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Abstract. This paper presents three-dimensional prognos-
tic O3 simulations with parameterized gas-phase photochem-
istry from the new NOGAPS-ALPHA middle atmosphere
forecast model. We compare 5-day NOGAPS-ALPHA hind-
casts of stratospheric O3 with satellite and DC-8 aircraft
measurements for two cases during the SOLVE II campaign:
(1) the cold, isolated vortex during 11–16 January 2003;
and (2) the rapidly developing stratospheric warming of 17–
22 January 2003. In the first case we test three differ-
ent photochemistry parameterizations. NOGAPS-ALPHA
O3 simulations using the NRL-CHEM2D parameterization
give the best agreement with SAGE III and POAM III pro-
file measurements. 5-day NOGAPS-ALPHA hindcasts of
polar O3 initialized with the NASA GEOS4 analyses pro-
duce better agreement with observations than do the oper-
ational ECMWF O3 forecasts of case 1. For case 2, both
NOGAPS-ALPHA and ECMWF 114-h forecasts of the split
vortex structure in lower stratospheric O3 on 21 January 2003
show comparable skill. Updated ECMWF O3 forecasts of
this event at hour 42 display marked improvement from the
114-h forecast; corresponding updated 42-hour NOGAPS-
ALPHA prognostic O3 fields initialized with the GEOS4
analyses do not improve significantly. When NOGAPS-
ALPHA prognostic O3 is initialized with the higher resolu-
tion ECMWF O3 analyses, the NOGAPS-ALPHA 42-hour
lower stratospheric O3 fields closely match the operational
42-hour ECMWF O3 forecast of the 21 January event. We
find that stratospheric O3 forecasts at high latitudes in winter
can depend on both model initial conditions and the treat-
ment of photochemistry over periods of 1–5 days. Over-
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all, these results show that the new O3 initialization, pho-
tochemistry parameterization, and spectral transport in the
NOGAPS-ALPHA NWP model can provide reliable short-
range stratospheric O3 forecasts during Arctic winter.

1 Introduction

The Navy Operational Global Atmospheric Prediction Sys-
tem (NOGAPS) is the U.S. Department of Defense’s (DoD’s)
high-resolution global numerical weather prediction (NWP)
system, run operationally at the Navy’s Fleet Numerical Me-
teorology and Oceanography Center (FNMOC). NOGAPS
is a complete NWP system that includes data quality control
(Baker, 1992), tropical cyclone bogusing (Goerss and Jef-
fries, 1994), operational data assimilation (Goerss and Phoe-
bus, 1992; Daley and Barker, 2001), nonlinear normal mode
initialization (Errico et al., 1988), and a global spectral fore-
cast model (Hogan and Rosmond, 1991; Hogan et al., 1991).
NOGAPS forecasts are distributed to numerous defense and
civilian users for input to environmental prediction systems
such as FNMOC’s ocean wave, sea ice, ocean thermodynam-
ics, and tropical cyclone models.

NOGAPS forecasts also support various aircraft and ship-
routing programs, a capability that was utilized during
NASA’s second SAGE III Ozone Loss and Validation Ex-
periment (SOLVE2), from January–February 2003. The
first two authors used NOGAPS forecasts in the field as
part of the Naval Research Laboratory’s (NRL) in-field
flight-planning support for NASA’s instrumented DC-8 re-
search aircraft. Specific applications included forecast-
ing anticyclonic “minihole” systems whose synoptic uplift
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and adiabatic cooling might form polar stratospheric clouds
(PSCs) (McCormack and Hood, 1997), and initialization of
other NRL models that predicted in-flight mountain wave tur-
bulence for the DC-8 and areas of possible mountain wave
PSC formation (Eckermann et al., 2004a). These forecasts
played important roles in devising scientifically valuable DC-
8 flights during SOLVE2, such as the 4 February 2003 flight
that measured mountain wave PSCs within an evolving mini-
hole event over Iceland.

Despite these stratospheric applications during SOLVE2,
operational NOGAPS forecasts currently focus primarily on
the troposphere. As part of a major initiative to improve
its NWP and data assimilation capabilities, a new prototype
version of the NOGAPS global-spectral circulation model
(GCM) has been developed over the past several years (Eck-
ermann et al., 2004b) which extends the model through the
stratosphere and into the mesosphere. This new Advanced
Level Physics-High Altitude (ALPHA) version of the NO-
GAPS GCM is described in Sect. 2.

One major focus of development in NOGAPS-ALPHA
has been to add ozone to the GCM as a fully interactive three-
dimensional prognostic variable. The addition of prognostic
ozone is a necessary first step toward the goal of assimilating
and forecasting ozone fields using NOGAPS. This develop-
ment supports concurrent efforts to operationally assimilate
satellite radiances directly using NRL’s new Atmospheric
Variational Data Assimilation System (NAVDAS) (Daley
and Barker, 2001; Goerss et al., 2003), potentially improv-
ing overall NWP performance in several ways. For example,
prognostic ozone can help correct complex biases in some
longwave radiance channels due to ozone absorption (Derber
and Wu, 1998). Prognostic ozone fields, when fed into the ra-
diation calculations, should also improve stratospheric heat-
ing/cooling rates and surface radiation fluxes. Operational
assimilation of satellite ozone data into NOGAPS may also
add valuable meteorological information that can aid over-
all forecast skill (Jang et al., 2003). These types of issues
have motivated ozone assimilation and forecasting efforts at
other operational centers, such as the National Centers for
Environmental Prediction (NCEP), the European Center for
Medium Range Weather Forecasts (ECMWF), and NASA’s
Global Modeling and Assimilation Office (GMAO).

The combination of ozone and ozone-related observations
from a variety of satellite and airborne instruments makes
the SOLVE2 winter an ideal period for running NOGAPS-
ALPHA in hindcast mode to test the performance of our new
initialization, advection and photochemistry algorithms for
ozone. This is the primary focus of the present work. In
addition to conducting comparisons with satellite and air-
craft ozone measurements, we also compare our NOGAPS-
ALPHA ozone fields with ozone forecasts and analyses is-
sued operationally by the ECMWF and with the NASA
GEOS4 ozone analyses.

It is particularly interesting to assess the performance of
current NWP ozone analysis/forecast methods within the

context of the SOLVE2 mission. For NWP systems, cost-
benefit considerations do not currently justify the use of
the detailed multi-reaction chemistry and photolysis schemes
for ozone currently used in some state-of-the-art climate-
chemistry models and offline chemical transport models.
Thus, in common with other NWP models like the ECMWF
Integrated Forecast System (IFS) and the NCEP Global Fore-
casting System (GFS), NOGAPS-ALPHA uses much sim-
pler (and faster) linearized ozone photochemistry schemes
that efficiently parameterize the major homogeneous photo-
chemical dependences. The accuracy of these parameteriza-
tions in real meteorological situations is not clear, and ozone
forecasts issued by NWP models using these schemes have
not been subjected to detailed comparisons with data to an-
swer these questions experimentally.

The SOLVE2 case studies in this paper provide initial val-
idation assessments of NOGAPS-ALPHA prognostic ozone
using parameterized photochemistry schemes. These assess-
ments will guide future NWP model development. For ex-
ample, the potential for heterogeneous ozone loss in the Arc-
tic is highly sensitive to the synoptic meteorological condi-
tions. This process only becomes important if the vortex is
stable and thus cold. Within the linearized ozone photochem-
istry framework, heterogeneous reactions producing catalytic
ozone losses can be parameterized using, e.g. an additional
chlorine loading term (Dethof, 2003), or a so-called cold-
tracer scheme (Braesicke et al., 2003). Whether or not such
developments are justified depends on the impact of the omit-
ted effects on NWP skill relative to the requisite computa-
tional overhead. Both the basic linearized gas phase ozone
photochemistry parameterizations and the NWP model’s in-
ternal transport algorithms must be able to capture observed
features in the polar ozone distribution (e.g. ozone lamina-
tion due to vortex filaments) before additional heterogeneous
terms can then potentially yield an improved ozone forecast.
This paper presents first-order assessments of these parame-
terizations based on model-data comparisons for select cases
during the SOLVE II campaign.

The meteorological conditions during the SOLVE2 win-
ter period allow us to study the performance of NOGAPS-
ALPHA prognostic ozone fields under both relatively quies-
cent and disturbed polar vortex conditions. From early De-
cember 2002 to mid-January 2003, the Arctic polar vortex
was relatively stable and lower stratospheric temperatures
were cold enough to form PSCs. A stratospheric warming
beginning on or around 17 January 2003 caused the vortex
to split into two distinct lobes by 21 January (Urban et al.,
2004). Figure1 depicts the rapid change in 30 hPa minimum
temperatures over the Northern polar region during January
2003.

This paper presents results from NOGAPS-ALPHA hind-
cast runs (with prognostic ozone activated) that span these
two distinctly different periods in January 2003. Case 1 (see
Fig. 1) corresponds nominally to the DC-8 flight of 14 Jan-
uary 2000, during the period of cold, relatively undisturbed

Atmos. Chem. Phys., 4, 2401–2423, 2004 www.atmos-chem-phys.org/acp/4/2401/



J. P. McCormack et al.: NOGAPS-ALPHA O3 simulations during SOLVE2 2403

DEC

9312010 19 29

JAN FEB

8

Case 1

Case 2

Fig. 1. Time series of minimum 30 hPa temperatures within 60◦–
90◦ N during the period 10 December 2002–18 February 2003 taken
from operational NOGAPS MVOI analyses. Dotted vertical lines
separate individual months. DC-8 flights on 14 January and 21 Jan-
uary are indicated as Case 1 and Case 2, respectively. Horizontal
line denotes nominal 195 K PSC formation temperature threshold
at 30 hPa.

vortex conditions that existed during 11–16 January. Our
NOGAPS-ALPHA forecasts are initialized on 11 January
and run throughout this 5-day period. Our comparisons here
focus on the full ozone profile throughout the stratosphere,
and thus we compare mostly with satellite data since DC-8
ozone profiles do not extend quite as high. Case 2 focuses
on the DC-8 flight on 21 January, toward the end period of
the rapid initial warming of the stratosphere and splitting of
the vortex during 17–22 January. The complex meteorology
of this event is used as a rigorous test of NOGAPS-ALPHA
model dynamics and transport. For this case, we compare
more closely with DC-8 lidar data along a flight track at
heights∼13–30 km. At the altitudes and latitudes of the
SOLVE2 DC-8 flights, the ozone photochemical relaxation
times are fairly long, and so model initialization and trans-
port effects should dominate. These case studies are the first
assessments of NOGAPS-ALPHA model performance.

The paper is organized as follows: Sect. 2 provides a
description of the major modifications of the NOGAPS-
ALPHA GCM compared to the current operational NO-
GAPS; Sect. 3 gives an overview of the various data sources
used to validate the NOGAPS-ALPHA simulations; Sect. 4
focuses on the period of 11–16 January 2003, present-
ing an intercomparison of 3 different ozone photochemistry
schemes in NOGAPS-ALPHA validated with a combina-
tion of SAGE III and POAM III ozone profile measure-
ments; Sect. 5 presents an assessment of NOGAPS-ALPHA
prognostic ozone during the rapidly developing stratospheric
warming period 17–22 January 2003; Sect. 6 summarizes
these results and outlines future research directions.

2 Model description

This section presents a brief overview of the new NOGAPS-
ALPHA NWP model. Additional details can be found in
Eckermann et al.(2004b).

2.1 Overview of NOGAPS GCM and Operational Schemes

The NOGAPS GCM is an Eulerian spectral model currently
run operationally with triangular truncation at zonal and
meridional wavenumber 239 (T239), roughly equivalent to
0.5◦ latitude–longitude spacing. It utilizes a generalized ver-
tical coordinate within an energy conserving vertical finite
difference formulation (Kasahara, 1974; Simmons and Bur-
ridge, 1981; Hogan and Rosmond, 1991). The model’s dy-
namical variables are relative vorticity, divergence, virtual
potential temperature, specific humidity, and terrain (surface)
pressure. The model is central in time with a semi-implicit
treatment of gravity wave propagation and Robert (Asselin)
time filtering (Simmons et al., 1978).

The current operational model’s physics packages in-
clude a bulk Richardson number-dependent vertical mixing
scheme (Louis et al., 1982), a time-implicit Louis surface
flux parameterization (Louis, 1979), orographic gravity wave
and flow-blocking drag (Webster et al., 2003), shallow cu-
mulus mixing of moisture, temperature, and winds (Tiedtke,
1984), the Emanuel cumulus parameterization (Emanuel
and Zivkovic-Rothman, 1999; Peng et al., 2004), convec-
tive, stratiform and boundary-layer cloud parameterizations
(Slingo, 1987; Teixeira and Hogan, 2002), and a shortwave
and longwave radiation scheme (Harshvardhan et al., 1987).

These operational schemes are available for use in
NOGAPS-ALPHA and can be activated or deactivated as
part of the model development process. The following sec-
tions describe new features in NOGAPS-ALPHA which are
not, at present, part of the operational NWP model.

2.2 Vertical Coordinate

Designed primarily for tropospheric applications, the oper-
ational NOGAPS model currently uses a terrain-following
σ coordinate with 30 vertical levels (L30) extending from
the surface to 1 hPa (∼48 km altitude), as shown in Fig.2a.
Thermal and mechanical damping and enhanced horizontal
spectral diffusion are applied to the top 2 full model layers to
form a sponge layer (see orange half levels in Fig.2a), which
means that undamped operational output extends up to only
the third full model level at∼22 hPa.

To improve middle atmosphere simulations (Simmons and
Burridge, 1981; Trenberth and Stepaniak, 2002), NOGAPS-
ALPHA replaces theσ coordinate with a hybridσ -p ver-
tical coordinate that transitions from terrain-following near
the surface to pure pressure levels at∼72.6 hPa (Ecker-
mann et al., 2004b). Figure2b demonstrates how this co-
ordinate smoothly transitions model layer pressure height
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Fig. 2. Vertical levels around 34.5◦N for: (a) operational NOGAPS 30 level (L30) model, withptop=1 hPa;(b) new NOGAPS-ALPHA 54
level (L54) model withptop=0.005 hPa, using new hybridσ -p formulation with a first purely isobaric level at 72.6 hPa, shown in yellow.
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thicknesses to constant thicknesses of∼2 km in the strato-
sphere over arbitrary topography for our current 54 level
NOGAPS-ALPHA formulation. This uniform vertical reso-
lution throughout the middle atmosphere is similar to the cur-
rent ECMWF model configuration and offers the prospect of
better resolved middle atmosphere dynamics and transport.

2.3 Radiation

Raising the top boundary of the NOGAPS-ALPHA model
requires an improved treatment of middle atmospheric ra-
diative heating. To this end, we have replaced the opera-
tional model’s current radiative heating scheme (Harshvard-
han et al., 1987) with the CLIRAD longwave (Chou et al.,
2001) and shortwave (Chou and Suarez, 2002) schemes, im-
proving the net heating calculations at all levels but partic-
ularly in the middle atmosphere. Specifically, the updated
CLIRAD shortwave heating rates include contributions from
O2 and near-infrared CO2 bands that are not contained in
the operational radiative heating scheme and led to underes-
timated peak shortwave heating in the middle atmosphere of
as much as 1–2 K day−1 (Eckermann et al., 2004b).

Shortwave heating and longwave cooling rates are cur-
rently computed using seasonally-varying two-dimensional
(height-latitude) climatological ozone and water vapor mix-
ing ratios. For NOGAPS-ALPHA, these values have been
updated and extended vertically using the monthly mean
ozone climatology ofFortuin and Kelder(1998) (1000–
0.3 hPa) and Halogen Occultation Experiment (HALOE) wa-
ter vapor measurements from 100–0.3 hPa (Pumphrey et al.,
1998). Above the 0.3 hPa level, the ozone and water va-
por mixing ratios are based on long-term climate output from
NRL’s CHEM2D model (McCormack and Siskind, 2002).

2.4 Gravity Wave Drag

Operational NOGAPS lacks any parameterization of middle
atmospheric gravity wave drag (GWD). It is well-known that
lack of GWD leads to, among other things, a cold bias in
predicted wintertime Arctic stratospheric temperatures. As a
result, operational NOGAPS temperatures tended to overpre-
dict geographical regions of PSC formation during SOLVE2
(this cold bias should be borne in mind when interpreting
Fig. 1). The extension of NOGAPS-ALPHA into the meso-
sphere should allow it to better simulate vertically deep dia-
batic descent through the vortex which can alleviate this cold
bias, given sufficient resolution and good parameterizations
of middle atmospheric GWD (Austin et al., 2003).

To this end, we have coded and implemented within
NOGAPS-ALPHA four GWD schemes. These four schemes
consist of two spectral GWD schemes for the middle atmo-
sphere (Hines, 1997; Alexander and Dunkerton, 1999), a new
orographic GWD scheme (Kim and Doyle, 20041) based to
some extent on the work ofKim and Arakawa(1995), and
a GWD parameterization scheme for convectively generated
gravity waves based onChun and Baik(2002). The perfor-
mance of these schemes in NOGAPS-ALPHA forecast runs
has not yet been rigorously tested. Therefore, the model cal-
culations presented here utilize two different Rayleigh fric-
tion (RF) profiles applied to the zonal winds above∼40 km
(see Fig.3). The first RF profile we used is a modification
of a standard profile proposed byLin and Williamson(2000)
for dynamical core tests: their original profile and our mod-

1Kim, Y.-J. and J.D. Doyle: Offline evaluation of an orographic
gravity wave drag scheme extended to include the effects of oro-
graphic anisotropy and flow blocking, Q. J. R. Meteorol. Soc., sub-
mitted, 2004.
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ified “deep” version are shown in Fig.3 as profiles 2 and 3,
respectively. This modified profile imposes very strong drag
on the zonal winds in the upper stratosphere and mesosphere.
The second profile we use (profile 4 in Fig.3) is based
on the “standard” RF profile used byButchart and Austin
(1998) in the UKMO Unified Model. It imposes less drag on
the zonal winds, and is more representative of various pro-
files used in many global models that are also available for
use in NOGAPS-ALPHA (Boville, 1986; Eckermann et al.,
2004b). All NOGAPS-ALPHA simulations presented here
used theButchart and Austin(1998) RF profile. In addition,
orographic GWD, specified using thePalmer et al.(1986)
scheme, was applied from the surface up to 150 hPa. This
is done to keep the orographic GWD scheme in NOGAPS-
ALPHA consistent with the NOGAPS configuration that was
operational during the SOLVE2 period.

Although the use of Rayleigh friction is a crude proxy
for mesospheric GWD that can reduce realistic middle at-
mospheric variability (e.g. Shepherd et al., 1996; Lawrence,
1997), it’s performance has been documented in previous
global NWP and climate models (see, e.g., Shepherd et al.,
1996; Butchart and Austin, 1998; Pawson et al., 1998). We
have tested mesospheric Rayleigh friction in a 5-year free-
running simulation of an earlier low horizontal resolution
T79L54 version of NOGAPS-ALPHA using the Rayleigh
friction profile of Boville (1986) (profile 1 in Fig.3). Fig-
ure 4 plots monthly averaged zonal-mean zonal winds for
January, April, July, and October, which show reasonable
agreement with climatological values (Randel et al., 2004).
Figure5 plots the mean meridional circulation computed as
a mass flux from the residual mean mass stream function for
January, April, July, and October. We see that, despite be-
ing designed primarily for short-term NWP, the NOGAPS-
ALPHA middle atmosphere reproduces a realistic climato-
logical Brewer-Dobson stratospheric circulation and a clear
pole-to-pole mesospheric residual circulation.

2.5 Upper Level Initialization

NOGAPS-ALPHA is initialized here by combining archived
operational output from FNMOC’s Multivariate Optimum
Interpolation (MVOI) system (up to 10 hPa) (Goerss and
Phoebus, 1992) with an experimental “STRATOI” product
(based on TOVS radiances) from 10–0.4 hPa. Above 0.4
hPa, NOGAPS-ALPHA extrapolates the topmost initializa-
tion wind and temperature fields by progressively relax-
ing them with increasing altitude to climatological values
from the 1986 COSPAR International Reference Atmosphere
(CIRA) (Fleming et al., 1990). Given the unreliability of
mesospheric CIRA winds during certain months, particularly
near the equator (Randel et al., 2004), we have created an ad-
ditional option of relaxing to climatological wind fields from
the Upper Atmosphere Research Satellite (UARS) Reference
Atmosphere Project (URAP) (Swinbank and Ortland, 2003).
Final extrapolated temperature profiles are then used to spec-
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Fig. 3. Rayleigh friction profiles used in NOGAPS-ALPHA.

ify geopotential profiles using hydrostatic integration. For
further details, seeEckermann et al.(2004b).

In late 2003, initialization of the operational NOGAPS
model transitioned from MVOI to the NRL Variational Data
Assimilation System (NAVDAS), which currently provides
fields up to∼4 hPa (Daley and Barker, 2001; Goerss et al.,
2003). NAVDAS began direct assimilation of AMSU-A ra-
diance measurements in June 2004, providing additional mo-
tivation for development of a prognostic ozone scheme in
NOGAPS-ALPHA.

2.6 Prognostic Ozone

A new three-dimensional (3D) prognostic ozone capability
has been implemented in NOGAPS-ALPHA. Since FNMOC
does not at present assimilate ozone, here for NOGAPS-
ALPHA we use assimilated ozone fields from two different
systems. The first is 2◦×2.5◦ (latitude/longitude) analyzed
3D ozone mixing ratios from the GEOS data assimilation
system, issued by NASA’s Global Modeling and Assimila-
tion Office (GMAO) (Stajner et al., 2001). The second is
archived ozone initialization fields from the ECMWF IFS.
Both assimilated ozone fields were interpolated to 1◦

×1◦

pressure-level fields for use in NOGAPS-ALPHA as an ini-
tialization field for ozone.

Two distinct prognostic ozone variables can be activated
in NOGAPS-ALPHA. The first constituent represents “pas-
sive” ozone, where initialized ozone is subsequently sub-
jected only to advection by the model’s forecast meteorology.
The second constituent, so–called “active” ozone, is subject
to both advection and parameterized photochemical produc-
tion and loss. The passive ozone tracer is a powerful tool
for diagnosing model transport in the middle atmosphere.
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Fig. 5. Monthly mean meridional mass stream function from a 5-year T79L54 NOGAPS-ALPHA simulation for January, April, July, and
October. Distance between contour lines is proportional to strength of mass flux. Clockwise circulation (positive contours) is shaded yellow
to red, counter-clockwise circulation (negative contours) is shaded green to blue. Contour values are in units of 1010 kg s−1.
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By taking the difference between active and passive ozone
fields, one can distinguish between dynamical and photo-
chemical variations in the model’s three-dimensional global
ozone fields.

These ozone fields are transported globally within
NOGAPS-ALPHA using the same spectral advection algo-
rithms used to advect meteorological variables such as vortic-
ity and specific humidity. Over time, the spectral advection
produces fine scale spectral noise in ozone mixing ratio fields
(Rasch et al., 1990; Fairlie et al., 1994), which we effectively
suppress by applying after each time step a small amount of
∇

4 horizontal spectral diffusion, with a diffusion coefficient
equal to that applied to the NOGAPS-ALPHA divergence
fields. For the prognostic ozone fields reported here, spec-
tral diffusion was applied to the isobaric stratospheric layers
only.

Since NOGAPS-ALPHA is designed to be a forecast
model, calculating the ozone production and loss terms us-
ing a complete photochemical model is too computationally
expensive at present. Instead, the net ozone photochemical
production/loss rates, (P−L), can be parameterized as fol-
lows. First, we approximate net production/loss to be a func-
tion of three variables: the current local ozone mixing ratio
(r), local temperature (T ), and the overlying ozone column
abundance (6) (Cariolle and D́eqúe, 1986; McLinden et al.,
2000). By approximating this functional dependence using
a truncated (linearized) Taylor Series expansion, the ozone
photochemical tendency equation can then be expressed as
follows:

dr

dt
= (P − L)o +

∂(P − L)

∂r

∣∣∣∣
o

[r − ro] (1)

+
∂(P − L)

∂T

∣∣∣∣
o

[T − To] +
∂(P − L)

∂6

∣∣∣∣
o

[6 − 6o] ,

whered/dt is the advective time derivative, so that when
the right hand side of (1) is zero, we reproduce passive
ozone. The photochemical coefficients(P − L)o, ∂(P−L)

∂r
|o,

∂(P−L)
∂T

|o, and ∂(P−L)
∂6

|o represent diurnally-averaged quan-
tities computed at a reference state (ro,To,6o) which is ide-
ally the photochemical equilibrium state, but when imple-
mented as a model parameterization is usually in practice a
2D observed climatological state for each variable (McLin-
den et al., 2000; Dethof and Holm, 2002). These photochem-
ical coefficients are computed offline using a 2D (altitude-
latitude) photochemical model with complete descriptions of
radiation and constituent photochemistry. The partial deriva-
tive terms are estimated by varying the one variable while
keeping the other two reference variables constant and then
estimating the derivative by linear fits to the change in pro-
duction/loss (McLinden et al., 2000). Their values are tab-
ulated as functions of altitude and latitude for each month
of the year. Currently NOGAPS-ALPHA applies the ozone
photochemistry schemes up to∼1 hPa, then smoothly re-

(b)

(a)

Fig. 6. Values of(a) the residual net ozone mixing ratio tendency
(P−L)o in ppmv month−1, and(b) photochemical relaxation time
τO3 (in days) computed for mid-January conditions with the NRL
CHEM2D model. Shaded region in (b) indicates polar night.

laxes the active ozone fields to 2D climatological mixing ra-
tios in the mesosphere.

Section 4 compares results from three different lin-
earized photochemistry parameterizations in order to de-
termine the sensitivity of the prognostic ozone simulations
to the details of the parameterization coefficients. Specifi-
cally, we compare NOGAPS-ALPHA “active” ozone fields
computed using theCariolle and D́eqúe (1986) coefficients
(hereafter CD86), theMcLinden et al. (2000) “LINOZ”
coefficients (hereafter LINOZ), and coefficients from the
NRL CHEM2D model (hereafter CHEM2D). Note that the
CHEM2D scheme currently employs only the first two terms
on the right hand side of (1), representing the residual net
production/loss(P−L)o and the sensitivity to changes in
local ozone mixing ratio,∂(P−L)

∂r
|o, respectively. The lat-

ter term is often expressed in terms of the photochemical
relaxation time for ozone,τO3=−[

∂(P−L)
∂r

|o]
−1. Figure 6

plots (P−L)o andτO3 calculated with the NRL CHEM2D
model for mid-January conditions. The very small resid-
ual tendency(P−L)o and very long relaxation timesτO3 at
high Northern winter latitudes indicate that transport effects
should generally dominate over photochemistry during the
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SOLVE2 campaign. However, the ozone simulations in Sec-
tion 4 demonstrate that stratospheric ozone forecast skill in
this region can be sensitive to the treatments of both photo-
chemistry and transport.

3 Data description

As a first test of the new NOGAPS-ALPHA model per-
formance, we compare simulations of stratospheric ozone
and temperature for select periods during the SOLVE2 cam-
paign with observations from a variety of sources. These
sources include operational ECMWF meteorological analy-
ses, satellite-based measurements of the total ozone column
abundance and ozone profiles, and data records from instru-
ments aboard the NASA DC-8 aircraft. A short description
of each data source follows.

3.1 Meteorological analyses

During the SOLVE2 period, operational NOGAPS analyses
from the MVOI system (Goerss and Phoebus, 1992) were
issued at 0, 6, 12, and 18 Z. These gridded (1◦

×1◦ lati-
tude/longitude) fields include horizontal winds, temperature,
geopotential height, dew point depression, vorticity, and di-
vergence on a fixed set of pressure levels extending up to
10 hPa. In addition, 6-hourly high-resolution (T511L60) op-
erational analyses from the ECMWF IFS provided winds,
temperature, geopotential height, vorticity, divergence, and
ozone mass mixing ratio (ECMWF, 1995). The ECMWF
fields are issued on native model levels (see, e.g.Dethof,
2003) and a reduced (N256) Gaussian grid. For both the
14 January and 21 January case studies in the present work,
(Cases 1 and 2 respectively) operational T239L30 NOGAPS
and T511L60 ECMWF meteorological analyses are used to
help assess the performance of the new NOGAPS-ALPHA
model.

NOGAPS-ALPHA ozone simulations use 3D strato-
spheric ozone analyses output from either the NASA GEOS4
data assimilation system or the ECMWF IFS to initialize
both the active and passive ozone fields (see Sect. 2.6).

Daily global GEOS4 ozone analyses at 0 Z were issued
throughout the SOLVE2 winter at fixed pressure levels from
1000 hPa to 0.2 hPa with a 2◦

×2.5◦ latitude/longitude reso-
lution. The GEOS4 system assimilates stratospheric ozone
profiles and total ozone column measurements from the
NOAA-16 SBUV/2 instrument. Ozone photochemical pro-
duction and loss rates are specified as functions of latitude,
pressure, and month (Fleming et al., 2001), with adjustments
to the upper stratospheric values as inStajner et al.(2004).

The operational ECMWF ozone assimilation (Dethof,
2003) product is based on NOAA-16 SBUV/2 profile and
ERS-2 GOME total ozone measurements and uses the lin-
earized ozone photochemistry scheme ofCariolle and D́eqúe
(1986).

3.2 Satellite ozone measurements

The present study compares NOGAPS-ALPHA prognostic
ozone simulations with measurements of the integrated col-
umn ozone abundance from the Total Ozone Mapping Spec-
trometer (TOMS) aboard the NASA Earth Probe satellite
(McPeters et al., 1998), hereafter referred to as EPTOMS.
Since the largest contribution to the total ozone column orig-
inates in the lower stratosphere, where the ozone photochem-
istry is slow compared to transport, this quantity provides a
good test of the model’s spectral transport.

Observations of the vertical distribution of ozone come
from the NASA Stratospheric Aerosol and Gas Experiment
(SAGE) III instrument aboard the METEOR-3M satellite
(Thomason and Taha, 2003), and from the NRL Polar Ozone
and Aerosol Monitoring (POAM) III instrument aboard the
CNES SPOT-4 satellite (Bevilacqua et al., 2002). Both satel-
lites operate in sun-synchronous orbits that offer good cover-
age of polar latitudes during winter. For the 11–22 January
2003 period, SAGE III provided 13 to 14 profiles each day
over latitudes ranging from 67◦ N–69◦ N. The present study
uses the Version 3.04 “least squares” SAGE III retrievals be-
tween 200–1 hPa. For the same time period, POAM III pro-
vided 14 to 15 stratospheric profiles (Version 3) each day
from 250–0.1 hPa over the 64◦ N–65◦ N latitude range. The
combined random and systematic errors in the stratospheric
ozone profiles are<5% for both instruments. Both SAGE III
and POAM III retrievals provide profiles of ozone molecular
concentration that are converted to volume mixing ratio us-
ing temperature and pressure analyses. SAGE III retrievals
use temperature and pressure information from the National
Centers for Environmental Prediction (NCEP) up to 1 hPa.
POAM III retrievals use temperature and pressure informa-
tion provided by the United Kingdom Meteorological Of-
fice (UKMO). Section 4 compares NOGAPS-ALPHA ozone
hindcasts for 11–16 January 2003 (Case 1) with EPTOMS,
SAGE III, and POAM III observations as well as ECMWF
operational ozone analyses and forecasts.

3.3 DC-8 measurements

Of the 14 different experiments on the NASA DC-8 air-
craft payload for SOLVE2, two are particularly well-suited
for comparison with NOGAPS-ALPHA simulations. The
first experiment is the NASA Langley Differential Absorp-
tion Lidar (DIAL). DIAL measures backscattered radiation
near wavelengths of 301 nm and 311 nm, providing (among
other things) in-flight ozone profiles with a vertical resolu-
tion of 750 m over the altitude region from∼1 km above the
aircraft up to 22–26 km under ideal conditions (Grant et al.,
2003). The second experiment is the NASA Goddard Air-
borne Raman Ozone Temperature and Aerosol Lidar (ARO-
TAL). AROTAL uses a combination of Rayleigh and Ra-
man backscattered radiation at 355 nm to retrieve tempera-
ture profiles up to 60 km with a vertical resolution of 0.5–
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1.5 km (Burris et al., 2002). This instrument also utilizes a
differential absorption technique to obtain ozone profiles up
to ∼30 km, even in the presence of aerosols and clouds. Sec-
tion 5 presents a combination of both DIAL and AROTAL
ozone profiles as a means of validating high resolution T239
NOGAPS-ALPHA prognostic ozone simulations along indi-
vidual DC-8 flight tracks during the 21 January 2003 strato-
spheric warming case (i.e. Case 2).

4 Case 1: 11–16 January 2003

4.1 Description

As Fig. 1 shows, 30 hPa temperatures over the polar region
were cold enough for PSCs to form during the early winter
of 2002–2003. The DC-8 flight on 14 January 2003 was the
last to take place before the stratospheric warming event in
mid-January (see Fig.1 and Sect. 5). During the 14 January
flight, instruments aboard the DC-8 detected a small region
of PSCs over the southern tip of Scandinavia.

Figure7a plots NOGAPS MVOI analyses of 30 hPa tem-
peratures and geopotential heights on 14 January 2003 at 0 Z.
The region where PSCs were detected lies within a larger
synoptic-scale area of cold temperatures. Figure7b plots the
corresponding temperatures and heights at 300 hPa, show-
ing a pronounced anti-cyclonic feature over Western Europe.
This type of feature produces a combination of upward verti-
cal motion and quasi-isentropic horizontal transport in the
lowermost stratosphere, leading to a divergence of ozone-
rich air out of the column (see, e.g. Rood et al., 1992; Or-
solini et al., 1995). These localized, reversible occurrences of
low total ozone, often referred to as extreme ozone minima or
ozone “mini-holes”, are common occurrences with the pas-
sage of an intense upper tropospheric anticyclone (Newman
et al., 1988; McCormack and Hood, 1997; James, 1998).
In certain cases, the resulting adiabatic cooling in the lower
stratosphere can be sufficiently strong to produce tempera-
tures below 195 K, which is a typical threshold temperature
for the formation of nitric acid trihydrate (NAT) particles
that constitute Type I PSCs (Teitelbaum et al., 2001; WMO,
2003).

Figure8 plots total ozone column measurements from the
NASA EPTOMS instrument on 14 January 2003. The heavy
red contour highlights the total ozone minimum near 10◦ W–
30◦ E where total ozone values fall below 235 Dobson units
(DU). This region coincides with the minimum in 30 hPa
temperatures and maximum in 300 hPa geopotential heights
shown in Fig.7. Conditions on 14 January 2003 provide a
good first test of the ability of NOGAPS-ALPHA to simu-
late this interaction between tropospheric and stratospheric
dynamics and its impact on the ozone distribution.

To determine the sensitivity of the model ozone simu-
lations to the linearized photochemistry parameterization,
we conducted a series of low-resolution T79 (∼1.5◦ lati-
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Fig. 7. Operational 1◦×1◦ NOGAPS MVOI analyses of geopo-
tential height in dam (solid contours) and temperature in Kelvin
(colors) on 14 January 2003 at 0 Z for(a) 30 hPa and(b) 300 hPa.
30 hPa temperatures below 195 K are enclosed with a yellow con-
tour. Polar projection extends to 20◦ N.

tude/longitude spacing) simulations using three different sets
of linearized photochemistry coefficients. These include the
most recent version of the CD86 scheme, currently used in
the ECMWF IFS (H. Teyssedre, personal communication),
the LINOZ scheme, and the NRL CHEM2D scheme (see
Sect. 2.6 for details). Our goal is to determine which scheme
most closely reproduces the observed 3D ozone distribution
poleward of 20◦ N over the period 11–16 January 2003.

4.2 Comparison with ozone analyses

For each simulation, both active and passive ozone fields
were initialized using ozone mixing ratio analyses from the
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Fig. 8. EPTOMS total ozone on 14 January 2003. Polar projec-
tion extends to 20◦ N. White areas denote missing data. Heavy red
contour encloses area where total ozone column abundance is be-
low 235 Dobson units (DU). Locations of POAM III (crosses) and
SAGE III (circles) ozone profile measurements on this date are also
indicated.

NASA GEOS4 system (Stajner et al., 2001, 2004). Figure9a
plots the initial NOGAPS-ALPHA active/passive ozone mix-
ing ratios as a function of pressure and longitude at 64.9◦ N
on 11 January 2003 at 0 Z. At this latitude, the initial
NOGAPS-ALPHA (GEOS4) ozone distribution differs sub-
stantially from the ECMWF ozone analyses for the same
day and same location plotted in Fig.9b. Specifically, the
ECMWF ozone mixing ratios exceed the NASA GEOS4
mixing ratios by more than 2 ppmv between 30◦ W–30◦ E.
Figure9c shows a series of ozone mixing ratio profiles from
the POAM III instrument on 11 January 2003. The POAM
III measurements confirm the presence of low ozone mix-
ing ratios between 30◦ W–30◦ E that are not captured in the
ECMWF analysis.

This discrepancy between the GEOS4 and ECMWF ozone
analyses over the North Atlantic sector is common through-
out the SOLVE2 period poleward of∼60◦ N; at lower lati-
tudes, however, both the ECMWF and GEOS4 ozone prod-
ucts are in good agreement. It has been pointed out by an
anonymous referee that the ECMWF system (Dethof, 2003)
only assimilates SBUV/2 and GOME satellite ozone obser-
vations between 40◦S and 40◦N, whereas the NASA GEOS4
system (Stajner et al., 2001) incorporates SBUV/2 obser-
vations at all available latitudes in its analysis. This fact
may explain the large differences between the GEOS4 and
ECMWF ozone analyses at high northern latitudes during the
SOLVE2 campaign whenever the local ozone distribution ex-
hibited large deviations from climatological values.
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Fig. 9. (a)Ozone mixing ratios (ppmv) from the 11 January 2003
NASA GEOS4 analyses at 0 Z and 64.9◦ N; (b) ozone mixing ratios
from 11 January 2003 operational ECMWF analyses at 0 Z and
64.4◦ N; (c) POAM III ozone mixing ratio measurements at 64.2◦ N
on 11 January 2003, with asterisks indicating latitude of individual
POAM profiles and white areas indicating missing data.

4.3 NOGAPS-ALPHA O3 hindcasts: 11–16 January 2003

Figure 10 plots NOGAPS-ALPHA profiles of prognostic
ozone for a 5-day simulation initialized on 11 January 2003
at 0 Z over Kiruna, Sweden (68◦ N, 20◦ E). This location
was chosen for its proximity to both the lowest total ozone
values on 14 January and the measurement latitudes of the
SAGE III and POAM III instruments (see Fig.8). Each plot
compares the passive ozone (dashed black curve) with active
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Fig. 10. NOGAPS-ALPHA ozone mixing ratio profiles over Kiruna, Sweden (68◦ N, 20◦ E) for a 5-day forecast initialized on 11 January
2003 at 0 Z using the CD86 (blue), LINOZ (red), and CHEM2D (green) photochemistry schemes. NOGAPS-ALPHA passive ozone is
plotted as a dashed black curve. Co-located SAGE III profiles are plotted as orange symbols. The solid black curve denotes the corresponding
ECMWF ozone analysis and forecasts initialized on 11 January 2003.

ozone computed using the CD86 coefficients (blue curve),
the LINOZ coefficients (red curve), and the CHEM2D co-
efficients (green curve). Also included in Fig.10 are the
ECMWF IFS ozone forecasts (solid black curve) and co-
located ozone profiles from the SAGE III instrument (points)
for each day. As Fig.10 shows, the differences between the
GEOS4 and ECMWF ozone initializations at this location on
11 January 2003 explain why the ECMWF ozone forecasts
over the 5-day period disagree with the NOGAPS-ALPHA
simulations and with the independent SAGE III measure-
ments between 50–1 hPa. Interestingly, the ECMWF ozone
profiles between 100–50 hPa in Fig.10 show better agree-
ment with the SAGE III observations than corresponding

NOGAPS-ALPHA ozone profiles throughout the 120-hour
period. The altitude dependence of the ECMWF IFS ozone
ozone forecast skill is discussed further in Section 5.

A comparison of the active ozone simulations (blue, red,
and green curves in Fig.10) shows all three photochemistry
schemes exhibit little difference with the passive ozone pro-
file below ∼10 hPa. In this altitude region, there is gener-
ally good agreement among the three different active ozone
schemes, passive ozone, and observed ozone profiles from
both the SAGE III and POAM III instruments. This is to
be expected since ozone photochemistry is slow compared to
transport below∼10 hPa (see Fig.6).
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Above∼10 hPa, however, differences emerge between the
active and passive ozone values, and between the individ-
ual active ozone simulations as well. The differences be-
tween the CD86 and CHEM2D results after 5 days are very
small, and they are both in good agreement with the SAGE
III measurements shown in Fig.10. The similarity between
the CHEM2D and CD86 profiles in Fig.10demonstrates that
neglecting the temperature and column terms in Eq. (1) have
a minor impact on the model ozone over 5 days at high lat-
itudes in winter. In contrast, the LINOZ scheme produces
excessive ozone loss that is in disagreement with the avail-
able SAGE III profiles, POAM III profiles (not shown), and
with the NOGAPS-ALPHA simulations using CHEM2D and
CD86 photochemistry schemes.

The low upper stratospheric ozone mixing ratios in the
NOGAPS-ALPHA simulation using the LINOZ scheme (red
curve in Fig.10) appear to be a consequence of unrealisti-
cally large negative values in the LINOZ scheme’s(P−L)o
term. As Fig.6 illustrates, the magnitude of the net ozone
mixing ratio tendency|(P−L)o| at high northern latitudes
during January is typically small,<1 ppmv month−1, above
10 hPa and poleward of 60◦ N. In comparison to both the
CD86 and CHEM2D coefficients, the LINOZ|(P−L)o| term
is 5–10 times larger at all latitudes above∼10 hPa for all
months. The underlying cause for the excessive LINOZ
ozone loss above 10 hPa may be related to an overestimation
of the background ozone mixing ratios in the model (McLin-
den et al., personal communication, 2004). Overall, the re-
sults from the initial NOGAPS-ALPHA prognostic ozone
simulations indicate that the LINOZ photochemistry param-
eterization may not be appropriate for upper stratospheric ap-
plications.

Figure 11 plots NOGAPS-ALPHA model ozone mixing
ratio profiles at 65◦ N and 135◦ E from the same 5-day sim-
ulation beginning 11 January 2003 at 0 Z. Here we com-
pare results from the three different ozone photochemistry
schemes, passive ozone, the ECMWF ozone forecasts, and
POAM III ozone profiles. Unlike the previous case, the
initial NOGAPS-ALPHA ozone mixing ratio profiles and
ECMWF operational ozone analyses on 11 January over this
location are in good agreement. Total ozone values on 14
January (forecast hour 96) were>475 DU over this location,
and the flow at mid-stratospheric levels (see Fig.7) brought
air from lower sunlit latitudes poleward. Thus the ozone pho-
tochemistry parameterization should have more of an impact
on the ozone profiles at this location than for the ozone pro-
files over Kiruna (see Fig.10) where mid-stratospheric air
was largely confined within polar night.

As Fig. 11 shows, the NOGAPS-ALPHA ozone simu-
lations using the LINOZ scheme again produce excessive
ozone loss above 10 hPa over the course of 2–3 days. How-
ever, significant differences can also be seen between the
results from the CD86 and CHEM2D schemes. By hour
96, both the CD86 results and the ECMWF operational
ozone forecasts (which use the CD86 scheme) produce ozone

mixing ratios between 10 hPa and 50 hPa that are up to
2 ppmv less than values from either the CHEM2D or LINOZ
schemes or the model passive ozone. Above 10 hPa, the
LINOZ scheme again produces excessive ozone loss as com-
pared to the POAM profiles. Both CHEM2D and passive
ozone profiles agree well with POAM observations, espe-
cially at hours 96 and 120.

For the ozone simulations over 65◦ N and 135◦ E shown in
Fig. 11, the initial NOGAPS-ALPHA and ECMWF ozone
profiles agree quite well. Over time, differences emerge
between the NOGAPS-ALPHA simulations and ECMWF
forecasts due to different values of the photochemical relax-
ation timeτO3=−[

∂(P−L)
∂r

|o]
−1. in the lower stratosphere

(see Eq.1). At this location, the model ozone mixing ra-
tios exceed 2-D climatological values (ro) and so the ozone
tendency is negative. Typically, values ofτO3 exceed 100
days in the midlatitude stratosphere near 25 km (Brasseur
and Solomon, 1986). In the CD86 scheme (see, e.g.Car-
iolle and D́eqúe, 1986, their Fig. 3), these values are 30–50
days. The shorter relaxation times of the CD86 scheme cause
lower stratospheric ozone mixing ratios at midlatitudes to re-
lax back to climatology 2–3 times faster than in either the
CHEM2D or LINOZ schemes. Note that both the ECMWF
and NOGAPS-ALPHA model ozone exhibit the same ten-
dency toward lower ozone when the latter model employs
the CD86 scheme, the same scheme currently used in the op-
erational ECMWF IFS.

Next, three high resolution T239 NOGAPS-ALPHA sim-
ulations were conducted over the same 5-day period starting
on 11 January 2003. The T239 configuration, with an ap-
proximate horizontal resolution of 0.5◦, matches the current
operational NOGAPS configuration and is currently the best
formulation to capture detailed structure in long-lived trac-
ers. Here we compare NOGAPS-ALPHA T239 total ozone
fields with total ozone fields derived from operational T511
ECMWF IFS forecasts. The largest contribution to the to-
tal ozone column abundance comes from the lower strato-
sphere (i.e. 10–20 km altitude), where transport effects tend
to dominate over photochemistry. By using ozone photo-
chemistry and initial conditions similar to the operational
ECMWF model, and relaxing back to the same 2D O3 cli-
matology, we can attempt to reproduce the ECMWF total
ozone distribution and in doing so determine the extent to
which model transport can explain the differences shown in
Figs. 10 and 11.

Figure12a plots the total ozone distributions at hour 96,
valid at 0 Z 14 January 2003, computed from NOGAPS-
ALPHA prognostic ozone using the CHEM2D photochem-
istry scheme and initialized with the NASA GEOS4 opera-
tional ozone analyses. This NOGAPS-ALPHA total ozone
field exhibits very good qualitative and quantitative agree-
ment with the EPTOMS total ozone distribution for 14 Jan-
uary (Fig. 8). Specifically, the NOGAPS-ALPHA total
ozone in Fig.12a reproduces the regions of low total ozone
(<235 DU) over the North Atlantic sector, high total ozone

Atmos. Chem. Phys., 4, 2401–2423, 2004 www.atmos-chem-phys.org/acp/4/2401/



J. P. McCormack et al.: NOGAPS-ALPHA O3 simulations during SOLVE2 2413

Fig. 11. As in Fig. 10, but now comparing NOGAPS-ALPHA ozone mixing ratio profiles at 65◦ N, 135◦ E with nearby POAM III ozone
profiles (orange symbols).

(>475 DU) over Siberia (65◦ N, 135◦ E), and the “arm” of
370–420 DU values extending eastward from the Mediter-
ranean that are all present in the EPTOMS observations in
Fig. 8.

Figure 12b plots the corresponding 96-h operational
ECMWF forecast total ozone distribution initialized on 11
January 2003 and valid for 0 Z 14 January 2003. In compar-
ison with the NOGAPS-ALPHA and EPTOMS total ozone
fields, the ECMWF total ozone forecast for this time exhibits
much smoother zonal structure in the total ozone at middle
and high latitudes. Furthermore, the ECMWF total ozone
values for this date fail to fully capture the observed area

of total ozone values below 235 DU over the North Atlantic
sector.

Figure 12c plots NOGAPS-ALPHA total ozone at hour
96 from a run using the CD86 photochemistry scheme and
NASA GEOS4 ozone analyses for initialization. We find
that the NOGAPS-ALPHA T239 run using the CD86 scheme
and the GEOS4 initialization still captures the observed min-
imum in total ozone over the North Atlantic sector, but over-
all the zonal variations in the total ozone around 60◦N are
noticeably smaller than in either the EPTOMS total ozone
(Fig. 8) or the comparable NOGAPS-ALPHA T239 simu-
lation using the CHEM2D photochemistry (Fig.12a). It

www.atmos-chem-phys.org/acp/4/2401/ Atmos. Chem. Phys., 4, 2401–2423, 2004
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(b)
(a)

(d)(c)

Fig. 12. (a)T239L54 NOGAPS-ALPHA total ozone at hour 96 of 5-day simulation initialized 0 Z 11 January 2003 (valid 0 Z 15 January)
with NASA GEOS4 ozone analyses and using the CHEM2D photochemistry scheme;(b) total ozone from corresponding 96-h operational
T511L60 96-h ECMWF IFS ozone forecast;(c) same as in (a) but using the CD86 photochemistry scheme and initialized with the NASA
GEOS4 ozone analyses;(d) same as in (a) but using the CD86 photochemistry scheme and ECMWF ozone initialization. Red contours
enclose regions of total ozone<235 DU.

is important to note that the only difference between the
NOGAPS-ALPHA results plotted in Fig.12a and12c is the
photochemistry scheme, indicating that differences in the de-
tails of the photochemistry parameterization are affecting the
total ozone distribution at high winter latitudes.

Figure12d plots the resulting NOGAPS-ALPHA 96-h to-
tal ozone forecast using the CD86 scheme and ECMWF
ozone initialization. This configuration is chosen to match
the ozone photochemistry and initialization used in the oper-
ational ECMWF IFS forecasts. The total ozone distribution
in Fig. 12d bears a very close resemblance to the operational
96-h ECMWF total ozone forecast shown in Fig.12b. Since
similar photochemistry and initialization procedures are em-
ployed, the only major factor leading to differences in the
NOGAPS-ALPHA total ozone in Fig.12d and ECMWF to-
tal ozone in Fig.12b should be related to transport. The good
agreement between Fig.12b and12d indicates that spectral
transport in this 96-hour T239 NOGAPS-ALPHA hindcast
compares quite well with the operational ECMWF model in
the lower stratosphere for this case.

Taken together, the results in Fig.12 demonstrate that the
differences between the CD86 and CHEM2D photochem-

istry schemes can significantly impact prognostic O3 in the
lower stratosphere over the course of several days. Specif-
ically, the CD86 scheme tends to relax lower stratospheric
ozone back to a zonal mean basic state more quickly than
the CHEM2D scheme, producing total ozone fields with less
zonal structure than observations indicate.

Based on these results, we find that the major differ-
ences between operational ECMWF ozone forecasts and
NOGAPS-ALPHA ozone simulations for the 11–16 January
case are due to (1) ECMWF ozone analyses not capturing
the observed ozone minimum over the North Atlantic sec-
tor in the model initial conditions for 11 January 2003 (see
Fig.9); and (2) shorter stratospheric ozone photochemical re-
laxation timesτO3 in the CD86 scheme as compared to either
the CHEM2D or LINOZ schemes. The intercomparison of
different O3 photochemistry parameterizations in NOGAPS-
ALPHA for this case shows that the CHEM2D photochem-
istry parameterization produced the best overall agreement
with satellite-based ozone profile measurements and total
ozone column abundances.

Atmos. Chem. Phys., 4, 2401–2423, 2004 www.atmos-chem-phys.org/acp/4/2401/
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Fig. 13. Ertel’s potential vorticity (EPV) on the 460 K isentropic
surface computed from ECMWF T511L60 operational analysis on
21 January 2003 at 18 Z.

5 Case 2: 17–22 January 2003

5.1 Description

Case 2 corresponds to the early period of the stratospheric
warming that characterized the SOLVE2 winter (Fig.1).

Figure 13 plots values of Ertel’s potential vorticity on
the 460 K isentropic surface computed from the operational
T511L60 ECMWF meteorological analysis issued for 18Z
on 21 January 2003. As Fig.13 shows, the polar vortex had
split into two lobes by 21 January. This disturbed strato-
spheric meteorology during 17–22 January presents an ex-
cellent test for the NOGAPS-ALPHA GCM generally, and
its internal spectral chemical advection scheme specifically.
An earlier study of prognostic skill in the lower stratosphere
by Lahoz(1999) using various high-altitude versions of the
United Kingdom Meteorological Office (UKMO) Unified
Model focused on hindcasting during February 1994. This
period yielded a minor wave-2 warming with a split vortex
structure very similar morphologically to that seen in Fig.13
(see, e.g. Lahoz’s Fig. 7a and Fig. 7b).

Lahoz (1999) noted that the UKMO models’ NWP skill
tended to be poorest during this period of rapidly evolving
mean flow, and cited these cases as requiring careful scrutiny
when operational forecasts were used to plan aircraft flights
for Arctic science missions. In light of this previous work,
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Fig. 14. Flight track of NASA DC-8 SOLVE2 science flight on
21 January 2003. Light blue curve shows planned flight track, with
planned way points numbered with dark blue circles. Actual flight
track, from the on-board Information Collection and Transmission
System (ICATS), is plotted in dark red. This DC-8 flight ended in
Lulea, southeast of Kiruna, due to icy runway conditions at Kiruna.
Two flight segments chosen for further analysis are shown in light
orange and light red, corresponding to flight times shown in the
bottom-left of the plot.

the 17–21 January period presents a highly relevant case for
studying model performance within the context of airborne
SOLVE2 science flights. The rapid dynamical evolution of
this case provides a rigorous test case for our new spectral
advection formulation for transporting ozone. For this case,
we will study prognostic ozone in the lower stratosphere only
(below∼10 hPa), where photochemical lifetimes at all lati-
tudes are long compared to forecasting timescales (Fig.6).
This serves as a test of the model’s advection code using
ozone as our diagnostic variable.

5.2 Lidar ozone profiles from SOLVE2 DC-8 flight

To validate NOGAPS-ALPHA’s prognostic ozone during
Case 2, we utilize DC-8 data acquired during a science flight
on 21 January 2003 (see Fig.14). For comparison, we have
chosen two flight segments for detailed analysis. The first
flight segment, denoted FS-1, is shown in light-orange in
Fig. 14. From Fig.13, we see that first part of FS-1 heads
away from the split polar vortices as the aircraft flies south
of Iceland from Kiruna. The second part of FS-1 then heads
back into the split polar vortices as the DC-8 proceeds north
toward Greenland. The second flight segment (FS-2) in-
volves an approximately linear transect from southern Green-
land to Svalbard, flying across the split vortex lobe structures

www.atmos-chem-phys.org/acp/4/2401/ Atmos. Chem. Phys., 4, 2401–2423, 2004
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Ozone Mixing Ratios Along DC-8 Flight Segment 1: January 21, 2003
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Fig. 15. Ozone mixing ratios (ppmv) as a function of geometric altitude along DC-8 flight segment 1 (FS-1) as measured by(a) DIAL lidar
and(b) AROTAL lidar on 21 January 2003. The AROTAL values were smoothed along the time axis using a 9-point running average to
reduce noisiness at upper levels caused by acquisition of data in sunlight. Color scale is 0–7 ppmv: values>7 ppmv are shaded white for
AROTAL. White regions for DIAL denote missing data.

Ozone Mixing Ratios Along DC-8 Flight Segment 2: January 21, 2003
(a) DIAL Lidar (b) AROTAL Lidar

17.5 18.0 18.5 19.0 19.5 20.0 20.5
DC-8 Flight Time (Hours UT)

15

20

25

30

g
e
o

m
e
tr

ic
a
lt

it
u

d
e

(k
m

)

1

2
2

3

3
3

3

4

0 ppmv >_7.0

17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0

1

3

3
3

3

2

4

DC-8 Flight Time (Hours UT)

Fig. 16. Ozone mixing ratios (ppmv) as a function of geometric altitude along DC-8 flight segment 2 (FS-2) as measured by(a) DIAL
lidar and(b) AROTAL lidar on 21 January 2003. AROTAL values were not smoothed here due to greater signal-to-noise provided by data
acquisition in polar night. Color scale is 0–7 ppmv: values>7 ppmv are shaded white for AROTAL. White regions for DIAL denote missing
data.

shown in Fig.13. FS-2 potentially profiles mid-latitude low-
PV air from a filament separating the two lobes at the ap-
proximate midpoint of this flight segment.

Figures15and16plot ozone mixing ratios acquired along
FS-1 and FS-2, respectively, from the DIAL and AROTAL li-
dar systems on board the DC-8. Both lidar systems reproduce
the same major features. For FS-1, the lidar data in Fig.15
show ozone mixing ratios near 20 km decreasing slightly as
the DC-8 heads southwest to Iceland, then increasing sub-
stantially through the stratosphere during part of its north-

ward trek toward the coast of Greenland. For FS-2, mix-
ing ratios are generally smaller, with AROTAL upper-level
mixing ratios decreasing with time along the flight segment.
Near the midpoint of FS-2, both lidars show a sloping upward
bulge of low ozone air at∼15 km and a narrow increase in
ozone mixing ratio at∼19:20 Z at heights∼15–20 km and,
in AROTAL, again at∼30 km. This seems to be a possible
ozone signature of the filament of low-PV air separating the
split vortex lobes, noted in Fig.13.
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(a) GMAO Ozone Analysis: 2.5 x2 : 12:00Z
o o

(b) ECMWF Ozone Analysis T511L60: 18:00Z

Analyzed Ozone Mixing Ratios Along DC-8 Flight Segment 1: January 21, 2003
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Fig. 17. Analysis ozone mixing ratios (ppmv) as a function of pressure altitude along the DC-8 flight segment 1 (FS-1) from(a) GEOS4
2.5◦×2◦ analysis, and(b) operational ECMWF analysis fields from T511L60 model (on a reduced N256 grid). Both analyses are for 21
January 2003: GEOS4 is taken at 12 Z, ECMWF is taken at 18 Z. Altitude range is extended to∼35 km to account for differences in pressure
and geometric altitudes (see Fig.19).
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Fig. 18. Analysis ozone mixing ratios (ppmv) as a function of pressure altitude along the DC-8 flight segment 2 (FS-2) from(a) GEOS4
2.5◦×2◦ analysis, and(b) operational ECMWF analysis fields from T511L60 model (on a reduced N256 grid). Both analyses here are for
21 January 2003 at 18 Z. Altitude range is extended to∼35 km to account for differences in pressure and geometric altitudes (see Fig.19).

5.3 Comparison with ozone analyses

We begin by comparing the ECMWF and GEOS4 ozone
analyses along the DC-8 flight track to determine if either
system captures any of the features seen in the DC-8 li-
dar data. Fig.17 plots ozone mixing ratios for 21 January
2003 from the GEOS4 analysis (at 12 Z) and the operational
ECMWF analysis (at 18 Z), these two times roughly span-
ning the 13–16 Z period of FS-1. Note the much coarser

spatial resolution of the GEOS4 ozone analysis that provides
initial conditions for prognostic ozone in NOGAPS-ALPHA.
Both analyses capture the downward sloping ozone isopleths
at ∼20–30 km. The ECMWF analysis also captures the re-
duction in ozone at∼20 km from∼13:30–14:30 Z and the
sudden increase at∼14:30 Z.

Figure 18 plots ozone analyses along FS-2, using 18 Z
fields for both analyses in this case. Both analyses cap-
ture large ozone mixing ratios at upper levels at the start
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(a) Ozone Versus Pressure Height
NOGAPS-ALPHA T239L54 Ozone Along Flight Segment 2: Initialized 2003011700, +114 Hour Forecast
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Fig. 19. NOGAPS-ALPHA T239L54 +114 h hindcast O3 (ppmv) for 21 January 2003 at 18 Z, plotted along DC-8 flight segment 2 as a
function of(a) pressure height, and(b) geopotential height. The latter is more directly comparable to the geometric heights used for the lidar
ozone profiles in Fig.16; dotted pink line shows 30 km upper boundary of lidar plot.
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Fig. 20. (a)Archived ECMWF IFS T511L60 114-h operational forecast O3 mixing ratio (ppmv) valid for 21 January 2003 at 18 Z, plotted
along DC-8 flight segment 2 as a function of pressure height;(b) corresponding 114-hour T239L54 NOGAPS-ALPHA O3 hindcast initialized
with ECMWF analyzed ozone.

of the flight segment, and progressive reductions in these
mixing ratios along the flight track. Near the midpoint of
the flight, the higher-resolution ECMWF ozone analysis also
shows what appears to be an ozone signature of the PV fila-
ment separating the two vortex lobes. At∼15 km and∼30–
35 km, the structure is similar to that seen in the lidar data
in Fig. 16. At ∼20 km, however, the lidar data show an
ozone enhancement at 19:00–19:30 Z, whereas the analyzed
ECMWF ozone shows a slight depletion.

5.4 NOGAPS-ALPHA O3 hindcasts: 17–22 January 2003

Since NOGAPS-ALPHA is usually initialized with the
coarse resolution GEOS4 ozone product shown in Figs.17a
and 18a, it is not clear whether the higher-resolution

(T239L54) NOGAPS-ALPHA model dynamics can repro-
duce observed finer-scale features in the DC-8 lidar ozone
profiles. This section compares T239L54 NOGAPS-ALPHA
prognostic ozone fields along the selected DC-8 flight tracks
on 21 January initialized with either the lower-resolution
GEOS4 analyses or the higher-resolution ECMWF analyses
to illustrate the impact of model initial conditions on prog-
nostic O3.

Figure 19 plots T239L54 NOGAPS-ALPHA prognostic
ozone fields along FS-2 for the 114-h forecast initialized us-
ing GEOS4 analyzed ozone on 17 January at 0 Z (valid on
21 January 2003 at 18 Z, the approximate time of FS-2).
This simulation uses the CHEM2D photochemistry scheme.
The two panels plot the same data, first as a function of
pressure altitude, then as a function of geopotential altitude.
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(a) ECMWF IFS Operational T511L60

Prognostic Ozone Along Flight Segment 2: Initialized 2003012000, +42 Hour Forecast
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Fig. 21. (a)Archived ECMWF IFS T511L60 42-h operational forecast O3 mixing ratio (ppmv) for 21 January 2003 at 18 Z, plotted along
DC-8 flight segment 2 as a function of pressure height;(b) NOGAPS-ALPHA T239L54 42-h hindcast O3 along flight segment 2, initialized
with GEOS4 analyzed ozone;(c) same as in (b) but initialized with operational ECMWF analyzed O3.

At these altitudes NOGAPS-ALPHA model levels coincide
with isobaric surfaces (see Fig.2), and pressure altitude is
computed directly from these values assuming a scale height
of 7 km. Geopotential heights, on the other hand, are more
directly comparable to the geometric altitudes at which the
lidar ozone data are registered in Fig.16. Figure19 shows
that lower stratospheric pressure altitudes are typically∼2–
4 km higher than the corresponding geopotential height alti-
tudes. This vertical offset between lidar geometric altitudes
and model pressure altitudes should be borne in mind during
the subsequent along-track ozone comparisons.

Despite initialization with the lower-resolution GEOS4
ozone analysis, the NOGAPS-ALPHA 114-h hindcast of
ozone mixing ratios along FS-2 in Fig.19b shows interesting
similarities to the DC-8 lidar data in Fig.16. In particular, the
forecast reproduces the sloping low-ozone bulge at∼14 km
at ∼18:30–19:00 Z, and also produces an isolated ozone en-
hancement in the lower stratosphere, starting at∼19–20 km
and extending upwards, similar to what is seen in the li-
dar data in Fig.16. These features arise in the NOGAPS-
ALPHA forecast when the vortex splits and a thin filament
of mid-latitude air is drawn polewards, separating the two
vortex lobes. However, the width of this NOGAPS-ALPHA
ozone enhancement is broader in this 114-h hindcast than the
actual ozone filament width seen in the lidar profiles.

Figure 20a plots the corresponding archived T511L60
ECMWF 114-h ozone forecast for 21 January 2003 at 18 Z.
This forecast yields an ozone filament, but its location along
the flight track is incorrect by 30–60 min; the sloping low-
ozone enhancement occurs at∼19:30–20:00 Z and the strato-
spheric ozone anomalies due to the filament occur towards
the end of the flight segment at∼20:40 Z. The location of
this ozone anomaly along the flight track significantly im-
proves with the +90-h ECMWF forecast (not shown).

The ECMWF IFS +114-h ozone forecasts in Fig.20a are
also somewhat featureless above 20 km, lacking much of
the structure noted in the corresponding NOGAPS-ALPHA

GEOS4-initialized ozone hindcast in Fig.19. To assess the
role of the different initial ozone fields that were used, we
repeated the NOGAPS-ALPHA hindcast from Fig.19, but
this time replaced the +0-h GEOS4 ozone analysis with the
+0-h ECMWF IFS ozone analysis. The resulting ECMWF-
initialized +114-h NOGAPS-ALPHA prognostic ozone field
in Fig. 20b shows no evidence of the filament and re-
lated structure above 20 km noted in the corresponding
GEOS4-based ozone run in Fig.19a. The similarity between
Figs.20a and20b indicates that the lack of structure above
∼20 km in the ECMWF ozone forecast is due, at least in part,
to the ECMWF ozone initialization, which, as we demon-
strated in Sect. 4, underpredicts the geographical variability
at high latitudes. An additional contribution to the reduced
spatial variability in Fig.20a may also result from the shorter
relaxation timeτO3 in the CD86-based ECMWF photochem-
istry scheme compared to the NRL-CHEM2D scheme, pre-
viously noted in section 4.

Another difference between the ECMWF IFS forecasts
and NOGAPS-ALPHA simulations for this date is that, in
the lower stratosphere, the ECMWF ozone forecasts im-
prove with each forecast update more noticeably than do
the NOGAPS-ALPHA hindcasts based on GEOS4 ozone.
For example, Fig.21a plots the 42-h ozone forecast along
FS-2 from the T511L60 ECMWF IFS, while Fig.21b plots
the NOGAPS-ALPHA hindcast initialized with GEOS4 O3
fields on 20 January at 0 Z. The lower stratospheric filament
fields are much less well resolved in the NOGAPS-ALPHA
forecast in Fig.21b.

One possible explanation for this difference is resolution.
The ECMWF IFS employs a high horizontal resolution anal-
ysis field whereas the NOGAPS-ALPHA simulation used the
NASA GEOS4 ozone analyses, at the much coarser 2.5◦

×2◦

horizontal resolution, for initialization (Fig.18). Longer
forecasts are less influenced by model initial conditions and
more influenced by model physics. For shorter forecasts, the
opposite is true. It is possible that the lower horizontal res-

www.atmos-chem-phys.org/acp/4/2401/ Atmos. Chem. Phys., 4, 2401–2423, 2004
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Fig. 22. (a)NOGAPS-ALPHA T239L54 42-h hindcast of O3 mixing ratios (ppmv) at 26.7 hPa, valid for 21 January 2003 at 18 Z, initialized
with GEOS4 analyzed O3; (b) same as in (a) but initialized with ECMWF analyzed O3. The DC-8 flight and flight segments (FS-1, FS-2)
from Fig.14are overplotted. Contours are geopotential heights in kilometers.

olution of the GEOS4 ozone initialization imposes a greater
limitation on the subsequent NOGAPS-ALPHA ozone fore-
cast as these forecasts are initialized progressively closer to
the actual flight time and thus are run for a shorter time.

To explore this possibility, we repeated the same +42-h
NOGAPS-ALPHA forecast that produced Fig.21b, but in-
stead used as our +0-h ozone field the ECMWF IFS analy-
sis instead of the GEOS4 analysis. The result is plotted in
Fig. 21c, and reveals mid-flight isopleth filament structure in
the lower stratosphere that much more closely resembles the
ECMWF IFS 42-h ozone forecast in Fig.21a. The similarity
suggests that NOGAPS-ALPHA prognostic meteorological
transport is similar to ECMWF’s in this case, and thus that
the differences between Figs.21a and21b are due mostly to
differences in the initial ozone fields. The differences be-
tween Figs.21b and21c confirm that, for shorter forecast
times, the coarser resolution of the GEOS4 ozone initializa-
tion imposes a limit on quality of the ozone forecast.

Finally, we examine the hemispheric impact of differ-
ent initial ozone fields on NOGAPS-ALPHA prognostic O3.
Figure22a plots a synoptic map of the T239L54 NOGAPS-
ALPHA 42-h ozone hindcast at 26.7 hPa on 21 January 2003
at 18 Z initialized with GEOS4 analyzed ozone fields. The
DC-8 flight track for this date is included for reference. This
map shows a tongue of high ozone air near southern Green-
land that has wrapped around the western vortex lobe and
intercepts FS-1 near the end of this flight segment. This ac-
counts for the increase in stratospheric ozone mixing ratios
observed in the FS-1 lidar data at∼15 Z (Fig.15) near the
end of this flight segment. Figure22a also shows low ozone
mixing ratios in the cores of the two vortex lobes and higher
ozone between the vortex lobes, roughly traversed by FS-2.

Figure 22b plots the corresponding synoptic map of
T239L54 NOGAPS-ALPHA 42-h ozone hindcast initialized

instead with ECMWF analyzed ozone. The range of ozone
values here is much reduced compared to Fig.22a, which is
consistent with earlier findings for ECMWF analysis and to-
tal ozone maps in section 4 (see Figs. 9 and 12). However,
inspection of plot pairs like Fig.22 for all the NOGAPS-
ALPHA stratospheric model levels (not shown) revealed a
systematic height-dependence to these comparisons. The
lack of structure and variability in ECMWF-initialized ozone
hindcasts only occurs noticeably at altitudes above∼50 hPa.
At pressures∼120–50 hPa, NOGAPS-ALPHA ozone hind-
casts initialized with ECMWF ozone analysis actually show
as much, or even slightly more ozone structure and variabil-
ity than the corresponding GMAO-initialized ozone hind-
cast, and, as noted by comparing Figs. 16, 20b, and 21c,
the comparison with observations at these altitudes is quite
good. This suggests that the exclusion of satellite data from
the ECMWF ozone assimilation poleward of 40◦ has serious
consequences only at altitudes above∼50 hPa: below that,
ECMWF assimilated ozone fields are more realistic.

6 Summary and conclusions

We have tested the new prognostic ozone component of the
NOGAPS-ALPHA middle atmosphere forecast model for
two distinct cases during the 2003 SOLVE II campaign: (1)
11–16 January 2003, when the polar vortex was relatively
cold and stable; and (2) 17–22 January 2003, when a rapidly
developing stratospheric warming split the vortex into two
separate lobes. Initial comparisons of NOGAPS-ALPHA
5-day stratospheric ozone hindcasts with a combination of
satellite and aircraft measurements of polar ozone indicate
that the performance of the new prognostic ozone for these
two cases is comparable to current operational ECMWF
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ozone forecasts. Specific results for the individual cases are
summarized below.

For the case of 11–16 January 2003 (Case 1), an intercom-
parison of three different linearized ozone gas-phase photo-
chemistry schemes found that all three schemes generated
forecast ozone profiles in good agreement with the SAGE
III and POAM III solar occultation measurements at high
latitudes at and below 10 hPa. Above 10 hPa, NOGAPS-
ALPHA ozone simulations using the LINOZ scheme of
McLinden et al.(2000) generated excessive ozone losses
over the course of the 5-day forecast in disagreement with
observations. These losses are evident at all latitudes above
10 hPa, and suggest that the LINOZ scheme may not be suit-
able for upper stratosphere applications. At middle latitudes
receiving more sunlight, significant differences were found
between NOGAPS-ALPHA ozone forecasts using the NRL-
CHEM2D and CD86 (i.e.Cariolle and D́eqúe, 1986) ozone
photochemistry parameterizations. Specifically, the CD86
scheme produced a smoother zonal structure in lower strato-
spheric ozone, most likely due to the shorter ozone photo-
chemical relaxation times inherent in the CD86 formulation.
A comparison of the NOGAPS-ALPHA prognostic ozone
simulations with operational ECMWF ozone forecasts found
significant differences due to different model ozone initial
conditions. NOGAPS-ALPHA ozone forecasts initialized
with the NASA GEOS4 ozone analyses produced much bet-
ter agreement with satellite measurements at high latitudes
than did the operational ECMWF ozone forecasts, particu-
larly in the longitude sector between 10◦ W–30◦ E.

For the case of 17–22 January 2003 (Case 2), NOGAPS-
ALPHA 114-h forecasts of stratospheric ozone along the
DC-8 flight track of 21 January produced agreement with
DC-8 DIAL and AROTAL ozone profiles which was as good
or slightly better than corresponding ECMWF ozone fore-
casts. Updated (e.g. 42-h) ECMWF ozone forecasts for 21
January rapidly improved their simulation of the split vortex
and subsequent fine structure in lower stratospheric ozone
mixing ratios; NOGAPS-ALPHA ozone hindcasts initialized
with GMAO-GEOS4 analyses did not show such improve-
ment. However, when the higher-resolution ECMWF ozone
analyses were used to initialize NOGAPS-ALPHA, the re-
sulting NOGAPS-ALPHA lower stratospheric O3 simula-
tion displayed good agreement with the operational ECMWF
42-hour forecast. The coarser resolution of the GMAO-
GEOS4 ozone analyses used to initialize NOGAPS-ALPHA
prognostic O3 exerts a greater influence on short-term fore-
casts (i.e. 42-h) than on longer-term (i.e. 114-h) forecasts.
Comparisons of NOGAPS-ALPHA and ECMWF prognos-
tic ozone with DC-8 measurements during this period also
highlighted the altitude dependence in the quality of the
ECMWF ozone analyses and their impact on ozone simu-
lations at high northern latitudes during SOLVE2. Below
50 hPa, NOGAPS-ALPHA prognostic ozone initialized with
operational ECMWF IFS ozone analyses produced excellent
agreement with observations. Above 50 hPa, however, ini-

tialization with the ECMWF ozone analyses had a detrimen-
tal effect on NOGAPS-ALPHA prognostic ozone skill.

Overall, the good agreement between NOGAPS-ALPHA
prognostic ozone and both satellite and DC-8 aircraft mea-
surements during the SOLVE2 campaign demonstrate that
the model’s spectral transport and parameterized photochem-
istry are capable of providing reliable short-range ozone
forecasts. The model-data comparisons highlight the im-
portance of both an accurate parameterized photochemistry
scheme and an accurate global operational ozone assimila-
tion for prognostic ozone during the SOLVE2 Arctic win-
ter case studies. More detailed, quantitative assessments of
NOGAPS-ALPHA prognostic O3 skill in the troposphere
and stratosphere are currently underway. Future work will
include development of the temperature and column ozone
terms in the NRL-CHEM2D linearized gas-phase photo-
chemistry scheme, an additional term to account for hetero-
geneous chemical losses associated with polar stratospheric
clouds, and improvements in the ozone initialization. The
ultimate goal of this work is a fully operational prognostic
ozone scheme for the assimilation of satellite radiance mea-
surements.
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