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Abstract. Formation of binary cluster ions from polar
vapours is considered. The effect of vapour polarity on the
size and composition of the critical clusters is investigated
theoretically and a corrected version of classical Kelvin-
Thomson theory of binary ion-induced nucleation is derived.
The model predictions of the derived theory are compared to
the results given by classical binary homogeneous nucleation
theory and ion-induced nucleation theory. The calculations
are performed in wide range of the ambient conditions for
a system composed of sulfuric acid and water vapour. It is
shown that dipole-charge interaction significantly decreases
the size of the critical clusters, especially under the atmo-
spheric conditions when the size of critical clusters is pre-
dicted to be small.

1 Introduction

Formation of ultrafine aerosols has received increasing at-
tention in the last few decades due to its importance for at-
mospheric physics and chemistry, chemical technology and
health research. The possible role of air ions in aerosol for-
mation, which was intensively studied during seventies and
earlier eighties (e.g. Mohnen, 1971; Castleman et al., 1978;
Arnold, 1980; Hamill et al., 1982), has received renewed at-
tention in recent years (e.g. Yu and Turco, 2000; Carslaw et
al., 2002; Eichkorn et al., 2002; Yu, 2002, 2003). Classi-
cal theory of ion-induced nucleation (IIN) (e.g. Hamill et al.,
1982; Raes et al., 1986; Laakso et al., 2002) treats the cluster
formation using capillary approximation and it accounts for
the charge effect on the pressure in the condensed phase only.
The classical IIN model is derived assuming a flat monomer
concentration profile in the vicinity of the nucleating cluster,
which is a good approximation for non-polar vapours. How-
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ever, the interaction of polar monomers with the electrical
field of the charged particle leads to the enhancement in the
monomer concentration near the particle surface (Korshunov,
1980; Nadykto et al., 2003). Recent studies (Nadykto et al.,
2003) showed that the interaction of polar vapour molecules
with the electrical field of charged particles may be impor-
tant for the formation of small ion clusters. Nadykto et
al. (2003) considered the ion-induced formation of single-
component particle and they concluded that the contribution
of the dipole-charge attraction potential to the size of the
ion clusters is significant, when polar vapours are involved
in the nucleation process. In addition to the reduction of
evaporation, the dipole-charge interaction enhances the con-
densation rate through enlargement of the effective collision
cross section (Nadykto and Yu, 2003). There is a clear differ-
ence between the effect due to the dipole-charge interaction
in the gas phase and the Thomson effect. The Thomson ef-
fect relates to the properties of the condensed phase while
the dipole-charge interaction modifies the chemical poten-
tial of the condensing monomers in the electrical field of the
charged particle/cluster.

The purpose of this paper is to study the effect of dipole-
charge interaction on the formation of binary cluster ions.
We will derive the generalized Kelvin-Thomson equation ac-
counting for vapour polarity, calculate the critical size of bi-
nary sulfuric acid-water ion clusters and compare our model
predictions with the results of the earlier theories.

2 Model

In the classical binary IIN theory (e.g. Hamill et al., 1982;
Raes et al., 1986; Laakso et al., 2002) in the prevailing tem-
perature and vapor pressures of two condensing components
a andb, the critical size of binary cluster ion is determined
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from the Kelvin-Thomson equation (e.g. Laakso et al., 2002),
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respectively,V is the average molecular volume,va andvb

are the partial molecular volumes for componentsa andb

respectively,na andnb are the number of molecules in the
particle for componentsa andb respectively,ma andmb are
the molecule mass of componentsa andb respectively,q is
the number of the charges in the cluster,e0 is the elementary
charge,σ is the surface tension,εr is the relative permittivity
of particle,εg is the relative permittivity of the condensable
vapour ,ε0 is the vacuum permittivity,k is the Boltzman con-
stant,ρ is the particle/cluster density,Xa andXb are molar
fractions for componentsa andb respectively, andD′

p is the
diameter of the cluster. The composition of the charged par-
ticle is decided by the following equation
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where1µi=µiL−µig is the chemical potential change from
gas phase (µig) to the condensed /liquid phase (µiL) of com-
ponenti (i=a, b).

In a binary system, change in the Gibbs free energy can be
expressed by the following equation
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wherer is the cluster radius,A is the cluster surface area,
andr0 is the radius of the core ion. In the case of non-polar
vapours we get, assuming flat vapour profile in the vicinity of
the cluster nucleating, the following conventional equation

1G=(µaL − µa∞)na + (µbL − µb∞)nb + σA

+
q2e2

o

8πε0

(
1

εg

−
1

εr

) (
1

r
−

1

r0

)
, (4)

The change in the Gibbs free energy due to the phase transi-
tion relates to the difference in the chemical potentials of the
gas phase molecules located near the interphase boundary
(over the particle surface) and molecules in the condensed
phase. Since the isothermal chemical potential of the vapour
is a function of the vapour pressure only, the correction to
the chemical potential is derived through the calculation of
the vapour pressure of over the charged particle surface (Ko-
rshunov, 1980; Nadykto et al., 2003). The electrical field of
the cluster/particle attracts polar monomers and, thus, their
concentration in the vicinity of the nucleating particle and
the vapour pressure over the particle surface rises. This may
modify the chemical potential of the vapour molecules and
change in the Gibbs free energy significantly. In the electrical

field of the charged cluster/particle, the difference between
chemical potentials of the polar molecules in the condensed
phase and in the gas phase is given by (e.g. Nadykto et al.,
2003)

µiL − µig = −kT
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whereAiL is activity of componenti in the condensed phase,
Aig∞ is activity of componenti in the gas phase,pig is the
vapour pressure over the particle surface,pi∞ is the ambi-

ent vapour pressure. Term ln
(

pig

pi∞

)
relates to the change in

the monomer concentration near the particle surface and it is
described by the following equation (Nadykto et al., 2003)
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where sinh(z)=[exp(z)− exp(−z)]/2, li is the dipole mo-
ment of componenti and αi is the polarizability of com-
ponenti andCi(r, l, T ) is the correction to the condensing
vapour pressure due to the dipole-charge interaction. Now
we insert the expression for the change in chemical poten-
tials (5–6) into Eq. (3), and get the analytical expression for
the change in the Gibbs free energy
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Applying the Gibbs-Duhem identity (Renninger et al.,
1981) to function1G at constant temperature and pressure,

d1G = 0, (8)

we obtain, after differentiation with rearranging the terms,
the following set
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Figure 1.  Numbers of molecules in critical cluster as a function of temperature, relative 

humidity and sulfuric acid concentration. Triangles correspond to the sulfuric acid 

concentration of   107 , squares to that of 108  and diamonds to that of 109 cm-3. T=273.15 K, 

RH=0.85.  

Fig. 1. Numbers of molecules in critical cluster as a function of
temperature, relative humidity and sulfuric acid concentration. Tri-
angles correspond to the sulfuric acid concentration of 107 , squares
to that of 108 and diamonds to that of 109 cm−3. T=273.15 K,
RH=0.85.

Now we multiply sides of Eqs. (8) and (9) bym−1
a and−m−1

b

respectively and sum the equations obtained to get(
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In prevailing temperature and saturation ratios of the com-
ponentsa andb, solution to the set of Eqs. (10, 11) or (9,
11) gives us the numbers of molecules of componentsa and
b in the cluster and the corresponding the cluster size. In
the case of non-polar vapoursla→0, lb→0 set (10–11) re-
duces to Eqs. (1)–(2) predicting the composition and size of
the critical cluster in the classical IIN theory. The derived
model can be considered as a generalization of the classi-
cal binary IIN theory because it not only accounts for all the
mechanisms involved in classical binary IIN but also include
the effect of the dipole -charge interaction neglected in the
classical binary IIN theory.

Since the present model is derived, as well as the classi-
cal IIN theory, assuming the bulk surface tension, density
and dielectric constants of the condensed matter, it might
be generally limited when the critical cluster is composed
of n �1000 molecules. The quality of the measurements
of the bulk surface tension applied in the nucleation mod-
els is another important issue. It is well known that the val-
ues of the surface tension given by different methods such as
maximum bubble pressure, capillary rise and Wilhelmi plate
(or other contact methods) often deviates by several dynes.
Since the thermodynamics of the cluster formation depends
strongly on the surface tension of the substance nucleating,
in the case of disagreement between theoretical predictions
and experimental data it is difficult to figure out whether the
capillary approximation is imperfect or the bulk surface ten-
sion is measured inaccurately.

 

 1

 

Numbers of molecules in critical cluster. T=273.15 K, RH=0.95
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Figure 2.  Numbers of molecules in critical cluster as a function of temperature, relative 

humidity and sulfuric acid concentration. Triangles correspond to the sulfuric acid 

concentration of   107 , squares to that of 108  and diamonds to that of 109 cm-3. T=273.15 K, 

RH=0.95. 

Fig. 2. Numbers of molecules in critical cluster as a function of
temperature, relative humidity and sulfuric acid concentration. Tri-
angles correspond to the sulfuric acid concentration of 107 , squares
to that of 108 and diamonds to that of 109 cm−3. T=273.15 K,
RH=0.95.

Although the present theory is not focused on the sign
effect, it possesses some potential for explaining the sign
preference because both the enhancement factor for the con-
densation/nucleation rates (Nadykto and Yu, 2003) and cor-
rection to the chemical potential of the condensable vapour
molecules due to the dipole-charge interaction strongly de-
pend on the stretch of electrical field and the mean cluster
density, which may be different for positive and negative ions
due to different geometry and charge distribution. In order to
study the sigh effect quantitatively, the detailed information
about structure and properties of the cluster ions have to be
obtained.

3 Results and Discussion

Calculations were performed using Eqs. (10)–(11) for bi-
nary sulfuric acid-water vapour mixture. Binary clusters
are singly charged. Values of input parameters have been
adopted from CRC Handbook of Chemistry and Physics
(2002), Kulmala et al. (1998) and Myhre et al. (1998). Fig-
ures 1–4 show the comparisons of the cluster sizes as func-
tions of ambient temperature (T), relative humidity (RH),
and the concentration of sulfuric acid vapour calculated from
Eqs. (1)–(2)q=1 (IIN) andq=0 (BHN, binary homogeneous
nucleation), and Eqs. (10)–(11) (this study).

As may be seen from Figs. 1–4, dipole-charge interac-
tion significantly influences the formation of small cluster
ions, reducing the number of molecules in the critical clus-
ter and, consequently, decreasing the critical size. Difference
between results given by the considered theories rises as the
cluster size decreases. For small clusters, the difference in
the numbers of molecules in the critical cluster may be as

www.atmos-chem-phys.org/acp/4/385/ Atmos. Chem. Phys., 4, 385–389, 2004
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Figure 3.  Numbers of molecules in critical cluster as a function of temperature, relative 

humidity and sulfuric acid concentration. Triangles correspond to the sulfuric acid 

concentration of   107 , squares to that of 108  and diamonds to that of 109 cm-3. T=283.15 K, 

RH=0.85. 
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Fig. 3. Numbers of molecules in critical cluster as a function of
temperature, relative humidity and sulfuric acid concentration. Tri-
angles correspond to the sulfuric acid concentration of 107 , squares
to that of 108 and diamonds to that of 109 cm−3. T=283.15 K,
RH=0.85.
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Figure 4.  Numbers of molecules in critical cluster as a function of temperature, relative 

humidity and sulfuric acid concentration. Triangles correspond to the sulfuric acid 

concentration of   107 , squares to that of 108  and diamonds to that of 109 cm-3. T=283.15 K, 

RH=0.95.  

Fig. 4. Numbers of molecules in critical cluster as a function of
temperature, relative humidity and sulfuric acid concentration. Tri-
angles correspond to the sulfuric acid concentration of 107 , squares
to that of 108 and diamonds to that of 109 cm−3. T=283.15 K,
RH=0.95.

big as more than 2 times. The deviation between IIN the-
ory and present theory rises when the relative humidity and
sulfuric acid concentration are growing. The contribution of
the Thomson effect is smaller than that of the dipole-charge
interaction that is essential for the nucleation from highly
polar vapours. As may be seen from Figs. 1–4, the classi-
cal Kelvin-Thomson equation significantly overestimates the
number of the molecules in the critical cluster compared to
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Fig. 5. Size of the critical cluster given by different models. Tri-
angles correspond to BHN, squares to classical IIN and diamonds
present the results of the present study. T=273.15 K, RH=0.95.

results predicted by the present theory in all the cases stud-
ied here. Since both the sulfuric acid (l=2.72 Debyes) and
water (l=1.85 Debyes) are highly polar, such a big effect of
the dipole charge-interaction is not surprising. We would like
to emphasize that the domination of the effect related to the
dipole-charge interaction over the Kelvin-Thomson effect is
not a must. This effect is essential for polar gases only.

To illustrate the consequences of Eqs. (10)–(11) in terms
of the cluster size and thermodynamics of the cluster forma-
tion, we calculated the critical cluster sizes (Fig. 5). As seen
from Fig. 5, the deviation between the classical IIN theory
and the present study is∼15 percent. The complete theory
of the nucleation rates requires corrections to both the Gibbs
free energy and forward (condensation) rate to be accounted
for simultaneously. The contribution of the dipole-charge in-
teraction to the growth kinetics may be significant (Nadykto
and Yu, 2003) and, thus, the derivation of the nucleation rates
is not as straightforward as it could be expected. The work
on the model of the nucleation rates is in progress and we
plan to publish it elsewhere.

4 Summary

In this paper we developed the model of ion-induced nucle-
ation of two-component polar vapours. It has been shown
that the formation of small ion clusters is influenced by the
vapour polarity and the dipole-charge interaction decreases
the size of critical clusters formed. It has been demonstrated
that the actual size of small binary ion clusters may devi-
ate significantly from the size predicted by classical Kelvin-
Thomson theory, when the highly polar vapours are nucleat-
ing. The derived model can be considered as a generalized
reformulation of the classical IIN theory extended to the nu-
cleation in polar vapours. Based on the results obtained we
suggest that the dipole moment of the condensing monomers
is likely to be a new parameter controlling the binary ion-
induced nucleation.
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