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Abstract. We report the observation and analysis of ion-
ization flashes associated with the decay of meteoroids (so-
called head echos) detected by the Arecibo 430 MHz radar
during regular ionospheric observations in the spring and au-
tumn equinoxes. These two periods allow pointing well-
above and nearly-into the ecliptic plane at dawn when the
event rate maximizes. The observation of many thousands of
events allows a statistical interpretation of the results, which
show that there is a strong tendency for the observed mete-
oroids to come from the apex as has been previously reported
(Chau and Woodman, 2004). The velocity distributions agree
with Janches et al. (2003a) when they are directly compara-
ble, but the azimuth scan used in these observations allows
a new perspective. We have constructed a simple statistical
model which takes meteor velocities as input and gives radar
line of sight velocities as output. The intent is to explain
the fastest part of the velocity distribution. Since the speeds
interpreted from the measurements are distributed fairly nar-
rowly about nearly 60 km s−1, double the speed of the earth
in its orbit, is consistent with the interpretation that many of
the meteoroids seen by the Arecibo radar are moving in or-
bits about the sun with similar parameters as the earth, but in
the retrograde direction. However, it is the directional infor-
mation obtained from the beam-swinging radar experiment
and the speed that together provide the evidence for this in-
terpretation. Some aspects of the measured velocity distribu-
tions suggest that this is not a complete description even for
the fast part of the distribution, and it certainly says nothing
about the slow part first described in Janches et al. (2003a).
Furthermore, we cannot conclude anything about the entire
dust population since there are probably selection effects that
restrict the observations to a subset of the population.
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1 Introduction

The Arecibo 430 MHz radar is a very powerful and sensitive
instrument used primarily for measurements of incoherent
scatter (IS) in the earth’s ionosphere. In the last several years
it has been used for the observation of small meteoroids as
they penetrate into the atmosphere, depositing sufficient en-
ergy to cause detectable ionization in the immediate region
of the decaying meteoroid resulting from collisions with at-
mospheric particles. The result is the so-called head echo,
which is not yet well understood. The Arecibo instrument
is one of several high-sensitivity radars providing these mea-
surements (see the list of references in Chau and Woodman,
2004). Most of these observations have used observational
techniques designed especially for observation of the very
brief flashes of ionization associated with the collisions. It is
possible to use much data intended for ionospheric observa-
tions to detect the decay of the meteoroids and measure some
of the associated parameters, such as the time of the flash, its
intensity, its altitude, and the velocity component along the
radar line of sight. However, it is necessary to have access
to the raw voltage samples, not the analyzed data. We used
a high resolution mode intended for measuring the IS spec-
trum in the E region of the ionosphere. The spectral width of
the IS ion line is much less than the Doppler shifts of most
of the head echos, and so in this case the wide bandwidth
used to obtain good range resolution allows observation of
the head echos, which have very narrow spectra located at
large Doppler shifts. Most current IS measurements made
at Arecibo sample the necessary bandwidth even if the res-
olution is not necessary, and so most of the data are at least
potentially suitable for analysis of meteor head echos. How-
ever, the coded long pulse technique used for observations
described here is particularly well-suited because the appro-
priate analysis makes it very easy to locate the meteoroid
path in height and frequency.
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Fig. 1. The location of the radar with respect to the ecliptic plane as
a function of the season.

We present results from two periods, the spring and au-
tumn equinoxes. The Arecibo radar cannot point more than
20◦ from the zenith, and sensitivity issues restrict the point-
ing in these ionospheric observations to 15◦. As meteor ob-
servations have previously, we augment this range by using
the seasonal changes of the location of the radar with respect
to the ecliptic plane. Figure 1 shows that in the spring the
radar zenith is well above the ecliptic at dawn, while in the
fall it lies almost in it, and so points nearly along the apex as
the meteor event rate maximizes. These differences in point-
ing have important consequences for the observations.

We have a sufficiently large number of events so that we
can make conclusions requiring statistical analysis, and we
see the previously-reported tendency for the apparent source
of the meteoroids to lie along the apex defined by the mo-
tion of the earth around the sun (Chau and Woodman, 2004).
The speeds computed from our measurements are distributed
fairly narrowly just under 60 km s−1. Since this is nearly
double the speed of the earth in its orbit, the obvious interpre-
tation, given the directional information, is that most of the
meteoroids seen by the Arecibo radar are moving in orbits
about the sun with similar parameters as the earth, but in the
retrograde direction. We do not even claim this as a potential
description for the complete population, since we currently
have no way to remove certain observational biases, and it is
not clear how much information would be available from a
much larger set of data after the application of careful mod-
eling. A weaker distribution of slower particles is seen in
the fall observations, and possibly in the spring observations.
This was first reported by Janches et al. (2003a).
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Fig. 2. This drawing shows that the repetiton period of a target
located in the north (or south) is twice as high as a target located in
the east (or west).

We have constructed a simple statistical model intended
to show that the above interpretation is consistent with the
general properties of the fastest part of the observed velocity
distribution. It is not an accurate model intended for param-
eter fitting, but is only a first step in this direction. This in-
terpretation helps explain why meteors seem to come “down
the beam” at Arecibo. This question is discussed in Janches
et al. (2003a) and Janches et al. (2003b), which favor an in-
terpretation based on atmospheric effects. Our interpretation
does not exclude atmospheric effects; in fact, we have had to
assume such an effect to make it work.

2 Experiment Description

The ionospheric experiment that provided the data for the
meteor observations we describe here is one mode of
Arecibo’s World Day observations. The pointing angle from
the zenith (zenith angle, orαza) is fixed at 15◦, while the
azimuth angle (αaz), measured from north in the eastward
direction, is varied. Ideally, the azimuth angle would con-
tinue to increase at the maximum (slew) rate, but in practice
it is necessary to stop and turn around so that cables carry-
ing power and information do not break. The procedure is to
scan from 180◦ (looking south with the line feed) to 540◦, a
complete revolution. Then the motion stops, and the pointing
returns to 180◦. It is necessary to account for the time spent
motionless at the limits of the motion and accelerating near
the limits in some of the data analysis described later.

Figure 2 shows an important consequence of the pattern of
azimuth motion. A target located in the north or south would
be sampled uniformly with an interval of 180◦ (about 8 min).
However, a target located in the east or west has a funda-
mental period of about 16 min, but the time series would also
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Fig. 3. Observations during the Spring Equinox at dawn. The radar
and the apex define a plane perpendicular to the ecliptic.

have additional periods resulting from the alternating short
and long intervals between samples. The time series of a pa-
rameter associated with a target such as line of sight velocity
shows this effect also.

Figure 3 shows in detail the spring conditions correspond-
ing to the rightmost part of Fig. 1. At dawn when the pro-
jection of the radar zenith in the ecliptic plane points into the
apex, the zenith pointing position is 41.3◦ north of the eclip-
tic.

It is convenient to express the meteor velocities in a coor-
dinate system where the z-axis points to the apex, where the
x-axis points in the eastward direction in the ecliptic plane,
and where the y-axis points northward perpendicular to the
ecliptic plane. It is also convenient to find the radar line-of-
sight velocities as a function of thex, y, andz components.
The first step in this process is to define ax′y′z′ system by
rotating about the x-axis so that thez′ axis is parallel to the
radar zenith. The velocity transformation is∣∣∣∣∣∣
v′
x

v′
y

v′
z

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 0 0
0 cosαx − sinαx

0 sinαx cosαx

∣∣∣∣∣∣
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∣∣∣∣∣∣ , (1)

whereαx is defined in Fig. 3
Figure 4 shows the transformation to the line-of-sight ve-

locity vls . The transformation is

vls = v′
x sinαza sinαaz (2)

+ v′
y sinαza cosαaz + v′

z cosαza .

The flat plane in Fig. 4 would be tangent to the sphere of
Fig. 3 at the location of the Arecibo Observatory.

At times other than dawn, the radar no longer lies in the
yz plane, and since the angle between the equator and eclip-
tic changes,αx is a function of time. Also there is a rotation

vls = vx'sin(αza)sin(αaz)
      + vy'sin(αza)cos(αaz)
      + vz'cos(αza)
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Fig. 4. Computing the radar line of sight velocity from a velocity
vectorv′.

about they axis. We do not need to consider this more gen-
eral transformation in detail.

The observations used a radar pulse 400µs in length; the
pulse modulation was binary phase using a pseudo-random
phase sequence with a baud length of 2µs, and the trans-
mission used a different code for each pulse. Sulzer (1986)
describes the application of this technique to IS. In that ap-
plication the signal has a correlation time that is shorter than
the pulse length, and the technique allows the measurement
of the signal autocorrelation function with range resolution
equal to the baud length of the code. However, the correla-
tion time is much longer than the inverse of the baud length
(narrow spectrum), and it is possible to speed up the calcula-
tions for the IS spectrum while losing the possibility of mea-
suring the meteor parameters by failing to calculate the full
bandwidth. Thus it is necessary to perform an independent
analysis for the meteors. This analysis takes longer than real
time, but it is nonetheless convenient because the raw volt-
age samples are stored on disk for some time after the exper-
iment.

The spring experiment used the line feed only, while the
fall used both the line feed and Gregorian. The presentation
here includes only the linefeed data, since the analysis of the
Gregorian data is not complete.

The inter-pulse period of this experiment is 10µs; this is
longer than one would like for a detailed analysis of the head
echo, but perfectly satisfactory for counting powers, heights,
and frequencies. Meteors are occasionally seen for as long
as five inter-pulse periods, but often are visible for only one.

There are two possible ways to analyze the raw data.
The first is the standard coded long pulse analysis in which
one multiplies the code into the data samples beginning at
some point, which defines the decoded range. One computes
the power spectrum of the product, and does this for each
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Fig. 5. The velocities of all meteoroids on 20 March 2003 from
03:00 to 07:00 AST.
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Fig. 6. The power spectrum of the function formed by binning the
detections by azimuth. The result is the average of the four days,
20–23 March 2003, covering the time period 4.6 to 6.1 AST.

possible range. The other method is to decode the time se-
quence as one would for a power profile, but to repeat the
decoding on frequency shifted versions of the signal. It turns
out that the two methods treat a single meteor signal in nearly
identical ways, but the processing of the overlapping of mul-
tiple signals is different. However, even two meteors at once
is a rare event, and the ionospheric clutter cannot be decoded
in any case since its correlation time is too short. The first
analysis is a simple modification of the standard ionospheric
analysis, making sure that the high Doppler shifts are not dis-
carded in order to speed up the computations, and it guaran-
tees that the ionospheric clutter is randomized, the best avail-
able option if it cannot be eliminated. Thus we chose the first
method.

The analysis is divided into two steps, and the results of the
first step are saved since it is convenient to redo the second in
different ways as required. The first step computes the spec-
tra for all ranges for the samples from a single radar pulse. It
is not possible to save these spectra, since they require more
storage space than the original samples, but since we expect
either no detection or the detection of a single meteor, we
find the maximum power in any of the spectra and save its
range, frequency, and intensity as well as time and pointing
information. We do this for the received power from each
radar pulse.

The second step is to find which of the saved maxima are
meteor detections and which are noise. This involves find-
ing a threshold in which the majority of the events define a
baseline from which the few deviate. We use a sliding time
interval since the noise level is a function of time. The analy-
sis would have been easier if we saved an average noise level
for reach radar pulse in the first step, but this would make lit-
tle difference in the results during the night and around dawn,
the time period used in this paper.

3 Spring Observations

The spring observations occurred on four days near the
spring equinox of 2003. We concentrate on the four dawn pe-
riods since the meteor count is maximum at this time. Figure
5 shows the velocities versus time of all detected events from
03:00 to 07:00 AST on 20 March 2003. Each event is a small
dot; the solid line indicates the azimuth positions. Note that
near dawn there is a periodic ripple in the maximum veloc-
ity which is locked in phase to the azimuth motion, and that
the maximum velocity occurs when the azimuth is pointed to
the south. When the radar points south, its projection along
the apex is at its maximum, and so Fig. 5 is consistent with
velocities aligned along the apex, at least approximately.

Several hours before dawn the ripples have half the fre-
quency. This is because an apex-aligned feature has a sig-
nificant east-west component before dawn. As explained in
Sect. 2 east-west features have twice the period, or half the
frequency of north-south features. Obviously the ripple is
complicated, and we will not try to determine its exact shape.

This tentative conclusion of alignment with the apex
would be doubtful if there were some selection effect, per-
haps instrumental, which emphasized different parts of the
population as a function of azimuth angle. Such a bias would
likely be revealed by the event count rate as a function of
azimuth angle. Figure 6 shows a power spectrum of the se-
ries obtained by by finding the event counts in 128 uniformly
spaced azimuth bins. The plot shows the sum of the results
from four dawn periods from 4.6 to 6.1 AST. The dates are
the 20–23 March 2003. The result is almost what one would
expect from random variations only in the count rate. The
zero frequency peak indicates the total count rate, and there
is only one other peak that might be significant, and it does

Atmos. Chem. Phys., 4, 947–954, 2004 www.atmos-chem-phys.org/acp/4/947/



M. P. Sulzer: Arecibo world day meteor velocities 951

200 300 400 500
0

-10

-20

-30

-40

-50

-60

-70

-80

4.81818

9.63636

14.4545

19.2727

24.0909

28.9091

33.7273

38.5455

43.3636

48.1818

Li
ne

 o
f S

ig
ht

 V
el

oc
ity

Azimuth Angle (180° and  540° South, 360° North)

Num
ber of Counts

South SouthNW E

Fig. 7. The distribution of the velocities with azimuth angle from
four days of spring equinox data (20–23 March 2003).

not lie at a harmonic of the rotation time. We conclude that
there are no significant biases which would show up in an
analysis of the count rates.

Figure 7 shows the results of putting the line-of-sight ve-
locities from 20–23 March 2003 into 24 azimuth bins. The
maximum is not centered exactly in the southern direction
as one might (mistakenly) expect from Fig. 5. This effect is
significant since it is visible in the individual days after az-
imuth binning. The depth of the minimum in approximately
the northern direction provides a method to see if the center
of the velocity distribution lies in the ecliptic plane, as we
can show using the analysis of Sect. 2.

Figure 8 shows two cuts in the velocity direction from
Fig. 7. The dark thin line is from the maximum (nearly
south); it has a high peak in the distribution. The thicker
gray line is from 180◦ away; it is less highly peaked. This
indicates that there is dispersion in the velocity component
in they direction (perpendicular to the ecliptic).

To further demonstrate the plausibility of the interpreta-
tion involving alignment with the apex, we have computed
an approximate statistical model using the transformation be-
tween the meteor velocity and the line of sight velocity of
Sect. 2. In the model we assume that meteoroids initially
have a speed of 60 km s−1, that they have some average and
random (Gaussian distributed)x andy velocities, and that
the speed decreases by a random amount (χ-square distribu-
tion with one degree of freedom) before observation. The
reason for the last assumption is discussed below. Theχ -
square distribution with one degree of freedom just means
that the speed decrements are found by generating Gaussian
random numbers, squaring, and multiplying by a scale factor.
For the fall case we have assumed values of−5 km s−1 for
the systematicx andy components. These are just approxi-
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Fig. 8. Constant azimuth cuts at the maximum and minimum from
the results of the previous figure.
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Fig. 9. A primitive model of the results shown in Fig. 7.

mate values; however, neither could be zero for the model to
work. They imply that the center of the distribution is 5◦ east
and north of the apex. We have also assumed 8 km s−1 for
the sigmas of the Gaussian distributions, giving roughly 8◦

of dispersion in the direction perpendicular to the apex. We
have low sensitivity at dawn in thex direction, and so that
value could vary a lot. It is they value that determines how
flat the distribution is in the south, and so it matters. Finally
we have assumed that the scale factor in the speed decrement
is 5 km s−1.

As we shall see below, and as Janches et al. (2003a) has
shown, there is a separate distribution of apparently slow par-
ticles, and we are not attempting to model this, or the medium
speeds.
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Figure 9 shows the model; although it is not perfect it does
a pretty good job of reproducing the measurements near the
sinusoid. It is interesting to compare this model with the one
required for the fall results.

4 Fall Observations

The autumn equinox provides an opportunity to verify some
of the tentative conclusions made in the last section. Fig-
ure 10 shows the relationship between the radar pointing and
the apex. Note that the radar zenith points nearly along the
apex at dawn, and so the azimuth track holds nearly a con-
stant 15◦ angle with respect to the apex. This means that the
higher frequency temporal variations seen at dawn should be
very small, while structure should still be seen away from
dawn, if there is alignment with the apex.

Figure 11 shows the velocity data for 24 September 2003
in the same format as Fig. 5 did for the March data. The
ripples at dawn are indeed missing, and structure is visible
before dawn. It has the expected low frequency component,
and the paired features seen in Fig. 2 are also visible, marked
by vertical arrows. Of course this apex-aligned structure in
the velocity lies between north and east, and so the spacing in
the close features is wider than shown in Fig. 2 for the east-
west structure. (One can think of sliding the beads down the
lines until the right angle is reached.)

Figure 12 shows the distribution of the velocities with
azimuth angle from four days of fall equinox data (23–26
September 2003), about 8 000 total events, or roughly 4 000
meteors. (The average number of radar pulses seeing a sin-
gle meteor is two.) It is equivalent to Fig. 7 for the spring;
it resembles that figure in that the velocities are concentrated
near−60 km s−1, but the systematic variation with azimuth
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Fig. 11. The velocities of all meteoroids on 24 September 2003
from 03:00 to 07:00 AST.

is small in this case as expected. We have removed some
interference from the data from 23 September 2003 only.

Figure 13 shows the same data as Fig. 12 summed over
azimuth angle. This distribution is essentially the same as
Fig. 4 of Janches et al. (2003a) for the dawn time period look-
ing south with the Gregorian feed. The radar pointing direc-
tion associated with the data of that figure is as close as pos-
sible to the pointing direction of the fall data described here.
Thus the two data sets are consistent. However, it should be
noted that we have not verified that all the the events are me-
teors, and so the the counts at the highest speeds (above the
peak) might be false. Janches et al. (2003a) does not show
such meteors.

Figure 14 shows a model of the fall observations. The
parameters are not identical to the spring model; the average
x andy component have been set to zero. These observations
are very sensitive to an averagey component; the value used
for the spring observations is many times too large. That is,
these velocities come from right from the apex at least with
respect to they direction. The dispersions in all directions
have changed from the spring model.

5 Disussion and Conclusions

We believe that the data and model of the two previous sec-
tions are a strong corroboration of the results of Chau and
Woodman (2004), which first described the apex alignment.
Some discussion is necessary, however. First, there is the
matter of the slightly different directions in the spring and
fall. It is not a contradiction that the directions measured
are in the two seasons differ by a small amount. In the fall,
the radar is located nearly in the ecliptic plane, while in the
spring, it is located well above it. This is a large enough
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Fig. 12. The distribution of the velocities with azimuth angle from
four days of fall equinox data (23–26 September 2003).
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Fig. 13. The distribution of the velocities summed over azimuth
angle from four days of fall equinox data (23–26 September 2003).

difference so that there could be some differences in the par-
ticle orbits that the radar sees. It is the physical position of
the radar above the ecliptic that matters. We do not expect the
distribution of meteors to appear any different as the pointing
direction of the radar is changed with azimuth motion since
the observations are only about 100 km from the surface of
the earth, and so the horizontal distance from two pointing
positions separated by 180◦ is only about 50 km.

If we make the reasonable assumption, based on the di-
rectional information measured in both the spring and the
fall, that the particles are in retrograde orbits with nearly the
same parameters as the orbit of the earth, then the total ve-
locity must be 60 km s−1, twice the speed of the earth in its
orbit. We need to explain why we assumed an average loss of
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Fig. 14. A primitive model of the results shown in Fig. 12.

several km s−1 before observation. During the radar-visible
phase of the entry of a particle, it slows by several km s−1;
this can be verified from this data set or others. On average,
we see a particle when it is partly through its radar-visible
path, because most do not come right through the center of
the beam. This means that we see particles when they have
slowed, and several km s−1 is a reasonable number for the
average lost speed. This provides the source of the down-
ward dispersion in the magnitude of the velocity, and allows
the assumption that the speeds are all very nearly the same
before they enter the atmosphere.

We have explained the “down the beam” effect described
in, for example, Janches et al. (2003a) and Janches et al.
(2003b), as primarily a geometric effect. If one observes at
dawn, and the meteors tend to come from the apex, then they
will be seen to come “down the beam”. If one does not know
about the possibility of apex alignment and assumes that the
source direction is random, then an atmospheric effect would
appear to be the probable complete explanation for the align-
ment with the beam. Of course, we have had to assume an
atmospheric effect in order to make the geometrical model
work. Thus we are not saying that there are no atmospheric
effects contributing to beam alignment. Indeed, all such ef-
fects will need to be included in a complete model of the
process and probably will be very important.

We have made very little use of the data except in the dawn
periods. Data from all seasons and all times should be used
simultaneously to make a single model. This would probably
involve some modern inverse technique, and it would be a
lot of work. However, it would probably be the only way
to include selection effects, and thus allow the possibility of
examining the properties of the full population.
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