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Abstract. For the determination of photolysis rates at large
zenith angles it has been demonstrated that refraction by the
earth’s atmosphere must be taken into account. In fact, due to
the modified optical path the optical transmittance is thereby
increased in most instances. Here we show that in addition
the divergence of sun-rays, which is also caused by refraction
but which reduces the direct solar irradiance, should not be
neglected. Our calculations are based on a spherically sym-
metric atmosphere and include extinction by Rayleigh scat-
tering, ozone, and background aerosol. For rays with 10 km
tangent altitude the divergence yields a reduction of about
10% to 40% at solar zenith angles of 91◦ to 96◦. More-
over, we find that the divergence effect can completely cancel
the relative enhancement caused by the increase of transmit-
tance.

1 Introduction

It is well known that refraction by the earth’s atmosphere
may be important for photochemical calculations near the
terminator. For example, Anderson and Lloyd (1990) and
DeMajistre et al. (1995) present detailed calculations to the
effect of refraction on the optical path. Besides the length-
ening of the sunlit day, at large solar zenith angles (>90◦)
the inclusion of refraction reduces the optical depth of the
direct beam in most cases, and therefore the radiation is en-
hanced. DeMajistre et al. (1995) and Trentmann et al. (2003)
show substantial enhancement of photodissociation frequen-
cies at large solar zenith angles for substances absorbing in
the visual part of the spectrum as O3 and NO3, for instance.
Balluch and Lary (1997) quantify the effect of refraction
on stratospheric chemistry for a seven day period and find
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changes of concentration for many substances in the order of
several percent.

As it is shown in Fig. 1, there is another effect of refrac-
tion on the solar irradiance: as sun-rays reaching deeper lay-
ers in the atmosphere are more refracted, refraction causes
a divergence of the direct solar beam, which is related to the
apparent flatness of the solar disc. This additional divergence
effect reduces the direct irradiance in the atmosphere and
therefore competes against the enhancement caused by the
changed optical path. In order to quantify this effect, which
is not included in the studies cited above, we have performed
ray tracing calculations in the visual part of the spectrum for
large solar zenith angles, which account for both the change
of optical path and divergence effect.

2 Ray tracing

2.1 Refracting atmosphere

A spherically symmetric atmosphere is taken as a basis. The
mass density of air,%, depending on (geometric) altitudez is
taken from the MSIS model of Hedin (1991) (official release
NRLMSISE-00) for four typical atmospheric conditions, in
order to test the influence of the temperature profile. The cor-
responding input data (besides the 10.7 cm solar flux indices
equal to 150 and the planetary magnetic Ap indices equal
to 4) and temperature profiles are shown in Fig. 2.

The refractive indexns for standard sea-level air with mass
density%s=1.225 kg/m3 is taken from Edĺen (1966) (Eq. 1),
whereas for fixed wavelength the refractivityn−1 is assumed
to be just proportional to%, i.e.

n − 1 =
(ns − 1) %

%s
;

cf. again Edĺen (1966). Finally, we use earth’s radius
r0=6370 km.
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Fig. 1. Two neighbouring rays including/neglecting refraction.

200 220 240 260 280 300
Temperature (K)

20

40

60

A
lti

tu
de

 (
km

)

March 21 UT 6, 90oN 0oE 1.415

March 21 UT 6, 45oN 0oE 1.238

March 21 UT 18,  0oN 0oE 1.183

June 21 UT 12, 67oS 0oE 1.309

Fig. 2. The temperature profiles of the four used mass density pro-
files of air. At the right margin the mass density at altitude 0 is
quoted in kg/m3.

2.2 Refraction equations

We describe a single refracted sun-ray by the distance
r=r0+z to the earth’s centre and the deviationε from its orig-
inal direction, both depending on the solar zenith angleχ as
the independent variable; see Fig. 1.

To characterise the curvature of the ray at any point with
χ=χ0, we suppose temporarily that the atmosphere is hor-
izontal plane parallel there. Logarithmic differentiation of
Snell’s lawn sin(χ0−ε)=constant gives

1

n

dn

dχ
− cot(χ − ε)

dε

dχ
= 0 (1)

at χ=χ0. This equation holds also for the spherically sym-
metric atmosphere (and hence along the whole ray) for the
following reason: If the actual point of the ray and the actual
ray’s direction is fixed, then, in any case, the ray’s curvature
depends only onn and gradn, and therefore so doesdε/dχ ,
whereas the other termdn/dχ in Eq. (1) depends on gradn
alone. Thus, choosing the horizontal plane parallel atmo-

a
r

χ

χ − ε

∆χ

r ∆χ
−∆r

r 
sin(χ − ε)

∆s

Fig. 3. Sketch to Eq. (2):−1r/(r 1χ) ≈ cot(χ − ε), where1r is
induced by1χ here, to Eq. (5):r 1χ/1s ≈ sin(χ − ε), and to the
formula for the distance of earth’s centre to the tangent.

sphere such that it has the same refractive indexn and the
same gradn at the actual point as the spherically symmetric
atmosphere,dε/dχ anddn/dχ are the same in both cases.
Dividing by the equation

−
1

r

dr

dχ
= cot(χ − ε) (2)

(see Fig. 3), we obtain the basic equation

dε

dχ
= −

r

n

dn

dr
. (3)

Moreover, we use the fact that the quantity

a = n r sin(χ − ε) (4)

is constant on each refracted ray. In fact, logarithmic differ-
entiation yields

1

a

da

dχ
=

1

n

dn

dχ
+

1

r

dr

dχ
+ cot(χ − ε)

(
1 −

dε

dχ

)
= 0

by Eqs. (1) and (2). Cf. also Born and Wolf (1980) (§ 3.2
Eq. 7), for instance. As is indicated in Figs. 1 and 3,a is the
distance of earth’s centre to the corresponding unrefracted
ray. For the distance of earth’s centre to the tangent of the
refracted ray (see Fig. 3) is equal tor sin(χ−ε)=a/n → a

asχ → 0.

2.3 Integration

Note that if a is specified,r can be calculated to givenχ
and ε via Eq. (4) by, for instance, iterating the fixed point
equation

r =
a

n(r) sin(χ − ε)
,

starting with the approximationr=a/sin(χ−ε). Thus we
may consider Eq. (3), where the right hand side depends onr,
as an ordinary differential equation forε(χ). The approxima-
tion ε=0 at smallerχ (before the ray penetrates the deeper
atmosphere) may be taken as initial value.
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Fig. 4. The refraction induced decreased (km) of altitude: each
solid line consists of those points on unrefracted rays whose altitude
is decreased by the indicated constant. The dashed lines are the re-
fracted rays with tangent altitudes 0, 10, 20, 40, 60 km. Three of the
corresponding unrefracted rays are dotted. The dark/total shaded
area shows the earth’s shadow including/neglecting refraction. In
addition, the refractive indexn0 at altitude 0 and the final direction
deviationεmax of the ray with tangent altitude 0 are quoted. Note
that the refraction increases the solar zenith angle of the terminator
by ε=εmax/2.

A numerical integration of this initial value problem for
many values ofa by an Adams-Bashforth method, for in-
stance, yields the corresponding refracted rays, of which
some are indicated in Fig. 4 for wavelength 550 nm. This
figure shows the refraction induced decreased of altitude,
which is given by

d =
a

sinχ
− r

as in Fig. 1.

3 Reduction of direct irradiance

The direct beam is attenuated mainly by extinction in the at-
mosphere. However, the above mentioned divergence of rays
reduces the direct (normal) irradiance, too. In the following
we consider both attenuations, first separately, then the total
reduction, and the impact of atmospheric refraction. Neglect-
ing the angular extension of the solar disc, we assume that all
sun-rays have the same original direction.

a
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sin(χ − ε) ∆r
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sin

 χ

Fig. 5. The area ratio of the two hatched surfaces is nearly equal
to the reduction factorD of direct (normal) irradiance due to diver-
gence.

3.1 Divergence

The divergence of neighbouring refracted rays as in Fig. 1
causes an attenuation of the direct (normal) irradiance. To
quantify it, we consider two surfaces of revolution which are
orthogonal to these rays (see Fig. 5): an annulus with radiusa

and small width1a, and the corresponding cone-like surface
with radiusr sinχ and width sin(χ−ε)1r, where1r is in-
duced by1a now. According to Born and Wolf (1980) (§ 3.1
Eq. 31), for instance, the area ratio of both surfaces approx-
imates the reduction factorD<1 of direct irradiance due to
divergence,

D ≈
a 1a

r sinχ sin(χ − ε)1r
,

or precisely,

D =
a

r sinχ sin(χ − ε) ∂r
∂a

=
n

∂r
∂a

sinχ

(by Eq. 4), wherer is now regarded as a function ofχ anda.
This reduction factor is calculated approximately with

∂r/∂a replaced by1r/1a (with two neighbouring refracted
rays as in Fig. 1) and plotted in Fig. 6 for wavelength 550 nm,
which is representative for the visual part of the spectrum in
this study. As the refractivityn−1 for other wavelengths be-
tween 400 nm and 1000 nm differs by less than 2%, this and
the preceding figure would be nearly the same for every other
wavelength in this range.
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Fig. 6. The reduction factorD of direct (normal) irradiance due to divergence for four atmospheric conditions: each solid line consists of the
points whereD is equal to the indicated constant. The dashed lines are refracted rays as in Fig. 4.
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Fig. 7. The extinction coefficientsα(Ray), α(O3), α(aer), α.

3.2 Extinction

We use the extinction coefficientα=α(Ray)+α(O3)+

α(aer) which is composed as follows; see also Fig. 7. The
Rayleigh scattering coefficientαs(Ray)=0.01149/km for
wavelength 550 nm and standard sea-level air is taken from
Bucholtz (1995) (Table 2), whereas for fixed wavelength
the coefficientα(Ray) is assumed to be just proportional to
mass density% of air, i.e. α(Ray)=αs(Ray)%/%s. Absorp-
tion by ozone is taken into account asα(O3)=σ(O3)N(O3)

with the particle density profileN(O3) of the U.S. Stan-
dard Atmosphere (1976) (Table 18, exponentially inter-
and extrapolated) and with the constant cross section
σ(O3)=3.5·10−25 m2 for wavelength 550 nm; cf. Burrows
et al. (1999). Finally, we use the simple aerosol extinction
profile

α(aer) = 0.0015 km−1 exp

(
−

( z

15 km

)2
)

,

which corresponds approximately to background conditions
in the lower stratosphere. Clouds are not taken into account.

The extinction reduces the direct radiation at any point by
the factor

T = exp

(
−

∫
α ds

)
,

the transmittance, with a line integral along a refracted ray
where
ds

dχ
=

r

sin(χ − ε)
; (5)

see Fig. 3. To evaluate the impact of refraction on the di-
rect irradiance, also the transmittance in case of no refrac-
tion, Tstraight, is calculated with a similar line integral to the
same point but along an unrefracted ray.
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Fig. 8. The total reduction factorDT of direct irradiance due to di-
vergence and extinction (solid lines). The dashed lines are refracted
rays.
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Fig. 9. The refraction induced changing factorDT/Tstraightof di-
rect irradiance.

3.3 Total reduction

The irradiance of a direct beam is reduced simultaneously by
divergence and extinction. Its total reduction factorDT is
plotted in Fig. 8. The influence of refraction on the direct
irradiance is specified by the corresponding changing factor
DT/Tstraightas shown in Fig. 9.
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Fig. 10.The refraction induced changing factorT/Tstraightof trans-
mittance.

For comparison also the refraction induced changing fac-
tor T/Tstraight of transmittance is plotted in Fig. 10. It de-
scribes the impact of refraction if the divergence effect is
neglected. Note that at those points whereDT/Tstraight<1,
the direct irradiance is more reduced by divergence than in-
creased by change of transmittance.

4 Results and discussion

As shown in Fig. 6, the solar irradiance of the direct beam
is substantially reduced by the divergence due to the atmo-
sphere. Along rays with a tangent altitude of about 10 km
and which are not affected by clouds or aerosol of tropo-
spheric origin, the reduction exceeds 5% at about 90◦ solar
zenith angle and can reach about 40% at 96◦ solar zenith
angle. Comparing the results for the different meteorologi-
cal conditions, the polar and equatorial temperature profiles
for 21 March differ substantially. Obviously, the steep and
highly variable temperature profile in the tropics disturbs the
reduction field compared with the uniform decreasing irradi-
ation in the case of polar spring. In general, along rays with
10 km tangent altitude the reduction exceeds 10% within a
band of about 2◦ from the terminator.

The total reduction caused by divergence and extinction,
as shown in Fig. 8 for 550 nm, is dominated by the extinc-
tion, as expected. For this wavelength Rayleigh scattering
and ozone absorption essentially contribute to the extinction
as follows from Fig. 7. For large solar zenith angles and
deep rays the reduction of the direct beam is so high that
scattered radiation may dominate the radiation field. Inspec-
tion of Fig. 8 of Dahlback and Stamnes (1991) shows that
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Fig. 11. Same as Fig. 9 but for wavelength 400 nm.

about for a tangent altitude of 10 km the contribution of di-
rect beam and scattered radiation are equal for wavelengths
at 450 nm under clear sky conditions. As at 550 nm the ex-
tinction coefficient of Rayleigh scattering is only about half
as large, we conclude that the direct beam dominates for rays
with tangent altitude in the stratosphere. This is also in ac-
cordance with the photochemical calculations of DeMajistre
et al. (1995).

We now turn to the question how the divergence effect
compares with the change of transmittance caused by refrac-
tion. Again only rays with a tangent altitude higher than
about 10 km need to be considered for the same reason as
given above, so that Figs. 9 and 10 are sufficient for the dis-
cussion despite they do not show data at those points which
are only met by refracted rays. In addition, these are rays
which do not penetrate the troposphere and are not affected
by clouds. Note that this is the part of the atmosphere where
refraction causes a prolonged sunlit day. With that restric-
tion, the band with an increase of the irradiance of more than
5% in Fig. 10 is more than halved by the divergence effect. In
addition, radiation in the visual part of the solar spectrum is
more important for photochemistry in the lower stratosphere
where UV is mostly absorbed. Here the divergence effect
narrows the band of enhancement even more. At about 20 km
altitude and 93◦ solar zenith angle, there is even a total reduc-
tion of more than 5%.

Further calculations within the visual part of the spec-
trum show that at wavelengths greater than 550 nm the diver-
gence effect counteracts the refraction induced enhancement
of transmittance even more effective than just described. In
particular, the region where divergence overcompensates the

Atmos. Chem. Phys., 4, 1399–1405, 2004 www.atmos-chem-phys.org/acp/4/1399/
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enhancement of transmittance (i.e. whereDT/Tstraight<1)
sinks in comparison with that one in Fig. 9, e.g. by about
3 and 6 km for 600 and 750 nm, respectively. Conversely,
for 500, 450, and 400 nm this region is raised by about 3, 5,
and 8 km, respectively, and this holds approximately for the
three surfacesDT/Tstraight=1.5, 3, 10, too. Thus, at smaller
wavelengths the divergence effect has a smaller impact.

For these five wavelengths we use the dataαs(Ray)·km
= 0.008053, 0.003261, 0.01696, 0.02616, 0.04261 and
σ(O3)·1025m−2

= 5, 0.5, 1, 0.2, 0.04, respectively. More-
over, if altitudez is fixed,α(aer) is assumed to be just pro-
portional to exp(−λ/400nm) for varying wavelengthλ.

Fig. 11 shows the refraction induced changing factor
DT/Tstraightof direct irradiance, just as Fig. 9 but for 400 nm
especially. For even smaller wavelengths the portion of the
diffusive part of the radiation field increases in the lower
stratosphere, and the refractive effects become less impor-
tant.

We point out that our previous calculations do not take
into account the angular extension of the sun. This can be in-
cluded by partition the solar disc into sufficiently small solid
angles which can be considered as single sources of radia-
tion. This results in some weighted averaging of any reduc-
tion factorR(χ, z) of direct irradiance as above with respect
to a varying solar zenith angleχ , according to the apparent
solar diameter 21χ≈0.5◦, but with fixed altitudez. More
precisely, at any point with altitudez and zenith angle of
sun’s centre,χ0, this averaging has the form

〈R〉(χ0, z) =

∫ χ0+1χ

χ0−1χ

R(χ, z) W(χ, χ0) dχ .

The nonnegative weighting functionW(χ, χ0) describes the
distribution of the solar radiation with respect to the “hor-
izontal lines” of the solar disc. The most upper/lower part
of the solar disc corresponds to the lower/upper limit of the
integral,χ=χ0∓1χ , respectively.

In particular, the mean values〈DT 〉 and〈Tstraight〉, with D,
T , Tstraight as introduced in Sec. 3, are the reduction factors
of the direct irradiance (more precisely, of the direct actinic
flux actually) accounting/neglecting refraction, both includ-
ing the extension of the sun. The influence of refraction on
the direct irradiance is now specified by the changing factor
〈DT 〉/〈Tstraight〉.

Note that if the inequality DT/Tstraight≤c holds
with some constantc in any interval of averaging,
χ0−1χ≤χ≤χ0+1χ , at a fixed altitudez, then also
〈DT 〉/〈Tstraight〉≤c at the point(χ0, z), as is seen by “aver-
aging” the inequalityDT ≤c Tstraight. The similar implication
with the inequalities≥c is also valid. Consequently, a plot
of the ratio〈DT 〉/〈Tstraight〉 for 550 nm, for instance, would
be similar to Fig. 9: roughly speaken, the solid lines in
this figure could not be displaced by more than1χ≈0.25◦.
Likewise, a plot of the mean value〈DT 〉 would be similar to
Fig. 8.

5 Conclusions

Our study of the refraction induced divergence effect of the
direct solar irradiation in the visual part of the spectrum show
that this effect should be included if refraction is consid-
ered at all in photochemical studies. For rays in the strato-
sphere and background aerosol conditions the divergence ef-
fect narrows the refraction induced enhancement to an in-
clined band, which shrinks as wavelength is increased from
about 10 to 15 km thickness at 400 nm and which vanishs at
about 800 nm. Especially in the lower stratosphere, it may be
justified to neglect refraction for photochemical calculation
for larger wavelengths. Whereas high aerosol loading after
volcanic eruptions would lead to a higher change of transmit-
tance by refraction, the increase of scattering and the vertical
filamentation probably makes special calculations necessary.
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