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Abstract. The formation and growth of atmospheric aerosol
particles is considered using an exact discrete method with
molecular resolution in size space. The method is immune to
numerical diffusion problems that are a nuisance for typical
simulation methods using a sectional representation for the
particle size distribution. For condensational growth, a slight
modification is proposed for the Fuchs-Sutugin expression,
which improves the prediction of the growth rate of nano-
sized particles by as much as a factor of two. The presented
method is applied to particle formation in a Finnish Boreal
forest and is shown to capture the essential features of the
dynamics quite nicely. Furthermore, it is shown that the
growth of the particles is roughly linear, which means that
the amount of condensable vapour is constant (of the order
1013 1/m3).

1 Introduction

The formation and growth of atmospheric aerosols has re-
cently received growing experimental and theoretical inter-
est due to climate and health related effects of fine particles
(Charlson and Wigley, 1994; Dockery and Pope, 1994). The
increased aerosol concentrations are largely due to secondary
particle production, i.e. homogeneous nucleation and subse-
quent growth from vapours. Instrument techniques for mea-
suring freshly formed particle concentrations have been re-
cently developed, and particles with a diameter of about 3 nm
can be detected. These small particles have been found in the
free troposphere (Clarke, 1992; Schröder and Str̈om, 1997;
Raes et al., 1997), in the marine boundary layer (Covert et
al., 1992; Hoppel et al., 1994; O’Dowd et al., 1999), in the
vicinity of evaporating clouds (Hegg et al., 1991), in Arc-
tic areas (Wiedensohler et al., 1996; Pirjola et al., 1998),
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in urban areas and in stack plumes (Kerminen and Wexler,
1996), in continental boundary layer (Birmilli and Wieden-
sohler, 2000) and recently also in boreal forests (Mäkel̈a et
al., 1997; Kulmala et al., 1998, 2001a).

The freshly formed aerosols become climatically impor-
tant only if they are able to grow to sizes of 50 nm and larger.
Particles in this size range can act as cloud condensation nu-
clei, and therefore they may contribute to the so-called indi-
rect aerosol cooling effect of the climate. Furthermore, if
the particles grow to sizes above 100 nm, they become to
scatter light very efficiently, and have thereby a direct cool-
ing effect on the climate. Whether or not the new particles
ever reach these sizes is to a large extent decided while they
are still smaller than 10 nm (Kulmala et al., 2000, 2001b).
Due to their Brownian movement, particles with diameters
of a few nm coagulate very efficiently with larger particles,
which implies that the freshly nucleated particles have to
grow fairly rapidly (within a few hours) past the 10 nm limit
or they will be lost in the collision processes (Kulmala et al.,
2000). Such growth is possible only if there is a supersatu-
rated vapour present at concentrations above 107 molecules
per cubic centimeter of air (Kulmala et al., 2001b). In order
to determine the climatic importance of atmospheric nucle-
ation events, we need to know what are the vapours caus-
ing the particle growth, what are the chemical mechanisms
controlling their formation, and what if any is the anthro-
pogenic influence on their concentrations. At the moment,
we only know that the growth of particles after continental
nucleation events is with high probability caused by organic
vapours (O’Dowd et al., 2002). The longest time sequence
of observations is from Hyytiälä (61◦51′ N 24◦17′ E) in Fin-
land, where measurements with a differential mobility parti-
cle sizer (DMPS, measures the aerosol number concentration
from 3–610 nm dry diameter), begun in January 1996. Up to
May 2002 there were around 300 days with nucleation. The
particle formation is usually observed in the late morning as
the appearance of 3 nm particles at the lower size range of
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the DMPS (M̈akel̈a at al., 1997, Kulmala et al., 2001a).

In this paper we consider the condensational growth of
freshly nucleated particles. The methodology includes three
novel techniques: (1) an improved model in free molecular
regime condensation, based on a simple modification to the
well known Fuchs-Sutugin expression (Fuchs and Sutugin,
1971) (2) a discrete method for solving the general dynamic
equation (GDE, Friedlander, 2000) for the particle size dis-
tribution, that is free of numerical discretization errors and
(3) analysis of the time evolution of point wise values of the
measured particle size distribution to validate the assumption
of a constant concentration of condensable vapour, resulting
in linear growth in terms of particle diameter.

2 Theory

2.1 Free-molecular condensation

The traditional way to describe free-molecular condensation
(Seinfeld and Pandis, 1998) is to assume vapour molecules
as point masses and use the so-called Fuchs-Sutugin expres-
sion (Fuchs and Sutugin, 1971) for the particle growth rates.
However, this approach induces serious errors when the par-
ticles are very small (say, under 10 nm). Then, it is not pos-
sible anymore to ignore molecular dimensions in compari-
son with particle size. Also, the particle diffusion coeffi-
cient, which typically is also assumed negligible, has to be
accounted for. Our approach is to use the following equation
for the collision rate of molecules with particlesβ1i :

β1i = 2π(d1 + di)(D1 + Di)

·
Kn + 1

0.377Kn + 1 +
4

3α
(Kn2 + Kn)

, (1)

which is comprised of the continuum regime condensation
rate multiplied by the semi-empirical Fuchs-Sutugin interpo-
lation function (Fuchs and Sutugin, 1971) (the last term in
the equation). It has been obtained by fitting Sahni’s (1966)
numerical results for the solution of Boltzmann’s equation,
and extends the validity of Eq. (1) to cover all particle sizes.
In Eq. (1),d1 anddi are the diameters andD1 andDi the dif-
fusion coefficients of the condensing molecule and particle in
classi, respectively. The factorα is the mass accommodation
coefficient. Traditionally,d1 andDi are left out of Eq. (2)
(Seinfeld and Pandis, 1998) since the molecular diameter is
typically negligible compared with particle diameter and par-
ticle diffusion coefficient negligible compared with molecu-
lar diffusion coefficient. However, if one is interested in the
really initial stages of particle growth, i.e. when their diam-
eters are of order 1 nm, such approximations are obviously
not possible.

In this formulation, to obtain correct asymptotical be-
haviour in the small particle limit, the Knudsen number Kn
should be defined as

Kn =
2λ

(d1 + di)
(2)

in which the mean free path of the condensation process is

λ =
3(D1 + Di)√

c2
1 + c2

i

. (3)

Herec1 andci are the thermal speeds of the molecule and
particle, respectively. The diffusion coefficients are calcu-
lated using simple kinetic theory. Again, the difference to the
standard way is that now the molecular dimensions as well
as particle diffusion are not neglected. This modification of
condensation theory approaches free-molecular coagulation
theory in the limit of free-molecular particles.

2.2 Discrete solution of the size distribution

Next, we turn to the issue of solving the particle size dis-
tribution in detail. The aerosol general dynamic equation
(Friedlander, 2000) is typically solved using either a sec-
tional method with fixed sections or with moving sections.
The idea behind the sectional method is to approximate the
particle size distribution with a histogram. Then, the various
aerosol dynamical processes (nucleation, condensation, co-
agulation, deposition, transport) are treated by modelling the
concentration and/or location of each section. Using fixed
sections is naturally ideal for nucleation and coagulation pro-
cesses. However, for condensation/evaporation this method
has a serious drawback, numerical diffusion (Zhang et al.,
1999) It can be circumvented by using moving sections -
then, however, we might encounter a situation in which there
are no sections in a size range of importance (for example,
the size of nucleating particles). In this paper, we present an
approach that has neither of the abovementioned drawbacks:
the size sections are fixed but the spacing is done molecule-
by-molecule. Then, the actual physics of the problem are
mimicked in detail, and provided that the computational bur-
den is not insuperable, the method should, in principle, be
free of any discretization errors.

The dynamics of nucleation mode particle size distribution
is simulated using a discrete coagulation scheme with appro-
priate sources:

dN1

dt
= I1 − k∗Ik∗ − N1

∞∑
i=k∗

β1iNi (4a)

dNk∗

dt
= Ik∗ − β1k∗N1Nk∗ − Nk∗

∞∑
i=k∗

βk∗,iNk∗Ni (4b)

dNk

dt
= β1,k−1N1Nk−1 +

1

2

k−k∗∑
i=k∗

βi,k−iNiNk−i
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−β1kN1Nk − Nk

∞∑
i=k∗

βikNi (k > k∗) (4c)

using the Fuchs expression (Fuchs and Sutugin, 1971) for
the collision frequency functionsβij . In our approach, we
select class 1 to represent molecules.I1 is a source rate for
the molecules. Classk∗ represents the smallest stable parti-
cles, withIk∗ as their nucleation rate. The particle dynamics,
in addition to the nucleation source, is driven by coagulation
and condensation/evaporation. In this method, condensation
is treated as collisions of classes i with class 1, and is thus
free of any numerical diffusion problems. The condensation
ratesβ1i are calculated from the modified Fuchs-Sutugin ex-
pressions as explained before. In equations 4, the evapora-
tion of particles is not taken into account. However, possible
surface pressures of the vapours can be straightforwardly in-
troduced into the equations, resulting essentially in the birth
and death formalism by Goodrich (1964).

3 Results

An important practical system to investigate the improved
growth expression is the growth of particles from nucleation
size (say 1 nm in diameter) to 3 nm. The reason for this is
that available particle size distribution measurement instru-
mentation typically has a cut-off at 3 nm. This means that
when trying to obtain the particle nucleation rate from these
measurements, one has to back-calculate down to 1 nm (Kul-
mala et al., 2001b; Kerminen and Kulmala, 2002). As soon
as the particles have been formed, they grow by condensa-
tion to larger sizes, but at the same time their concentration
is diminished because of collisions with other particles (co-
agulation). Thus, to get the correct nucleation rate from ex-
perimental data, it is essential to know the condensational
growth rate in detail.

In the atmosphere, in many cases, it is not known what
is the vapour that is condensing onto the freshly nucleated
particles, thus causing their growth to observable sizes. The
parameters affecting the growth rate are mainly the vapour
molecular mass and diameter. In our sample calculations, we
thus use several different values for the molecular mass, thus
not specifying any detailed species. In Fig. 1, the growth of a
particle of density 1000 kg/m3 is simulated. The condensed
material is also assumed to be of the same density, with
molecular mass of 50, 100 and 200 amu. The vapour con-
centration is assumed constant (4· 1013 1/m3). The standard
Fuchs-Sutugin results are shown with dotted lines and the re-
sults obtained using the corrected model with solid lines. As
seen in Fig. 1, it is obvious that particle growth is faster with
a vapour with larger molecular size. Also, there is a signifi-
cant difference in growth rates, when using the corrected ex-
pressions compared with the standard Fuchs-Sutugin model,
especially at the initial stages of growth when the particle is
still very small. Figure 1a shows the evolution of the particle
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Fig. 1. Condensational growth of freshly nucleated particles from
1 nm to 3 nm in diameter, assuming a constant vapour concen-
tration of 4 · 10131/m3: (a) Three different vapour molecular
masses (50 amu, 100 amu, 200 amu) are used for temporal growth,
(b) growth time as a function of molecular mass of condensing
molecule. The label correct refers to the method presented in this
paper, standard to the unmodified Fuchs-Sutugin expression.

diameter with time for various values of the molecular mass
and Fig. 1b the growth time as a function of vapour molecu-
lar mass. In growth time from 1 nm to 3 nm, errors more than
100% can be obtained, if the molecular dimensions and the
particle diffusion coefficient are neglected. It must be noted
that each simulation is based on assuming constant vapour
concentration during growth, and that the same value is used
for each run using different molecular masses. Also, since
the identity of the vapour(s) causing the growth and thus also
their saturation vapour pressures are unknown, a zero surface
pressure on the particles was assumed.
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Fig. 2. The measured vs. the modelled particle size distribution in
20 May 1998 in Hyytïalä, Finland. The contour-plot color indicates
the particle size distribution height in 1/cm3.

To demonstrate the usefulness of the presented method,
we show two simulation results of nucleation events from
Hyytiälä measurement station in Finland, in which clear
bursts of particle formation, accompanied with subsequent
growth, were observed above a boreal forest. One of the
events (20 May 1998) was simulated previously by Kulmala
et al. (2000), but using a sectional method with a geometrical
spacing of size classes. The qualitative agreement between
the experiment and the simulation was satisfactory. However,
the used sectional method suffers from numerical diffusion
and the size distribution narrowing effect, often present in
particle growth driven by vapour condensation, is destroyed.
The new result, using the discrete method is shown in Fig. 2,
together with the experimental result and the result using the
sectional method by Kulmala et al. (2000). When compared
with the sectional model result there is one very noticeable
difference. Now, the maximum values for the distribution
density function are not located at 3 nm (bottom of figure)
as is the case for the simulation with numerical diffusion.
Instead, now the distribution is first broader, but gradually
evolves to a more narrow but higher distribution. The nucle-
ation rate for the simulation was chosen to be identical with
the simulation by Kulmala et al. (2000), which means that it
was a result of ternary water – sulfuric acid – ammonia nucle-
ation. The background particle concentration was selected to
be the measured concentration before the event at 07:00 LT.

The phenomenon can be seen even more clearly, when the
experimental results (for 20 May 1998) are presented as in
Fig. 3, in which the point wise values of the size distribution
are presented for four different particle diameters (6.082 nm,
9.353 nm, 12.30 nm and 15.83 nm), as a function of time.
The values correspond to different classes of the particle-
sizing instrument. In all curves the region left of the peak cor-
responds to early stages in which the nucleation burst has not
even started or growth has not propagated to the size of inter-
est yet. Then the concentration starts increasing and reaches
its maximum when the actual maximum of the nucleation
mode size distribution is at the corresponding location. The
region right to the peak corresponds to time when the peak
has already passed the corresponding size. There are, how-
ever some particles present, which most probably come from
mixing of air. The model assumes a homogenous air parcel,
in contrast to the experimental set-up in which the measur-
ing location is fixed but the air around it moves. The clearly
observable nucleation peaks in Fig. 3 were fitted by normal
distributions (solid lines), from which the peak locations and
heights were then extracted.

From the data presented Fig. 3, it is possible to analyse
the experimental growth process further. In Fig. 4a the lo-
cation of the size distribution peak is shown as a function
of time, and in Fig. 4b the height of the peak is shown as a
function of corresponding particle diameter. From Eq. (1) it
is straightforward to deduce that the growth rate of particles
in the kinetic regime is almost independent of size, result-
ing in linear growth (see, e.g. Seinfeld and Pandis, 1998).
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 Fig. 3. Evolution of point wise values (at 6.082 nm, 9.353 nm, 12.30 nm and 15.63 nm) of the particle size distribution in 20 May 1998 in

Hyytiälä, Finland. The dots represent the measured data, the lines least-squares-fitted Gaussian peaks.

Based on Fig. 4a, growth indeed is linear, supporting the-
ory as well as the assumption that the amount of vapour
contributing to the growth process is roughly constant. In
Fig. 4b, the peak height value is based on the typical log-
arithmic dN/d(logdp) form of the size distribution. Thus,
since the growth rate in diameter space is constant, and

dN

d(logdp)
= dp

dN

ddp

, (5)

the peak height should increase linearly with diameter (of lo-
cation). However, this simple chain of thought disregards the
fact that the peak height is also lowered because of collisions
with background particles. It is, though, evident in Fig. 4b:
the peak height increases almost linearly with diameter.

The highest chosen diameter in the analysis, 15.63 nm,
corresponds to the size for which there is a clear visi-
ble nucleation-originated peak passing through. Above this
size, the background particles disturb the analysis. The ex-
perimentally observed growth rate (6.6 nm/s), for assumed
vapour molecules of 100 atomic mass units, is obtained by
using a constant value of 4·1013 1/m3 for the vapour concen-
tration.

The same analysis works even better for a second mod-
elled event day – 19 May 1999, as shown in Figs. 5a and b.
In this case the background particle concentration is lower,
resulting in a smaller coagulation sink for the formed parti-
cles. Thus there is clear linear growth to much higher sizes
than in 20 May 1998.
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Fig. 4. The peak location as a function of time(a) and peak height
as a function of peak location(b) for the nucleation event of 20 May
1998 in Hyytïalä, Finland.

4 Conclusions

In this paper, a new model for describing nucleation mode
particle growth has been presented. The main new features
of the work are a new formulation of the Fuchs-Sutugin ex-
pressions for condensational particle growth and the use of a
discrete, molecule-by-molecule, simulation method to solve
the general dynamic equation of aerosols.

The modification of the Fuchs-Sutugin expression consists
of taking into account the molecular dimensions in calcu-
lating collision cross sections as well as the particle diffu-
sion coefficient when calculating relative movement of the
particle-molecule-system. There is, in principle, nothing
novel in this. It is qualitatively how particle-particle col-

 
 
 

19 May 1999

peak location vs. time

time of day [h]

10 11 12 13 14 15 16

pe
ak

 lo
ca

tio
n 

[n
m

]

0

5

10

15

20

25

peak height vs. size

peak location [nm]
0 5 10 15 20 25 30 35

pe
ak

 h
ei

gh
t [

1/
cm

3 ]

0

5000

10000

15000

20000

25000

30000

5.5 nm/h

 
 
 Fig. 5. The peak location as a function of time(a) and peak height

as a function of peak location(b) for the nucleation event of 19 May
1999 in Hyytïalä, Finland.

lision frequency functions have been calculated for a long
time. However, for condensation it is very typical to use the
Fuchs-Sutugin expressions instead of collision theory. It is
shown that these effects are far from negligible. For instance,
when calculating particle growth from 1 nm to 3 nm, the ef-
fect can be more than a factor of two! For many formation-
growth occurrences in the nature, the molecules responsible
for condensational growth can be complex organic or other
rather large molecules. Then it is increasingly important to
take the above-mentioned effects into account, as shown in
the sample calculations of this paper.

The discrete method used in this paper has the advantage
of being very easy to program and being free of artificial nu-
merical diffusion problems, that are so often present in sec-
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tional models used in particle size distribution studies. The
reason is that, in principle, all physically possible particle
sizes are chosen to be size classes. Of course the method is
computationally heavy, but as shown in this paper, still fea-
sible for covering the entire nucleation mode dynamics. A
comparison with a real natural nucleation-growth event over
a boreal forest in Finland, the method seems to capture the
key qualitative behaviour of such a system. In a condensa-
tion dominated growth process, the numerical diffusion as-
sociated with the fixed sectional method makes the distribu-
tion artificially wider. However, as shown by the the detailed
analysis of the experimentally obtained size distributions in
a Finnish forest, the nucleation mode becomes narrower but
higher as it propagates through size space. This effect is
nicely captured by the discrete method.

Furthermore, the method can be used to validate more ap-
proximate but faster methods, in which nucleation, conden-
sation and coagulation are simultaneously present. Analyti-
cal solutions for such systems are non-existent, thus a method
free of discretisation errors is certainly of value for such val-
idation studies.
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O’Dowd, C., Aalto, P., Ḧameri, K., Kulmala, M., and Hoffmann T.:
Atmospheric particles from organic vapours, Nature, 416, 497–
498, 2002.

Pirjola, L., Laaksonen, A., Aalto, P., and Kulmala, M.: Sulfate
aerosol formation in the Arctic boundary layer, J. Geophys. Res.,
103, 8309–8322, 1998.

Raes, F., Van Dingenen, R., Cuevas, E., Van Velthoven, P. F. J.,
and Prospero, J. M.: Observations of aerosols in the free tropo-
sphere and marine boundary layer of the subtropical Northeast
Atlantic: Discussion of processes determining their size distribu-
tion, J. Geophys. Res., 102, 21 315–21 328, 1997.

Schr̈oder, F. and Str̈om, J.: Aircraft measurements of submicrome-
ter aerosol particles (> 7 nm) in the midlatitude free troposphere
and tropopause region, Atmos. Res., 44, 333–356, 1997.

Sahni, D. C.: The effect of a black sphere on the flux distribution of
an infinite moderator, J. Nucl. Energy 20, 915–920, 1966.

Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and
Physics, Wiley, New York, 1998.

Wiedensohler, A., Covert, D. S., Swietlicki, E., Aalto, P., Heintzen-
berg, J., and Leck, C.: Occurrence of an ultrafine particle mode
less than 20 nm in diameter in the marine boundary layer during
Arctic summer and autumn, Tellus, 48B, 213–222, 1996.

Zhang, Y., Seigneur, C., Seinfeld, J. H., Jacobson, M. Z., and
Binkowski, F.: Simulation of aerosol dynamics: a comparative
review of algorithms used in air quality models, Aerosol Sci.
Tech. 31, 487–514, 1999.

www.atmos-chem-phys.org/acp/3/251/ Atmos. Chem. Phys., 3, 251–257, 2003


