors (cf. Fig.7). Note that the vast majority of these
data were measured below 190 K. Because of the complex
and non-linear relation between nucleation rates, temperature
and molar composition of the nucleating droplets a better ap-
proach to compare our results with literature data is to deploy
nucleation theory and use the relation between temperature
and the Gibbs free energy of activation1Gact. This is done
thoroughly in the second part of this publication (Möhler
et al., 2006) and is thus not discussed here. However, the hy-
pothetical surface based nucleation rates we derive from our
measurements do not agree with parameterizations published
by Tabazadeh et al.(2002). In particular, our nucleation rates
differ by factors of 25 to>1000 from those which were cal-
culated using the parameterization. We therefore conclude
that surface based nucleation cannot explain the formation of
NAD under the conditions of our experiments.

In some of our experiments we had ice crystals in the
chamber directly after particle generation. Since the interior
of the AIDA chamber was subsaturated with respect to ice,
these solid particles evaporated and vanished finally while
the gas phase was constantly supersaturated with respect to
NAD and also NAT. Therefore we can exclude an effective
direct nucleation of NAD or NAT on the surface of evaporat-
ing ice crystals since NAD formation took place at least one
hour after the ice crystals disappeared (Luo et al., 2003). Ad-
ditionally, we did not observe any formation of NAT while
NAD particles were stable over a period af one hour. This
refutes the hypothesis that NAT may form out of freshly nu-
cleated NAD particles (Tabazadeh et al., 2001). However, a
conversion of NAD into NAT cannot be ruled out for periods
much longer than one hour.
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Möhler, O., Stetzer, O., Schaefers, S., Linke, C., Schnaiter, M.,
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