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Abstract. Size distribution measurements performed at five
different stations have been investigated during a one-year
period between 01 June 2000 and 31 May 2001 with fo-
cus on diurnal, seasonal and geographical differences of size
distribution properties. The stations involved cover a large
geographical area ranging from the Finnish Lapland (67◦ N)
down to southern Sweden (56◦ N) in the order V̈arriö, Pallas,
Hyytiälä, Aspvreten and Vavihill. The shape of the size dis-
tribution is typically bimodal during winter with a larger frac-
tion of accumulation mode particles compared to the other
seasons. Highest Aitken mode concentration is found during
summer and spring during the year of study. The maximum
of nucleation events occur during the spring months at all sta-
tions. Nucleation events occur during other months as well,
although not as frequently. Large differences were found
between different categories of stations. Northerly located
stations such as Pallas and Värriö presented well-separated
Aitken and accumulation modes, while the two modes often
overlap significantly at the two southernmost stations Vavi-
hill and Aspvreten.

A method to cluster trajectories was used to analyse the
impact of long-range transport on the observed aerosol prop-
erties. Clusters of trajectories arriving from the continent
were clearly associated with size distributions shifted to-
wards the accumulation mode. This feature was more pro-
nounced the further south the station was located. Marine- or
Arctic-type clusters were associated with large variability in
the nuclei size ranges.

A quasi-lagrangian approach was used to investigate trans-
port related changes in the aerosol properties. Typically, an
increase in especially Aitken mode concentrations was ob-
served when advection from the north occurs, i.e. allowing

Correspondence to:P. Tunved
(peter.tunved@itm.su.se)

more continental influence on the aerosol when comparing
the different measurement sites. When trajectory clusters ar-
rive to the stations from SW, a gradual decrease in number
concentration is experienced in all modes as latitude of mea-
surement site increases.

1 Introduction

Many processes in the atmosphere concerning aerosol parti-
cles are closely related to the size distribution, and a well-
developed understanding of the size distribution is required
in order to evaluate the effect of aerosols on both climate and
human health. The effect on climate is generally divided into
a direct and indirect effect. The direct effect comes from the
ability of aerosols to scatter and absorb incoming solar ra-
diation, while the indirect effect is a result of the ability of
aerosols as acting as cloud condensation nuclei (CCN) and
thereby altering the radiative properties of clouds (Twomey,
1974). Also, health problems arising from particulates have
been given a greater amount of interest during last years
(Künzli et al., 2000).

Most size distribution measurements so far are over a lim-
ited time period or only representative for a smaller area.
Some work has been performed in this field, though. To
be mentioned are recently published works by Birmili et
al. (2001) that have sprung out with results that are useful for
climatologically modelling. Birmili and co-workers (2001)
found, when investigating the aerosol properties in Melpitz,
typical size distribution attributable to the air mass where
measured. Most pronounced differences were found between
air masses of continental and marine origin, with a larger
aerosol mass associated with air-masses of continental ori-
gin.
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Studies performed by Kulmala et al. (2000) have come
up with similar results for the two Finnish stations Värriö
and Hyytïalä. Winds from SW Russia and central Europe
brought about far higher loads of accumulation particles as
compared with those of arctic origin. Aitken mode was
found to vary insignificantly when comparing the origin of
air masses. Other long-term studies of the aerosol size distri-
bution are reported from Jungfrauhoch (the Swiss Alps) with
emphasis on air-mass origin (Nyeki et al., 1998).

The objective of this paper is to broaden the view of the
Nordic aerosol in order to allow conclusions concerning the
aerosol properties, i.e. find the seasonal variation for the
whole Nordic region through the year of study and investi-
gate how the aerosol varies over the region and establish a
view on how long-distant transport effects different parts of
the region. To achieve these goals 5 different stations ob-
serving size distribution data on timescales of minutes are
utilized. The study will focus on data collected during one
year at these five stations located in Finland and Sweden,
namely Aspvreten (Institute for Applied Environmental Re-
search, Air Pollution Laboratory), Vavihill (Lund Univer-
sity), Hyytiälä and V̈arriö (University of Helsinki) as well
as Pallas (Finnish Meteorological Institute). In order to pro-
duce results relevant for modelling and process studies, the
conceptual model of lognormal fitting has been applied to the
individual scans in order to reveal seasonal as well air-mass
history related effects on the aerosol size distribution during
the year of study. To fulfil the goal of presenting a dataset
with both seasonal and spatial considerations, a clustering
model presented by Dorling et al. (1992a, b), have been used
to treat a large number of trajectories arriving at the indi-
vidual stations. This will allow conclusions concerning the
effect of source area on the aerosol studied.

2 Methods

2.1 Clustering model

Cluster analysis is a multivariate technique aiming to maxi-
mize the variance between different groups and to minimize
the variance within a group of variables. A cluster analysis
applied to trajectory data may be useful in order to recog-
nize and quantify the influence of synoptic meteorology on
the aerosol climatology. The trajectory data itself relies on
trajectories calculated with the HYSPLIT4 (HYbrid Single-
Particle Lagrangian Integrated Trajectory) model (Draxler
and Hess, 1998). For this study 96 h back trajectories where
calculated throughout the year for all stations at four times a
day (UTC: 05, 11, 17, 23).

Since each individual trajectory is constructed from wind
fields, they must reflect the evolution of a synoptic pat-
tern during the 4 days they reach back in time. Dorling et
al. (1992a) indicate how a composite surface pressure pattern
representing an ensemble of trajectories reveals typical atmo-

spheric circulation features resulting in the transport patterns
represented by the individual trajectories. When linking the
cluster analysis to the actual size distribution measurements
this will prove important. The evolution of the size distri-
bution during a couple of days is strongly dependent on the
weather situation and not only the source areas. Notably,
cloud processing and washout by precipitation is of crucial
importance. In order to make inter-comparisons between the
different stations, it is therefore preferential to try to find and
evaluate situations when similar meteorological history ap-
plies to the air mass measured in. Since the clustering pro-
cedure roughly will represent some typical weather situation
we will be able to reduce the bias of the size distribution re-
sulting from meteorological variations during the transport,
as compared with cases if we choose only to look at the air
mass origin in terms of sectors. This will allow us to inves-
tigate effects from transport in-between stations, finding the
important differences resulting from factors acting upon the
size distribution during transport.

The clustering method utilized for these purposes is an ap-
proach suggested and thoroughly described by Dorling et al.
(1992a, b).

2.2 Model for aerosol size distribution

In order to allow comparisons between size distributions col-
lected within different clusters as well as size distributions
collected at different sites some general assumption has to be
done concerning the size distribution. An often applied ap-
proach is the use of relatively simple equations to describe
the aerosol size distribution as separated in one or more
distinct modes, i.e. the lognormal aerosol size distribution
(Whitby, 1978; Hoppel et al., 1994). This allows straight-
forward comparisons of the data between different stations
by means of a set of well-defined parameters. This approach
is well treated in the literature and the overall outcome has
proved useful when parameterisations are required (e.g. Bir-
mili et al., 2001; M̈akel̈a et al., 2000a).

In this study the aerosol size distribution has been inter-
preted in terms of three modes, nuclei (<30 nm), Aitken
(30– 110 nm) and accumulation mode (110–1000 nm). These
modes are closely related to the processes leading to their
appearance. Nuclei mode particles may be formed from con-
densing gases if some critical concentration is reached. This
nucleation phenomenon has been extensively treated in the
literature (e.g. Kulmala et al., 2001; Väkev̈a et al., 2000;
Kulmala et al., 1998).

The lifetime of freshly formed particles is short, because
of the growth by condensation but mostly due to removal by
coagulation with larger particles. Coagulation between nu-
cleation mode particles and condensation of gases onto nu-
clei mode particles constitute growth mechanisms of nuclei
mode into the Aitken mode size range. While this growth by
condensation and self-coagulation of nuclei mode particles
leads to increased number concentration in the Aitken mode,
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Table 1. Boundaries used as input for the automated fitting procedure for size distribution with three modes. Geometrical mean diameter
(Dg), geometrical standard deviation (GSD) and number concentration (N) limits are used. Number concentrations between zero-infinity are
allowed. Modal diameters may overlap.

N1 (# cm−3) GSD1 Dg1 (nm) N2 (# cm−3) GSD2 Dg2 (nm) N3 (# cm−3) GSD3 Dg3(nm)

Lower boundaries 0 1.1 Smallest size of instrument 0 1.1 20 0 1.1 80
Upper boundaries ∞ 1.8 60 ∞ 2.0 120 ∞ 2.0 Largest size of instrument

coagulation with larger particles might serve as a significant
sink for newly formed nuclei mode particles. Transformation
of nuclei mode particle mass into Aitken mode mass seems
to largely be controlled by direct coagulation between nu-
clei mode particles and Aitken mode particles without ob-
served growth of the actual nuclei mode.. Transformation
of nuclei mode particle mass into Aitken mode mass seems
to largely be controlled by direct coagulation between these
particles without observed growth of the actual nuclei mode.
This would only lead to an increased mass in the Aitken size
ranges, leaving the number concentration unaffected. Only
situations with favourable conditions (e.g. large nucleation
rate and/or small coagulation sink) will lead to an observ-
able growth of nuclei mode particles into the Aitken size
ranges, thereby affecting their number concentration (Ker-
minen et al., 2001). Otherwise, in order to maintain the num-
ber concentration in the Aitken size ranges, direct emissions
are required. In the literature it is argued that the primary
emissions from anthropogenic activities largely contribute
to aerosols in the Aitken size ranges (Birmili et al., 2001).
Coarse mode particles may, if high enough concentration is
present, serve as a significant sink of nucleation mode and
Aitken mode particles. However, since coarse mode includes
particles>1µm (Seinfeldt and Pandis, 1998), no evaluation
of this mode can be done due to instrumental limitations. The
instruments used typically cover a size range from<10 nm to
500 nm.

Subsequent growth into larger size classes requires a large
amount of condensing gases. The most important mechanism
transforming Aitken mode particles into accumulation mode
particles is cloud processing of the aerosol. Theoretically,
this will produce well-defined modes with a pronounced min-
imum in between, i.e. the Hoppel minima (Hoppel et al.,
1994).

Since the goal was to fit each scan separately, some au-
tomated fitting procedure had to be developed, taking into
account the huge amount of data produced by five stations
during one year. In order to produce results with a physical
relevance, some constrains had to be supplied to the fitting
routine. For this purpose restrictions concerning the geo-
metrical standard deviation (GSD) and mean modal diameter
(Dg) given in Table 1 were used.

The fitting procedure is performed with a Matlab® rou-
tine involving two functions supplied with the Matlab® Op-
timization Toolbox: LSQNONLIN for a first crude fit and
FMINCON for the final fitting. LSQNONLIN starts with a

first crude approximation concerning modal diameters and
number concentration. The output from this first fit serves as
first guesses in FMINCON which performs a constrained fit
with boundaries as described in Table 1. However, since the
number of mathematical solutions to the lognormal function
is large, additional constraints have to be applied, especially
to avoid super-positioning of modes, which is mathemati-
cally sound, but does not contribute with any useful informa-
tion for this study. No modes are therefore allowed to have a
spacing less than dlogDg<0.15, which roughly corresponds
to a ratio of Dg’s>1.4. If a sound solution is not found within
four iterations, a fitting with two modes is suggested. If the
solution for two modes is not found within three attempts,
fitting with one mode concludes the fitting procedure. This
generally results in two modes, one in the Aitken and one in
the accumulation size range, but appearance of a third mode
occurs frequently, many times indicating new particle forma-
tion . The presence of this third mode is generally confined
to midday, indicating the importance of photochemistry in
production of nuclei mode particles. However, it should be
pointed out that this third mode is not always a nuclei mode,
but can be a second Aitken or accumulation mode.

In order to understand this convention we have to be aware
of the fact that the nature of the processes contributing to
the different modes is not to be considered as discrete, but
rather a continuous process. For example we can consider
the growth of the nuclei mode due to condensation into the
Aitken size range. If an Aitken mode already is present,
which of course is the normal case, this growth would lead
to appearance of two modes in the Aitken size range. Since
smaller particles grow faster (by size) than larger, the two
modes would in due time appear as one in terms of physical
size distribution properties. In order to take similar situations
into account it is necessary to include a term for this growing
mode. In the following we thus include the term Aitken 1 and
Aitken 2, where Aitken 2 is referred to as the semi-persistent
Aitken mode and Aitken 1 denotes the growing mode.

Only very seldom we were able to resolve more than one
mode in the accumulation mode size range so this type of
definition is limited to the Aitken mode only. Fitting of three
modes to the aerosol size distribution is of course an over-
simplification. Four or even five modes may also be present
as reported by Birmili et al. (1998) and Birmili et al. (2001),
and this is not considered in our analysis. However, as shown
in Sect. 3.4, three modes are sufficient to reproduce the mea-
sured size distribution in this dataset.
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Fig. 1. Location of the stations involved in the study.

2.3 Description of the stations

2.3.1 Hyytïalä

The background station Hyytiälä (61◦ 51′ N 24◦ 17′ E,
180 m a.s.l.) have been in focus in a number of large studies,
especially concerning nucleation and new particle formation
(e.g. Mäkel̈a et al., 2000; Nilsson et al., 2001a, b; Kulmala
et al., 1998; Kulmala et al., 2001). The station, SMEAR II,
(Station for Measuring forest Ecosystem-Atmosphere Rela-
tions) is characterized as a boreal forest site, with surround-
ings dominated by a flora of Scots Pine of about 30 years
age. The station is located fairly far from urban pollution
sites (Tampere at a distance of∼50 km SW and Jyv̈askyl̈a
∼100 km NE). The station has facilitated particle size dis-
tribution measurements since 1996, which have resulted in
an extensive database including continuous measurement for
over five years.

The instrument set-up consists of two differential mobility
analyser systems, producing overlapping size distributions.
The sample flow is split into two Vienna type differential mo-
bility analysers (DMA). Two condensation particle counters
(CPC) are used to detect the selected particles, one Model
3010 from TSI and one Model 3025 from TSI. The compos-
ite instrument set-up produces size distributions between 3–
25 nm overlapping with a size distribution spectrum covering
the range 20–500 nm. A full size scan is produced every 10
minutes.

2.3.2 V̈arriö

The SMEAR I station (67◦ 46′ N 29◦ 35′ E, 400 m a.s.l.) in
Värriö is also classified as a background station and situated
in the same vegetation as Hyytiälä (in this case a 40 year old
Scots Pine forest). The station itself is located at a hill cap.
The station is far from any pollution sources, although emis-
sions on the Kola Peninsula give rather strong signals when
winds are transporting air from this region (Kulmala et al.,

2000). Also, winds coming from the St. Petersburg area as
well as Russia in general may bring elevated concentrations
of acidifying gases as well as particulate pollution. The Dif-
ferential Mobility Particle Sizer (DMPS) system set-up pro-
duces a complete size scan between 8 and 460 nm approx-
imately every 10 min. Aerosol concentrations are generally
low, on average somewhere in the order of 500 particles per
cubic centimetre.

2.3.3 Pallas

The Matorova station at Pallas (68◦ 00′ N 24◦ 14′ E,
340 m a.s.l.) is located in the depths of the sub arctic pine
forest in the Pallas – Ounastunturi National Park that spans
over 50000 hectares. The particle measurements are made
by Finnish Meteorological Institute (FMI) and the station it-
self is a part of the Global Atmospheric Watch (GAW) pro-
gramme. The proximity to the V̈arriö station allows a good
basis for comparison between these stations when simultane-
ous measurements are performed. DMPS-system set-up con-
sists of one medium DMA separating the particles according
to size, subsequently detected by a 3010 CPC from TSI. Size
distributions between∼7–490 nm are observed with this set-
up.

2.3.4 Aspvreten

The background station Aspvreten (58◦ 80′ N, 17◦ 40′ E,
25 m a.s.l.), is located in S̈ormland, some 70 km south west
of Stockholm. The station is situated about 2 km from the
coast in a rural area covered by mixed coniferous and decid-
uous forest with some meadows. The influence from anthro-
pogenic activities is small, and the area around the station is
sparsely populated. The station is operated by the Institute
for Applied Environmental Research, Air Pollution Labora-
tory, and is a part of the European Monitoring and Evaluation
Programme network (EMEP). The instrumental set up on the
station, besides meteorology and PM 2.5/10 measurements,
consist of a medium DMA along with a TSI 3010 CPC. The
instrument set-up observes one size distribution spectrum ev-
ery 6 min in the size ranges 10–452 nm.

2.3.5 Vavihill

Vavihill (56◦ 01′ N, 13◦ 09′ E, 172 m a.s.l.) is a background
station at the top of S̈oder̊asen in Sk̊ane. The surroundings
are dominated by grasslands and deciduous forest. The sta-
tion is situated about 10 km away from the closest small vil-
lages and about 20 km from the city Helsingborg. The area of
Malmö and Copenhagen, with about 2 million inhabitants is
situated about 60–70 km to the SSW. However it is not con-
sidered to be influenced by local anthropogenic activities and
has facilitated background monitoring measurements since
1984. The station is mainly influenced by SW winds. The in-
strument set-up consists of two differential mobility analyser
systems (Ultrafine Differential Mobility Analyser (UDMA)
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Fig. 2. Example of typical nucleation events at Aspvreten (upper frame) and Värriö (lower frame).

and Differential Mobility Analyser (DMA), respectively).
The separated particles are detected by a TSI CPC 3025 for
sizes 3.1–22 nm and one TSI CPC 7610 detecting particles
22–∼900 nm. During the year of study, measurements at
Vavihill only covers a portion of the winter and spring pe-
riod (February–April 2001). Therefore no seasonal variation
can be evaluated with this data. Locations of the stations are
displayed in Fig. 1.

3 Results

3.1 Diurnal variation

The diurnal behaviour of the aerosol at the different stations
has been investigated. Mainly to reveal any local sources
influence on the measurement. No indications of local an-
thropogenic influence were found. Nucleation events were
observed at all stations. These occasions are typically char-
acterized by a sharp increase of nuclei mode number concen-
tration around noon. During this year of study, the frequency
of the nucleation events has been shown to be largest around
springtime, between March–May. This seasonal variation in
nucleation frequency has been observed at Hyytiälä earlier
(e.g. Kulmala et al 2001, M̈akel̈a et al., 2000b, Nilsson et al.,
2001).

Figure 2 shows example of typical events at the measure-
ment stations Aspvreten and Värriö, revealing the commonly

Table 2. Growth rate and peak concentration during class 1 events
at the different stations. Number of events meeting criteria is also
given in table during the year of investigation.

GR(nm/h) Nmax # class 1 events

Aspvreten 2.3 9661 17
Hyytiälä 1.9 7649 22
Pallas 1.6 3047 17
Värriö 2.0 2571 25

observed characteristics of the nucleation phenomenon. The
fact that we are able to follow the growth for several hours in-
dicates that the phenomenon occurs on a large spatial scale.
Nucleation has earlier been reported to occur during sunny
days (Kulmala et al., 2001). Further it was in the present
study concluded that nucleation occur in air arriving from
N/NW in most of the cases. Nucleation as shown in Fig. 2 is
only very seldom observed in air advected from S/SE. Ear-
lier reports stretch the importance of cold air advection and
boundary layer height (e.g. Nilsson et al 2001). Also, high
concentration of pre-existing aerosol is believed to quench
the nucleation due to large condensational and coagulation
sink, due to removal of the precursor gases and initially
formed cluster respectively.

In Table 2 statistics of the observed nucleation events dur-
ing the year of study is summarized. In this statistics we
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Fig. 3. Time dependent evolution of the size distribution during March–May. Each plot represents the average during four hours intervals
for the whole season. Upper frame shows days with nucleation and lower frame median of days with no nucleation.

only include the most pronounced events following a defini-
tion by Mäkel̈a et al. (2000b). The growth rate was found
to be largest at Aspvreten, by 2.3 nm/h. Peak concentra-
tions observed during the events was highest at Aspvreten
(∼9600 cm−3 on average) and lowest at Värriö and Pallas.
Thus both growth rate and number concentration of newly
formed particles is highest at Aspvreten.

The diurnal variability in the shape of the size distribution
was investigated. In Fig. 3 the composite time dependent
median size distributions for Hyytiälä during March-May are
depicted. The data have been divided into 4 h intervals and
calculated as the median of the integral of scans during the
period of the year.

The data was further divided into one sub-set with days
with typical nucleation events and another with days when
we did not observe nucleation events. Two features become
obvious. First, a systematic diurnal variation is only ob-
served for the sub-set with nucleation. In the case with nucle-
ation events we experience this as an initial increase of small
particle in the time interval between 08:00–12:00, even more
pronounced during 12:00–16:00. Hereafter the size is shifted
towards larger particles during time-steps 16:00–20:00 and
20:00–24:00. This behaviour could be interpreted as growth
of the small, initially formed, particles. This since we be-
lieve that the nucleation phenomena can be observed over
large areas simultaneously. We cannot observe a systematic
diurnal variation in the sub-set with no nucleation. The sec-

ond feature comparing the behaviour of the two data sets is
the fact that the nucleation sub-set has obviously much less
mass associated with the aerosol as compared with the non-
nucleating cases (e.g. much larger number concentration in
the accumulation mode size range in non-nucleation cases
as compared with nucleation cases). This probably reflects
the fact that we observe nucleation when we have northerly
advection, which is likely to bring rather clean air to the mea-
surement sites.

This typical features comparing statistics concerning non-
nucleation days and nucleation days are found at all stations.
That is, nucleation events do affect the size distribution in a
diurnal fashion. This feature is lacking for non-nucleation
days.

The diurnal variation of the integral number per season
has also been investigated. In Fig. 4 the results for Aspvreten
are given. The data is presented as 1h median concentra-
tion for the season studied. Only small, if any, diurnal varia-
tion in integral number is found. The variations encountered
are typically in the range±10%. 5–95 percentiles are in-
dicated below each plot, showing occasions with maximum
number concentration. The highest concentrations, shown by
the 95 percentile, do occur during daytime.

Most probably, these peaks in integral number concentra-
tion can be attributed to nucleation events, treated in previous
section. These peaks are furthermore confined to summer
and spring periods of the year, which is in nice agreement
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Fig. 4. Diurnal variation of median integral number concentration per season, June–August (JJA), September–November (SON), December–
February (DJF) and March–May (MAM) at Aspvreten. Indicated in subplots are 5th-95th percentiles. T.O.D. denotes time of day. Note that
the axis scale for the number density begins at 1500 cm−3 for the large frames.

with the nucleation inventory established for the different sta-
tions.

Figure 5 describes the diurnal variability of integral num-
ber recorded at Hyytiälä. In comparison with the Aspvreten
dataset, even less pronounced variations for the Hyytiälä data
was observed. Largest variations are encountered during
summer and autumn, however still below±10%. Neither the
winter nor summer median integral number data can be ad-
dressed with any diurnal variation. However, investigating
the 5–95 percentile ranges, occasions with maximum con-
centrations are shown to occur during daytime. This espe-
cially applies during spring and summer, but same tendencies
can be observed during autumn.

Performing the same analysis for Värriö we find only
small tendencies to diurnal behaviour for all seasons (Fig. 6).
The 95 percentile shows no or weak diurnal variation for
all seasons except the spring period, when occasions with
very high integral number concentration can be observed dur-
ing noon. Smallest variations are encountered during winter
months December, January and February (DJF). Overall low-
est concentrations are found during autumn and winter dur-
ing this year.

Turning the attention to Pallas (Fig. 7), similar behaviour
as for V̈arriö is observed. Only weak diurnal variations seem
to be present. No diurnal behaviour can be addressed to the
winter season.

Conclusively, the diurnal variations of the integral num-
ber encountered at the stations are small, typically below
±10%. This reduces the possibility that the aerosol is af-
fected by local sources. The nature of industry and house-
hold activities in the vicinity of the stations typically follows
a diurnal pattern (e.g. lack of large industries with 24 h pro-
duction activity). Thus if local anthropogenic activities do
affect the aerosol size distribution, this would be evident as
diurnal variation of the aerosol number concentration. Fur-
thermore, nucleation events seem to affect the integral num-
ber concentration for at least Aspvreten and Hyytiälä in a
diurnal fashion when investigating the 95 percentile of the
dataset. These trends are not equally obvious for the Värriö
and Pallas datasets. However, the events occur as frequent at
these stations as observed for e.g. Hyytiälä during this year
of study. Although we do not see any large diurnal varia-
tions in the integral number we do observe typical diurnal
changes concerning the shape of the size distribution. This is
most obvious during spring and is attributed to new particle
formation events.

3.2 Variation of aerosol properties between the seasons of
the year of measurement

In Figs. 8–11 the seasonal features of the aerosol size distri-
bution found during the year of study are depicted as median
size distribution per season. The data have been cleaned from
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Fig. 5. Diurnal variation of median integral number concentration per season, June–August (JJA), September–November (SON), December–
February (DJF) and March–May (MAM) at Hyytiälä. Indicated in subplots are 5–95 percentiles. T.O.D. denotes time of day. Note that the
axis scale for the number density begins at 500 cm−3 for the large frames.
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February (DJF) and March–May (MAM) season at Värriö. Indicated in subplots are 5–95 percentiles. T.O.D. denotes time of day.

occasions indicating failure of the measurements. For each
station and season, the resulting median has been lognormal
fitted in three modes. The parameters are summarized in Ta-
ble 3.

A nucleation day inventory has been established per sea-
son for all stations. Nucleation data is grouped follow-
ing a scale from 0–3 where 1 indicates most pronounced
event when growth can be observed for several hours. Event
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Table 3. Modal parameters obtained from fitting of the median size distributions per season for each station. Also the frequency of nucleation
events is presented.Here given as % days of the data set exhibiting nucleation as described under Sect. 3.1.

Station Season N1 (# cm−3) DSG1 Dg1 (µm) N2 (# cm−3) DSG2 Dg2 (µm) N3 (# cm3) DSG3 Dg3 (µm) % Nucl.days

Pallas Jun–Aug 93 1.71 0.029 282 1.49 0.053 115 1.44 0.182 10
Sep–Nov 69 1.69 0.036 179 1.43 0.074 230 1.61 0.160 2
Dec–Feb – – – 152 1.85 0.053 123 1.48 0.212 2
Mar–May 63 1.54 0.019 157 1.52 0.043 162 1.61 0.168 23

Värriö Jun–Aug 103 1.51 0.043 541 1.60 0.085 141 1.47 0.191 6
Sep–Nov – – – 263 1.82 0.073 112 1.46 0.200 7
Dec–Feb – – – 108 1.54 0.048 201 1.63 0.175 12
Mar–May 119 1.53 0.028 111 1.30 0.050 266 1.73 0.143 27

Hyytiälä Jun–Aug 429 1.66 0.034 887 1.58 0.077 327 1.46 0.192 7
Sep–Nov 227 1.63 0.025 776 1.62 0.068 295 1.44 0.200 7
Dec–Feb 204 1.80 0.025 389 1.62 0.061 270 1.48 0.200 0
Mar–May 431 1.74 0.025 849 1.69 0.067 284 1.44 0.200 25

Aspvreten Jun–Aug 250 1.62 0.035 1178 1.49 0.078 423 1.51 0.205 10
Sep–Nov 272 1.69 0.035 1429 1.61 0.071 494 1.47 0.220 7
Dec–Feb 431 1.80 0.026 917 1.75 0.066 377 1.46 0.217 2
Mar–May 507 1.73 0.033 1319 1.69 0.066 256 1.44 0.217 14

classes 2–3 do not show as pronounced growth as class 1.
0 represent occurrence of small particles, but no following
growth is observed (M̈akel̈a, 2000b). In Table 3 class 1 &
2 events are considered. It should be pointed out that these

events do not appear in the median values of size distribu-
tion since they are smoothed out by the large amount of data
present.
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Fig. 8. Seasonal variation of median size distribution at Aspvreten (58.8 N, 17.4 E). Error bars indicate 25–75 percentile range. Different
modes from lognormal fitting appear in dashed, solid and dotted curves. % nucleation days indicated in upper left corner.
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Fig. 9. Seasonal variation of median size distribution at Hyytiälä (61.51 N, 24.17 E). Error bars indicate 25–75 percentile range. Different
modes from lognormal fitting appear in dashed, solid and dotted curves. % nucleation days indicated in upper left corner.

The seasonal characteristics for Aspvreten and Hyytiälä
are quite similar as seen in Figs. 8 and 9. The median
size distribution for the summer (June–August) and spring
(March–May) period both show rather high concentration in

the Aitken size ranges. The relative contribution of the ac-
cumulation mode is largest during winter. The overall low-
est concentrations are encountered during the winter period,
and the Aitken and accumulation mode are separated to a
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Fig. 10. Seasonal variation of median size distribution at Värriö (67.46 N, 29.35 E). Error bars indicate 25–75 percentile range. Different
modes from lognormal fitting appear in dashed, solid and dotted curves. % nucleation days indicated in upper left corner.

larger extent compared to the other seasons. The frequency
of nucleation is largest during spring months, but some nu-
cleation bursts where encountered during the summer and
autumn months. At Aspvreten we observed the lowest fre-
quency of nucleation events during winter and autumn (see
Table 3, DJF period).

For Värriö, the overall largest concentrations are encoun-
tered during summer (see Fig. 10). The larger number con-
centration during the summer months is largely explained by
an increase of particles in the Aitken size ranges. For all
other seasons, the contribution from the accumulation and
Aitken mode is found to be almost equal. A more or less pro-
nounced minimum between the two modes is present during
all seasons except summer. It is found as for the other sta-
tions that the maximum frequency of nucleation days is en-
countered during the spring period (March–May). However,
a fairly high percentage of nucleation days were recorded
at Värriö during the winter. This might be indicative of the
closeness to smelters located at the Kola Peninsula. Easterly
winds may bring elevated concentrations of nucleating gases
or precursors thereof to the station from the smelters con-
tributing to the observed nucleation. The seasonal pattern
recorded at Pallas is similar to that at Värriö (see Fig. 11).
Largest integral number concentrations are encountered dur-
ing summer. However, there is a distinct minimum between
accumulation and Aitken mode present during the summer
months. The maximum in nucleation days occur during
spring.

Unfortunately, the Vavihill station could not contribute
with enough data to support a seasonal analysis. Data avail-
able from the station only covers February–April 2001.

Obviously there is a gradient in integral number when
comparing the northernmost stations with the southerly lo-
cated ones, with maximum aerosol concentrations found at
Aspvreten. Although sparse in data, Vavihill tends to show
equally high or higher aerosol concentrations as compared
with Aspvreten. .

It is also obvious that the largest frequency of nucleation
is confined to the spring period (MAM), although nucleation
does occur both during summer and autumn, but more sel-
dom (Table 3).

The maximum in integral number concentration is con-
fined to the spring and summer months. This becomes
obvious when investigating the daily mean concentration
recorded for each station as presented if Fig. 12.

Potential explanations for this might be seasonal changes
in air masses, lower rate of incoming solar radiation and thus
less new particle formation during the winter period and/or a
higher rate of precipitation and overall cloudiness during the
winter.

3.3 Variation of trajectory orientation between the seasons
of the year of measurement

In order to clarify the seasonal differences in typical advec-
tion schemes as well as inter-station related differences in
air mass history we have chosen to interpret the seasonal
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Fig. 11. Seasonal variation of median size distribution at Pallas (67.58 N, 24.07 E). Error bars indicate 25–75 percentile range. Different
modes from lognormal fitting appear in dashed, solid and dotted curves. % Nucleation days indicated in upper left corner.

0 100 200 300 400
0

1000

2000

3000

4000

5000

6000

7000

N
(c

m
−

3 )

Hyytiälä

0 100 200 300 400
0

500

1000

1500

2000

2500

3000

Day of year

N
(c

m
−

3 )

Värriö

0 100 200 300 400
0

500

1000

1500

2000

2500

3000

Day of year

N
(c

m
−

3 )

Pallas

0 100 200 300 400
0

1000

2000

3000

4000

5000

6000

7000
Aspvreten

N
(c

m
−

3 )

Fig. 12.Daily mean integral concentration for stations Värriö, Pallas, Hyytïalä and Aspvreten (blue bars) and 7 days running mean (red line).

variation of preferred transport pathways to the stations by
means of cumulative trajectory plots, each one specific for
both season and station. A selection of these results is pre-
sented in Fig. 13.

360 grid cells build up the plot. The colour of each
cell represents the number of times a trajectory has passed
through that specific grid cell during the season at hand.

Warm colours indicate that a large number for trajectories
have crossed the grid cell. As an illustration we have chosen
to compare the autumn and spring period between Aspvreten
and V̈arriö.

Two features become obvious when studying the resulting
plots. First, there is a strong seasonal variability in the orien-
tation of the trajectories during the year of study. During the
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Fig. 13. Seasonal variation in advection schemes. Above: The autumn and spring period for Aspvreten. Colour bar indicates cumulative
number of times a grid cell has been crossed by a trajectory. Below: Same as above, but for Värriö.

autumn period a large number trajectories arrive from S/SW.
Thus, both stations are likely to experience the sources on
the continent, changing the aerosol properties accordingly.”
During spring the opposite applies, with trajectories arriving
from the Arctic/marine environment dominating the trans-
port to the different stations. The other feature is that for
at least the spring period the two stations does not share the
same advection pattern. The most dominant transport path-
way to Aspvreten seems to be SE advection. Another im-
portant pathway is SW. The trajectories arriving Värriö are
preferentially arrive from NE. These features of the transport
to the different stations somewhat limits the possibilities of
making straightforward comparisons between the stations. It
should be mentioned that both Hyytiälä and Aspvreten com-
pares quite well in terms of seasonal variation of trajectory
orientation, and that the largest differences are encountered
when comparing these southerly located stations with Värriö
and Pallas.

3.4 Linking clustering model with model for aerosol size
distribution

In order to investigate transport related effects on the aerosol
it is important to find situations when similar large-scale ad-
vection situations apply to all stations studied. This will give
us the opportunity to evaluate how the aerosol properties are
changed, e.g. when the transport distance from the continent
and its sources is increasing. Since the ensemble of stations

provides reference points with a good spatial coverage such
an approach will clearly constitute a good basis for future
modelling exercises.

In the following section we present an example of
how the cluster analysis and the mode fitting model are
linked. We have made use of the Finnish station Hyytiälä,
where the data set has been divided into four seasons,
June–August, September–November, December–February
and March–May. A new set of clusters is calculated for each
season. The clustering procedure will separate out trajec-
tories whit air of similar meteorological history arriving to
all receptor sites. The size distribution is evaluated as the
scans collected during a period of two hours before and two
hours after each trajectory arrival (local time). In order to as-
sure stable conditions concerning trajectory orientation and
thus similar pressure situation, situations showing large de-
viations in trajectory orientation on time scales less than 12 h
were filtered out.

The size distribution recorded around the arrival of all tra-
jectories building the clusters is collected in this manner.
Considering the timescale for the production of a new scan
(minutes), this will give a large amount of size distribution
data upon which the following analysis is built.

The resulting size distribution for three different cluster
orientations arriving Hyytïalä during December to February
2000–2001 have been evaluated. The clusters resulting from
the analysis is presented in Fig. 14.
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Cluster B      
No of trajs 45 

Fig. 14. Representation of trajectory clusters arriving Hyytiälä for the period Sep–Nov. The clusters are here presented as the mean of the
trajectories building the clusters. Numbers of trajectories in cluster are also indicated.

Table 4. Modal parameters as derived from lognormal aerosol model. 25-75th percentiles indicated. Data corresponds to clusters A, B and
C discussed above. Fractional representation of the mode itself is also indicated.

Nucleation Nucleation Aitken 1 Aitken 1 Aitken 2 Aitken 2 Accumulation Accumulation
mode 25–75% mode 25–75% mode 25–75% mode 25–75%

Median percentiles median percentiles median percentiles median percentiles

Cluster A
N (# cm−3) 586 282–834 938 803–1595 729 523–1080 268 220–340

DSG 1.74 1.56–1.80 1.57 1.51–1.72 1.44 1.34–1.54 1.47 1.36–1.56
Dg (µm) 0.021 0.016–0.025 0.033 0.031–0.035 0.053 0.049–0.058 0.176 0.159–0.190
fraction 0.736 – 0.150 – 0.992 – 0.935 –

Cluster B
N (# cm−3) 241 139–386 153 97–266 828 535–1305 533 338–842

DSG 1.80 1.63–1.80 1.61 1.45–1.70 1.61 1.51–1.73 1.52 1.44–1.61
Dg (µm) 0.021 0.018–0.024 0.034 0.032–0.035 0.075 0.063–0.086 0.203 0.178–0.227
fraction 0.369 – 0.125 – 0.936 – 0.989 –

Cluster C
N (# cm−3) 1310 428–1755 664 350–1035 733 336–1560 136 93–216

DSG 1.48 1.38–1.63 1.39 1.28–1.47 1.45 1.31–1.60 1.41 1.31–1.52
Dg (µm) 0.016 0.009–0.024 0.034 0.031–0.035 0.045 0.037–0.052 0.170 0.152–0.221
fraction 0.540 – 0.155 – 0.868 – 0.675 –

The general finding during December–February is that the
most dominant transport pathways is southerly oriented. One
cluster arriving from north (C) with a total number of 15 tra-
jectories, one from south-west (A) with a total of 12 trajec-
tories and one arriving from south (B) made up by 45 trajec-
tories are presented here.

The numbers of size distributions in the different clusters
are 306, 251 and 816 respectively. Each size distribution
scan, collected around the arrival of each individual trajec-
tory constituting the cluster, has been treated separately by
fitting the lognormal aerosol model to the data. In Fig. 15
the median and 25th-75th percentile ranges of the size distri-

butions observed in each cluster is shown. The median cal-
culated on the lognormal mode fitting procedure is indicated
with crosses in the figure. This result is derived from the me-
dian of the sum of model-reproduced scans. It is found that
in most cases the lognormal mode model is able to reproduce
the median size distribution with good accuracy. Only small
deviations are experienced for the data resulting from cluster
number A, where the fitting of the nuclei mode seems to be
lacking in some cases.

In Table 4 the modal parameters obtained from fitting are
presented. It is found that the largest nuclei mode concen-
tration is present within the data collected in the marine
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cluster C. Further, the modal diameter is comparatively
small. The Aitken mode shows largest differences when
comparing the geometrical mean diameter, Dg. Typically,
continental cluster (e.g. B) show an Aitken mode shifted
towards larges sizes. Accumulation mode is found to be
present more seldom in the marine case (C) as compared with
clusters A and B that are influenced from continental sources
to a larger extent. Concentrations found in this size range
are also typically lower for the marine aerosol. Smallest ac-
cumulation mode diameters are found in the marine cluster
(C). GSD’s obtained are also typically larger for continental
air masses.

This brief presentation of the lognormal size distribution
model reveals the most pronounced differences when com-
paring clusters of different origin. The features presented
above is found for all stations in most cases, putting con-
fidence in both the cluster model as well as the simplified
fitting methods used.

As a result of more large aerosols present in the continental
clusters, these types of clusters also accommodate largest in-
tegral aerosol volume (3–450 nm). However, small variations
in number concentration are found when comparing different
clusters (Table 5). In this and several other cases we even find
a lower integral number concentration to be associated with
continental clusters as compared to those of marine origin.
During the year of study we were able to identify situations
when all or at least several stations had resulting clusters with
similar orientations. As argued in the chapter dealing with
the clustering model, situations with similar ensembles of
trajectories arriving to different stations will allow us to eval-
uate the transport related changes with a reduced bias from
meteorological variation. This since the trajectories roughly
will represent the wind fields shaping the trajectories, and
therefore the synoptic pressure situation. For this purpose

a number of interesting cases have been selected to put light
on how the aerosol is affected when transport over the Nordic
countries occurs. The most dominant transport pathway was
found to be SW trajectories. This orientation found repre-
sentation for all stations during all seasons. However, also
situations when other advection schemes applied have been
investigated in detail.

In addition to the pre-classification delivered by the fitting
routine as described earlier, the data was interpreted accord-
ing to following conventions: the nuclei mode is confined to
the size ranges smallest bin size of instrument – 30 nm. Sec-
ondly, contribution to Aitken 2 is made by particles in the
30–110 nm size ranges. If three modes are present, although
the first one could not actually be referred to as nuclei mode
but falls in the Aitken size range, this mode is called Aitken
1. The accumulation mode is made up by particles>110 nm.

3.4.1 Case I, NE clusters

In Figs. 16a and b two occasions with NE cluster to the dif-
ferent station are shown. These situations occurred during
the winter period (December–February, Fig. 16a) and spring
period (Marc—May, Fig. 16b). During Dec-Feb Värriö, Pal-
las, Hyytïalä and Aspvreten are represented. During the
spring period also data from Vavihill were available, giving
an opportunity to follow the aerosol in-between receptor sites
widely separated. The number of trajectories building each
cluster is given in the figures.

As discussed in Sect. 2.1, clusters will represent a typical
synoptic weather situation. A comparison of similar clusters
arriving different stations presents similar average pressure
fields. In Fig. 17 average pressure fields are presented for
the four stations involved in this case study. The averages
were calculated over the four day duration of the individual
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Fig. 16. NE clusters arriving to the different stations during Dec–Feb(a) and Mar–May(b). Clusters are represented as means. The time
spacing between each pair of endpoints (dots) in the figure is 5 h.

trajectories over the MAM-period (Fig. 16b). The different
pressure fields present striking similarities as can be seen in
the strong gradient over the North Sea and British Isles. The
slight differences between the stations arise from the fact that
the averages are calculated based on different days due to
moving weather systems. This put confidence in the clus-
tering procedure and actually confirms the idea that we will
experience a reduced bias from station specific meteorology
when comparing the different locations. Sea level pressure
data was obtained from the NCEP/NCAR archives.

The resulting size distribution data for the NE-clusters is
shown in Figs. 18a and b, both as median as well as the nor-
malized distribution revealing the shape of the derived size
distribution. When investigating the cluster data for the DJF-
period we find ensembles of trajectories arriving from north-
ern Russia. The mean clusters have the same source area in
the beginning, but do split up in height with the Kola Penin-
sula, where the air arriving to Aspvreten and Hyytiälä con-

tinue SW, while V̈arriö and Pallas clusters turn W. 27, 21, 13
and 17 trajectories each in the order Värriö, Pallas, Hyytïalä
and Aspvreten build the clusters. The trajectories constitut-
ing these clusters are of preferentially continental origin.

Turning the attention to the median size distribution result-
ing from each cluster during December–February (Fig. 18a)
several important features are exposed. First to be mentioned
is the sharp increase in the Aitken mode observed for both
Hyytiälä and Aspvreten as compared with Värriö and Pallas.
This increase is most pronounced for Aspvreten. Concerning
the accumulation mode median diameter there are obvious
similarities between both modal diameter as well as number
concentration when comparing Aspvreten, Värriö and Pallas.
This feature is lacking for the Hyytiälä data. Investigating the
individual trajectories it is found that some trajectories arriv-
ing to Aspvreten do cross over the Kola Peninsula as do tra-
jectories arriving Pallas and V̈arriö, and this is not observed
for the Hyytïalä dataset. This area is known for its heavy
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Fig. 17. Composite surface pressure pattern for NE clusters presented in Fig. 16a. Surface pressure is presented as average. The averages
were calculated over the four day duration of the individual trajectories over the period.

industry, giving rise to large emissions of particles as well as
gaseous precursors (e.g. Virkkula et al., 1995 and Kulmala
et al., 2000).

Trajectories arriving Aspvreten should further be treated
with caution since they in most cases cross the region around
Stockholm. Contribution from the city and its sources might
affect the aerosol to a very large extent.

Only very small differences between Värriö and Pallas
were found to be present when comparing those two clus-
ters. The resulting size distributions are almost identical in
both shape and number concentration. This indicates lack of
important sources in-between the two stations.

For the March–May period we encountered clusters arriv-
ing to the different stations from NE. These clusters originate
from the marine/Arctic environment. All clusters at hand use
the same “corridor” of transport as shown in Fig. 16b. The
clusters are fairly dense and compare quite well in-between
stations. The V̈arriö, Pallas, Hyytïalä, Aspvreten and Vavi-
hill clusters are made up by 22, 13, 33, 16 and 22 trajectories,
respectively.

Starting with the resulting size distributions from Pallas
and V̈arriö clusters, it is found that they compare very well
both concerning resulting integral number as well as shape
of the size distribution (Fig. 18b). The shape of the result-
ing size distribution is typically bimodal, reflecting the prop-
erties of the marine aerosol. Turning the attention to As-
pvreten and Hyytïalä almost identical median size distribu-

tions is observed, and compared with Pallas and Värriö, a
sharp increase in especially the Aitken size ranges are ob-
served. Given the normalized distribution one also find that
shape of the distribution is shifted from being dominated by
accumulation mode particles to an aerosol with major part
of the number concentration confined to Aitken mode. Even
further south, at Vavihill, a slight increase in accumulation
mode concentrations and a slight reduction in Aitken mode
number concentration is observed.

Also, comparing the resulting clusters for Värriö and Pal-
las during March–May and December–February, clusters ar-
riving Pallas and V̈arriö during DJF-periods are found to
be associated with an aerosol exhibiting markedly different
properties as compared with those arriving during March,
April and May (MAM). If comparing the differences in mean
trajectory orientation for the winter and spring period, the
difference is probably a result of influence from the Kola
Peninsula. The cases during the DJF-period are associated
with an aerosol likely affected by industries on the Kola
Peninsula.

Just comparing the median size distribution might be to
generalizing and therefore the modal parameters derived
from each scan have also been investigated. These param-
eters, shown in Table 6, are results from the lognormal fitting
procedure described in the method part. Fitting these data of-
ten two modes in the Aitken range appeared, noted Aitken 1
and Aitken 2. When investigating these data several features
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Fig. 18.Comparing resulting median size distribution and size distribution normalized to 1 between different stations with clusters of similar
orientation. Dec–Feb(a) and Mar–May(b) are considered. Size distribution normalized to 1 are given in the right frame in order to highlight
the changes in size distribution properties between the stations.

Table 5. Volume and total number concentration median for clusters arriving in Sep–Nov. 25–75 percentiles and number of scans resulting
in the calculated quantity are given.

Cluster orientation Volume (µg/cm3) Volume (25–75%) Number (# cm−3) Number (25–75%) Number of scans

A (SW) 1.51 1.06–2.03 1833 1500–2250 251
B (S) 5.57 2.99–9.79 1680 1090–2660 816
C (N) 0.86 0.38–1.42 2159 1459–2980 306

become obvious. First an increase in nuclei mode concen-
trations is observed when going from north to south in con-
junction with increased frequency of appearance of the nuclei
mode itself. The maximum nuclei mode concentrations are
found at Hyytïalä, although the mode it self tends to appear
more seldom as compared with Aspvreten and Vavihill. For
the two southernmost stations the fraction of individual scans
exhibiting a nuclei mode is as large as 90% compared with
51% and 35% for V̈arriö and Pallas, respectively. However,
a little caution has to be added since Värriö and Pallas do not

measure sizes below 7 nm. The Aitken mode number con-
centration rises steeply when going from Pallas and Värriö to
e.g. Hyytïalä and an almost tenfold increase in Aitken mode2
number concentrations can be observed. The frequency of
occurrence does not vary as much as the nuclei mode. The
Aitken mode diameter seems fairly stable throughout the
southward journey. This also applies to the nuclei mode
diameter, which is found in the sub 20 nm ranges most of
the time. Accumulation mode parameters seem to be fairly
stable, although a slight increase in number concentration is
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Table 6. Modal parameter from lognormal fitting procedure for NE-clusters arriving Värriö, Pallas, Hyytïalä, Aspvreten andVavihill during
March–May. 25–75 percentile ranges are indicated.

Nuclei Nuclei Aitken Aitken 1 Aitken Aitken 2 Accumulation Acc. mode
median 25–75 mode 1 25–75 mode 2 25–75 mode 25–75

percentile ranges median percentile ranges median percentile ranges median percentile ranges

Värriö
N (# cm−3) 202 66–682 68 45–132 75 40–233 151 116–205

GSD 1.34 1.25–1.46 1.54 1.41–1.73 1.46 1.35–1.63 1.55 1.47–1.64
Dg (µm) 0.015 0.012–0.021 0.034 0.032–0.037 0.04 0.035–0.046 0.215 0.191–0.235
Fraction 0.51 – 0.08 – 0.72 – 1 –

Pallas
N (# cm−3) 216 116–522 51 43–516 77 35–421 205 160–275

GSD 1.31 1.25–1.45 1.42 1.34–1.46 1.32 1.27–1.44 1.52 1.41–1.66
Dg (µm) 0.015 0.012–0.017 0.035 0.033–0.038 0.042 0.036–0.049 0.216 0.173–0.305
Fraction 0.35 – 0.11 – 0.74 – 0.99 –

Hyytiälä
N (# cm−3) 1029 628–2728 705 492–926 800 445–1266 321 208–364

GSD 1.48 1.36–1.77 1.56 1.51–1.68 1.58 1.42–1.76 1.44 1.32–1.67
Dg (µm) 0.0181 0.01–0.024 0.0327 0.032–0.034 0.0510 0.043–0.058 0.2006 0.163–0.223
Fraction 0.65 – 0.20 – 0.79 – 0.92 –

Aspvreten
N (# cm−3) 489 312–728 181 134–227 631 390–1012 235 171–464

GSD 1.55 1.47–1.72 1.28 1.22–1.49 1.56 1.39–1.81 1.42 1.35–1.6
Dg (µm) 0.0208 0.018–0.024 0.0365 0.033–0.037 0.0451 0.042–0.053 0.1950 0.161–0.238
Fraction 0.89 – 0.01 – 0.96 – 0.96 –

Vavihill
N (# cm−3) 474 325–786 743 507–888 646 380–964 375 308–461

GSD 1.70 1.38–1.80 1.80 1.72–2.0 1.56 1.41–1.78 1.43 1.36–1.52
Dg (µm) 0.017 0.01–0.02 0.032 0.031–0.033 0.048 0.041–0.058 0.164 0.149–0.174
Fraction 0.90 – 0.03 – 0.89 – 0.92 –

observed. The fact that the modal geometrical mean diame-
ter, Dg, seems to decrease when going from Pallas and Värriö
to Vavihill could probably be explained by direct emissions
contributing to the∼100 nm size range, reducing the frac-
tional representation of the former and larger accumulation
mode particles encountered at northerly located stations.

This data clearly points at the importance of both nucle-
ation as well as direct emissions giving contributions in es-
pecially the nuclei-Aitken size ranges, shifting the size distri-
bution when going south. It also becomes obvious that even
with short transport distance as present between Värriö and
Hyytiälä with sparsely populated areas in-between is enough
to significantly alter the properties of the aerosol. This im-
plies that rather fast processes are acting upon the aerosol
during this southward transport.

3.4.2 Case II, SW clusters

SW trajectories ought to include transformation of aerosols
when moving from extensively polluted areas in the conti-

nent up to clean background locations such as Pallas and
Värriö. As mentioned earlier the SW clusters are the ones
most commonly encountered. All seasons exhibit this ad-
vection situation. As an example of this kind of transport
the winter period Dec- Feb has been chosen. For this season
we found nice and distinct clusters, probably associated with
low-pressure systems arriving from W. The clusters used in
the analysis are presented in Fig. 19. All clusters are based
on approximately 30 trajectories each. If comparing the clus-
ters between each other one finds that the Pallas cluster is
slightly different oriented as compared with the others ar-
riving to Hyytiälä, Värriö and Aspvreten. In comparing the
resulting size distributions associated with the clusters be-
tween the stations one has to be careful since the trajectories
arriving Pallas comes from cleaner environment as compared
with the others that most probably are affected by the sources
in Europe and Great Britain. This will of course affect the
aerosol measured.

Starting the analysis with a visual inspection of the result-
ing median size distribution and corresponding normalised
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Fig. 19. SW clusters arriving to the different stations. Clusters are represented as means. The time spacing between each pair of endpoints
(dots) in the figure is 5 h.

size distribution some properties become clear (Fig. 20).
First a sharp decrease in all modes is noticed when going
from southerly to northerly located stations.

Again, Värriö and Pallas size distribution data is found to
agree quit well both concerning size and shape. However,
a larger fraction of Aitken mode particles is observed in the
Pallas dataset as compared with Värriö (∼25%). Another im-
portant feature is the change in size distribution shape as the
air moves northwards. This should be related to the actual
transport time between the southerly and northerly stations,
on average 2–3 days derived from the trajectory analysis.
The aerosol alters from a size distribution dominated by par-
ticles by Aitken mode particles to an aerosol with the larger
fraction of particles confined to the accumulation mode. This
could have several explanations. First, Aitken mode parti-
cles do have a shorter lifetime than accumulation mode par-
ticles; therefore one would expect to observe a change in
shape of the size distribution in this fashion due to coagula-
tion. Another explanation could be cloud processing moving
the Aitken mode particles into the accumulation mode and a
subsequent wet deposition by precipitation of the larger ac-
cumulation mode particles of the aerosol. The influence from
dilution and dry deposition can neither be neglected.

By complementing this first sectional data analysis with
further investigations of the modal parameters the picture
becomes more obvious (Table 7). Starting with the nuclei
mode a decreasing concentration is observed as the distance
from the continent increase. Also observed are the quite large
modal diameters for the nuclei mode as compared with e.g.

the NE clusters encountered during March-May. The con-
centrations in the mode are much smaller as well. If exclud-
ing Pallas from the analysis the fraction of scans associated
with the nuclei mode is decreasing with increasing distance
from the continent.

The Aitken 2 modal diameters are in the same size ranges
for all stations, except for maybe Pallas. The concentration
in the Aitken size range decrease sharply. Värriö exhibits ap-
proximately 10 times less Aitken mode particles as compared
with Aspvreten. The accumulation mode concentration, in
turn, decrease by less than 4 times which explains the shape
of the median size distribution discussed previously. This
indicates that there is a lack of sources to support the high
number concentration encountered at Aspvreten when going
northwards, and/or strong growth and deposition processes.

Investigating the changes of aerosol properties associated
with northerly-southerly oriented airflow, a fast transition
into an aerosol with much larger number concentrations as-
sociated with measurement sites far south as compared with
the northerly-located stations was observed. This in spite of
sparsely populated areas in-between the stations. Frequent
occurrence of a nucleation mode associated with high num-
ber concentrations and increasing Aitken mode concentra-
tions was noticed.

With SW cluster occasions the number concentration for
all modes was observed to decrease when moving north. This
might be puzzling since one would expect the same sources
when going north as when going south. The direction of the
airflow would not affect the source strength.
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Fig. 20. Comparing resulting median size distribution between different stations with clusters of similar orientation. Resulting size distribu-
tion for period DEC-FEB. Size distribution normalized to 1 are given in the right frame in order to highlight the changes in size distribution
properties between the stations.

Table 7. Modal parameter from lognormal fitting procedure for SW-clusters arriving Aspvreten, Hyytiälä, Pallas and V̈arriö from March–
May. 25–75 percentile ranges are indicated.

Nuclei Nuclei mode Aitken Aitken 1 Aitken Aitken 2 Acc. mode Acc. mode
mode 25–75 mode 1 25–75 mode 2 25–75 median 25–75

median percentile ranges median percentile ranges median percentile ranges percentile ranges

Aspvreten
N (# cm−3) 874 486–1803 346 203–851 1150 857–1703 455 386–524

GSD 1.740 1.62–1.90 1.690 1.54–1.90 1.560 1.49–1.67 1.420 1.37–1.52
Dg (µm) 0.023 0.02–0.026 0.036 0.033–0.052 0.060 0.052–0.069 0.214 0.177–0.240
Fraction 0.431 – 0.264 – 0.977 – 0.965 –

Hyytiälä
N (# cm−3) 262 169–478 149 90–232 502 329–726 306 232–382

GSD 1.721 1.56–1.80 1.618 1.48–1.77 1.539 1.43–1.65 1.461 1.40–1.55
Dg (µm) 0.022 0.018–0.025 0.033 0.031–0.035 0.059 0.056–0.065 0.197 0.184–0.215
Fraction 0.614 – 0.159 – 0.988 – 0.997 –

Pallas
N (# cm−3) 84 47–158 45 22–103 152 79–275 161 60–271

GSD 1.465 1.33–1.62 1.404 1.30–1.57 1.533 1.39–1.75 1.505 1.39–1.63
Dg (µm) 0.019 0.015–0.024 0.038 0.033–0.050 0.049 0.044–0.054 0.182 0.163–0.196
fraction 0.403 – 0.051 – 0.922 – 0.936 –

Värriö
N (# cm−3) 84 31–155 55 29–102 106 56–173 141 82–206

GSD 1.510 1.42–1.58 1.370 1.27–1.52 1.450 1.33–1.66 1.520 1.4–1.62
Dg (µm) 0.024 0.02–0.027 0.044 0.039–0.048 0.056 0.047–0.078 0.183 0.161–0.212
fraction 0.141 – 0.395 – 0.767 – 0.984 –

With airflow from the continent, initially high concentra-
tions of particles are present. This would constitute a large
sink for newly formed particles as well as precursor gases.
In situations with NE clusters the opposite applies. This
would favour nucleation in trajectories associated with the
NE-clusters as compared with SW-clusters.

Another important suggestion that cannot be neglected is
the weather situations leading to the formation of cluster spe-
cific trajectories in the two different cases. SW trajecto-
ries are most certainly associated with low-pressure systems
arriving from W. This would probably include frequent pre-
cipitation for these trajectories. The fact that we actually
have different types of weather situations associated with NE
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clusters compared with SW might explain the observed fea-
tures, i.e. more frequent precipitation associated with SW
clusters.

An analysis of the precipitation rate along the trajectories
indicate up to four to five times more precipitation associated
with SW clusters as compared with NE cluster, on average.
In absolute numbers, the accumulated precipitation along
SW trajectories between Hyytiälä and V̈arriö was found to
be 2.6 mm on average. On the other hand, the accumulated
precipitation along NE trajectories as in case 1 (3.4.1), was
as low as 0.75. Wet deposition is well known to be a strong
removal mechanism for especially accumulation mode, but
also for Aitken mode particles.

4 Summary and conclusions

We have performed an analysis concerning one-year aerosol
data during the period 01/06/00–31/05/01. The analysis has
involved 5 stations ranging from the Finnish Lapland (Värriö
& Pallas) down to Vavihill in southern Sweden. All stations
have utilized similar DMPS-system set-up. The study has fo-
cused on seasonal, diurnal and geographical size distribution
properties.

The diurnal variation in integral number concentration was
found to be small. No larger variability than±10% was en-
countered when investigating the hourly medians of integral
number concentration. This reduces the possibility of local
influence on the stations. Occasions with very high num-
ber concentrations were found to preferentially occur during
midday hours though, especially during summer and spring.
This was linked to new particle formation events. Nucleation
events were observed at all stations, with the largest fraction
of nucleation days during spring.

An investigation of the diurnal variation of the size distri-
bution shape was performed. It was found that during nu-
cleation days we observed a characteristic diurnal variation
in the nuclei and Aitken size range, with nuclei mode parti-
cles appearing in the morning hours. The size distribution is
later during the day shifted towards larger size classes. We
interpret this as a growth of the freshly formed nuclei mode
particles. No diurnal variation in the shape of the size distri-
bution was found for non-nucleation days.

Large differences in aerosol properties were found to pre-
vail when comparing southerly and northerly-located sta-
tions. These differences typically found in absolute num-
ber concentration and shape of size distribution. Smallest
concentrations were encountered at the northernmost stations
Pallas and V̈arriö. However, obvious similarities were ob-
served when comparing these two stations. The southerly
stations Hyytïalä and Aspvreten were found to be associated
with especially high Aitken mode concentrations. Pallas and
Värriö exhibit data with well-separated Aitken and accumu-
lation modes, while we observe a more smoothed size distri-
bution for the southern stations.

Concerning the seasonal variation found through the year
we experienced a minimum in Aitken mode during winter
along with a better-separated Aitken and accumulation mode.
Maximum in Aitken mode was experienced during summer
and spring. The maximum in integral number concentration
is further confined to the spring and summer months.

A trajectory clustering model has been applied to the data
per season. Size distribution properties were related to the
orientation of the different clusters. A larger fraction of ac-
cumulation mode particles was usually found in clusters of
continental origin, whereas the marine cluster was found to
be associated with a more pronounced Aitken mode as well
as larger activity in the nuclei size ranges as compared with
those of continental origin. This behaviour was most pro-
nounced for the southerly-located stations.

The same clustering model was used to perform a semi-
Lagrangian investigation of the effect on the aerosol from
transport between the different stations. With a focus on sit-
uations when clusters of similar orientation arrived all sta-
tions, the aerosol could be assumed to be affected by similar
meteorology at all stations and therefore giving an opportu-
nity to examine the effect on the aerosol in terms of transport
distance with a reduced bias from trajectory specific meteo-
rology.

A focus was put on southerly and northerly airflow. It
was shown that situations with SW-clusters were associ-
ated with a reduction of number concentration in all size
ranges, whereas NE-clusters were typically associated with
a dramatic increase of aerosols, especially in the Aitken size
ranges, when going from one station to another. From this it
is clear that strong deposition/dilution occurs when transport
from the south applies. In turn, the anthropogenic and natural
sources manifest their strength when we follow the transition
from marine to continental air masses.

The measurement network seems ideal for evaluating the
transport of suspended particulate matter. In the present
study we have explored the possibilities of linking different
measurement sites in space and time.

We conclude from the study that a constant field cannot
describe the aerosol over the Nordic countries. Instead, we
revealed typical differences between the stations. These dif-
ferences were argued to be transport related. We did not per-
formed an in depth study of the influence from different me-
teorological situations associated with the different types of
advection. However, the influence from precipitation was ar-
gued important for the lifetime of the aerosol.

In the future this work of course has to be extended and a
more detailed investigation of the role of meteorology and
sources are called for. This investigation serves as a first
step in this process of finding important factors affecting
the aerosol over the Nordic countries and to find and sup-
ply parameterizations of aerosol processes to be included in
regional models.
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